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Abstract: With the recent increase in the occurrence of severe weather phenomena, the development
of accurate weather nowcasting is of paramount importance. Among the computational methods
that are used to predict the evolution of weather, deep learning techniques offer a particularly
appealing solution due to their capability for learning patterns from large amounts of data and their
fast inference times. In this paper, we propose a convolutional network for weather forecasting
that is based on radar product prediction. Our model (NeXtNow) adapts the ResNeXt architecture
that has been proposed in the computer vision literature to solve the spatiotemporal prediction
problem. NeXtNow consists of an encoder–decoder convolutional architecture, which maps radar
measurements from the past onto radar measurements that are recorded in the future. The ResNeXt
architecture was chosen as the basis for our network due to its flexibility, which allows for the
design of models that can be customized for specific tasks by stacking multiple blocks of the same
type. We validated our approach using radar data that were collected from the Romanian National
Meteorological Administration (NMA) and the Norwegian Meteorological Institute (MET) and we
empirically showed that the inclusion of multiple past radar measurements led to more accurate
predictions further in the future. We also showed that NeXtNow could outperform XNow, which is a
convolutional architecture that has previously been proposed for short-term radar data prediction
and has a performance that is comparable to those of other similar approaches in the nowcasting
literature. Compared to XNow, NeXtNow provided improvements to the critical success index that
ranged from 1% to 17% and improvements to the root mean square error that ranged from 5% to 6%.

Keywords: weather nowcasting; deep learning; ResNeXt; radar data

1. Introduction

Short-term weather analysis and forecasting for the next 0 to 6 h, which is known as
weather nowcasting [1,2], are of great interest in meteorology due to the increasing number of
severe weather events that can severely affect the safety of the human population by causing
damage and even mortality. For instance, precipitation nowcasting, which refers to the
prediction of rainfall intensity in specific regions in the near future, plays an important role
in our daily life [2] and represents a challenging topic in nowcasting. The problem is that
short-term weather forecasting is complex and difficult, even for operational meteorologists,
mainly due to the large volume of data that needs to be examined and interpreted in a short
period of time. In addition, nowcasting [3] is highly dependent on various environmental
conditions and requires a lot of human experience.

Significant progress has recently been made in the field of nowcasting, ranging from op-
erational nowcasting systems to the numerous computational intelligence solutions that have
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been proposed in the literature for detecting the occurrence of severe weather events [4,5].
Radar data [6] are useful for nowcasting [7,8]. Most operational nowcasting systems use
numerical weather prediction (NWP) models, which combine radar data and other mete-
orological observations to provide weather forecasts for up to 6 h in the future, e.g., the
INCA system [9]. Still, there are a lot of challenges in issuing precise nowcasting warnings
as most severe events (e.g., severe convective storms) occur within small spatial areas and
have short overall life cycles. Despite the significant improvements that have been achieved
by NWP models in precipitation nowcasting, there are still some limitations to their use,
such as insufficient computational resources in operational centers and increased error
rates at convection-permitting scales [10].

Most existing operational and semi-operational methods for nowcasting are based on
cell-tracking algorithms that use radar data as inputs. A real-time cell-tracking algorithm
named TITAN, which is useful for single cells, was introduced by Dixon and Wiener [7]
and the SCIT system, which uses a more complex cell-tracking algorithm and reflectivity
thresholds, was later proposed by Johnson et al. [8]. An operational nowcasting tool that
uses a centroid cell-tracking method (named TRT) was also developed by Hering et al. [11]
and used by Meteo Swiss, while Germany’s National Meteorological Service uses a now-
casting system that is called NowCastMIX, which was introduced by James et al. [5] and
employs fuzzy logic rules to analyze remote and ground observations. Fuzzy logic is also
used in a cell-tracking algorithm that was proposed by Jung and Lee [4]. AROME [12] is
a prediction model that is used to provide a forecast for up to 30 h in the future and has
been used by Meteo France since 2008, while AROME-NWC [13] was later developed for
nowcasting in the range of 0–6 h.

Machine learning (ML) techniques are useful computational intelligence tools that can
assist operational meteorologists in decision-making as they are able to learn relevant
patterns from weather-related data. Deep learning (DL) [14,15] models have become popular
within the ML domain as they are able to express target functions that are more complex
than those that are encoded by traditional ML models. Additionally, DL models can
automatically extract useful features from raw data, thereby removing the difficult task
of manual feature engineering that is required by classical ML models. DL architectures
are characterized by a hierarchy of multiple levels of representations. Despite the complex
aspects of this type of neural model, the key advantage of DL models is the fact that they
are universal approximators, i.e., they have the ability to learn arbitrary functions as a
composition of several operations.

Reflectivity (R) and Doppler radial velocity (V) are radar products that are used by
operational meteorologists to monitor the spatiotemporal evolution of precipitating clouds
and thus, they are useful in weather nowcasting.

These reflectivity and velocity values are also used by operational radar algorithms to
estimate rainfall and to track and classify storms: R values that are higher than 35 dBZ [7,16]
suggest the possible occurrence of convective storms, which are associated with heavy
rainfall. The prediction of the values of these radar products based on their historical
measurements is important for the early assessment of storm evolution, which can lead to
improved nowcasting and timely severe weather warnings.

Time series data, which represent the values of the selected variables at specific time
points, are generally used in forecasting because of the temporal characteristics of these
data. This study used time series radar data to predict the values of the radar products
in a specific geographical region, based on their historical values. The contribution of the
paper is twofold. Firstly, the proposal of NeXtNow, which is a new convolutional weather
forecasting model that was adapted from the ResNeXt [17] architecture that has been
proposed in the computer vision literature for the task of spatiotemporal prediction. Our
proposed model has an encoder–decoder architecture that consists of ResNeXt blocks and
simple convolutions, which maps past radar measurements onto radar measurements that
are recorded in the future. Therefore, NeXtNow is a customized version of ResNeXt for the
short-term prediction of radar data. We opted for the convolutional architecture instead of
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a recurrent alternative due to its training and inference efficiency. The ResNeXt architecture
was chosen due to the versatility of ResNet-type [18] architectures, which allows for the
design of models that can be customized for specific tasks by stacking multiple blocks of
the same type. Moreover, we empirically showed that the inclusion of multiple past radar
measurements led to more accurate predictions further in the future. The performance of
our proposed NeXtNow model was evaluated using two case studies, which consisted of
real radar data that were collected from the Romanian National Meteorological Adminis-
tration (NMA) and the Norwegian Meteorological Institute (MET). The obtained results
were analyzed from a meteorological perspective to examine the ability of the NeXtNow
model to capture relevant patterns in the evolution of radar echoes, i.e., patterns that could
be relevant for nowcasting severe weather phenomena. Comparisons between NeXtNow
and other models in the literature highlighted that NeXtNow outperformed a convolutional
architecture [19] that was proposed for short-term radar data prediction and that its per-
formance was also comparable to the performances of other similar approaches from the
nowcasting literature. To the best of our knowledge, an approach that is similar to NeXtNow
has not yet been proposed in the nowcasting literature.

To summarize, the following research questions guided this study:

RQ1 How can the ResNeXt deep learning architecture be adapted for the task of spatiotem-
poral prediction and customized for the short-term prediction of radar data? (This led
to the development of the NeXtNow model.)

RQ2 How does the NeXtNow model perform using real radar data? Would adding multiple
past radar measurements improve the future prediction performance?

RQ3 Does the ResNeXt model improve the performance of the short-term prediction of
radar data? Is the performance improvement that is achieved by NeXtNow statistically
significant from similar existing approaches?

The rest of the paper is organized as follows. Section 2 presents a literature review of
recent machine learning and deep learning approaches for weather nowcasting that use
radar data (Section 2.1) and an overview of the case studies that were used to evaluate our
proposed model (Section 2.2). The methodology that was used in our work is detailed in
Section 2.3. Section 3 presents the experimental evaluation of our proposed approach and
the comparisons to similar models are presented in Section 4. The last section presents the
conclusions of this study and potential directions for future research.

2. Materials and Methods
2.1. Recent Literature Advances in Nowcasting, Based on Radar Data Prediction

Various classical ML and DL models have been introduced in the literature for weather
nowcasting. In the following section, we summarize the nowcasting techniques that are
based on radar data that have been proposed recently.

Prudden et al. [20] reviewed the existing forecasting methods for precipitation predic-
tion that are based on radar data and the machine learning techniques that are applicable for
radar-based precipitation nowcasting. Four classes of methods for precipitation nowcasting
were mentioned by the authors: persistence-based methods, probabilistic and stochastic
methods, nowcasting convective development and ML-based approaches. The study em-
phasized the performance improvements that could be obtained by applying deep neural
networks combined with domain knowledge about the physical system that was being
modeled. The authors also highlighted the potential of generative adversarial networks,
which are able to capture data uncertainty and generate new data that follow the same
distribution patterns as the input data.

Han et al. [21] used support vector machines (SVMs) for radar data nowcasting, which
was modeled as a binary classification task. The model was trained to identify whether
the radar would detect a radar echo >35 dBZ in the following 30 min. The features that
characterized the input data included temporal and spatial information. The experiments
revealed a probability of detection (POD) of around 0.61, a critical success index (CSI) of
0.36 and a false alarm rate (FAR) of about 0.52.
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Ji [22] employed artificial neural networks for short-term precipitation prediction
using radar observations that were collected from China from 2010 to 2012. The reflectivity
values were extracted from the raw data, then interpolated into 3D data and used to train
the predictive model. The minimum and maximum values that were obtained for the root
mean square error (RMSE) were 0.97 and 4.7, respectively [22].

A convolutional neural network (CNN) model was proposed by Han et al. [16] for
predicting convective storms in the near future using radar data. The model was designed
as a binary classification model to predict whether radar echo values would be higher
than 35 dBZ in the next 30 min. The input radar data were represented by 3D images and
the output was also a 3D image, in which each point of the image was "1" when the radar
echo was predicted to be higher than 35 dBZ in the next 30 min and "0" when it was not.
The experiments produced a CSI value of 0.44.

Socaci et al. [19] proposed an adaptation of the Xception deep learning model, which
they named XNow, for the short-term prediction of radar data. Experiments were per-
formed using radar data that were provided by the Romanian National Meteorological Ad-
ministration and an average normalized root mean square error of less than 3% was obtained.

The U-Net convolutional architecture has been employed in multiple studies on
weather nowcasting using radar data [23,24]. Agrawal et al. [23] proposed a U-Net model
for precipitation nowcasting. Their proposed model surpassed several baselines of other
methods in terms of short-term prediction (up to 1 h), namely the persistence model and
an optical flow algorithm, as well as the high-resolution rapid refresh (HRRR) system, but
was outperformed by the HRRR model in terms of forecasts for up to 5 h. The RainNet
model, which was proposed by Ayzel et al. [25], is a U-Net model that was trained using a
logcosh objective function. Trebing et al. [24] introduced a lightweight U-Net model that
used depth-wise separable convolutions. Their model achieved a similar performance to
that of the classical U-Net while only having a quarter of its parameters.

Ciurlionis and Lukosevicius [26] used a CNN model to forecast future precipitation
using current precipitation data. They used precipitation data that were estimated using
a radar and trained the model with four time steps as the inputs and the next step as the
output (i.e., when t was the current step, the input data were t− 3, t− 2, t− 1 and t and
the model predicted data for t + 1). To predict further in the future, they used consecutive
predictions (using the predicted data from the previous step as the input for the next
step). They compared their approach to four basic numerical algorithms: the persistence
model, a basic translation algorithm, a step translation algorithm and a sequence translation
algorithm. They measured whether the models correctly predicted zero or non-zero values
(i.e., they transformed the task into a classification problem). When predicting one time
step, both the CNN and the sequence translation algorithm had a CSI of 0.81, while the
others had CSI values of under 0.8. For predictions further in the future, the CNN had a
better performance than the sequence translation algorithm; for example, at 60 min, the
CNN model had a CSI of 0.71 while the numerical algorithm had a CSI of 0.65.

Differentiating from the general trend of using deep learning for machine learning
models, Mao and Sorteberg [27] proposed a model that was based on a random forest
(RF) for precipitation nowcasting. The random forest was trained to predict precipitation
data. The inputs for the model were multiple types of data, with the main ones being
precipitation data that were estimated using a radar, AROME numerical model predictions
and other various data from ground weather stations, such as air pressure, air temperature
and/or wind speed. To evaluate the model, the predictions were transformed into two
classes: below 0.1 and above or equal to 0.1. They obtained a CSI of 0.49 for the proposed
model, while the automatic radar nowcasting had a CSI of 0.42 and a baseline numerical
model had a CSI of 0.33.

Bonnet et al. [28] used a video prediction model named PredRNN++, which was based
on ConvLSTM combined with gradient highway units (GHUs), to predict radar reflectivity
and had radar reflectivity as the input. They only used the reflectivity from the lowest
elevation angle, which was collected every 5 min. The input data consisted of 10 time steps
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and the model predicted 10 time steps into the future. In order to measure the performance
of the model, they also transformed the predictions into classifications using the thresholds
of 10 dBZ for predictions and 20 dBZ for observations. In terms of metrics, they used
CSI and the equitable threat score (ETS), which is an improvement on CSI that also takes
true negatives into consideration. Their model obtained a CSI of 0.52 and an ETS of 0.46
for prediction at 15 min and outperformed ENCAST, which is the model that is currently
used in São Paulo, Brazil, based on the extrapolation of the data that were collected from
the radar.

While the majority of nowcasting models that have been proposed so far have been
based on a single machine learning model, Xiang et al. [29] proposed a model that combined
two types of neural networks in order to improve the nowcasting results: decision trees and
numerical methods. The goal of their model was to predict the amount of precipitation at a
single point 1–2 h in the future (they targeted points where there were weather stations so
they were able to compare the predictions to the ground truth values that were obtained by
the stations). The dataset was processed so it only contained time steps with meteorological
activity. Their model worked in three steps: first, they used a numerical model for trajectory
tracking to compute the trajectory of the meteorological phenomenon (e.g., storm, clouds,
etc.); then, there was a feature extraction phase, in which the best features were selected
(some were just general features that were provided by the weather station and some were
dependent on the previous phase, such as cropping images depending on the computed
trajectory); the final phase consisted of using three models to separately predict the amount
of precipitation. Each model used a different set of features from the features that were
extracted in the second phase. For the final output, these three values were summed up
with different weights. They tested the model using different features that were extracted
in the second phase. The best results were 4.035 for the RMSE and 246.52 for the mean
absolute percentage error (MAPE).

One of the main problems with using convolutional neural networks that were trained
with conventional loss functions to predict images is that the predictions tend to be blurry
or smoothed out. Hu et al. [30] proposed an improvement for nowcasting models by adding
generative adversarial networks (GANs) as a second step after the usual predictive model.
They proposed two types of GANs: a spatial GAN (acting on the actual image) and a
spectral GAN (acting on the spectrum of the image following a fast Fourier transform).
A masked-style loss function was introduced to improve the sharpness of the generated
images. In addition, a new metric (the power spectral density score (PSDS)) was proposed,
which was computed based on the spectrum of the images. In order to evaluate the quality
of the predictions, another metric (the learned perceptual image patch similarity (LPIPS))
was used, which was measured according to the perceptual similarity between the obser-
vations and the predictions. The CSI metric was employed to measure the performance
of the model using binarized values. In their experiments, U-Net and ConvLSTM were
used as base models. The results that were obtained using both types of GANs were better
than those that were obtained using only the spatial GAN, except when measuring CSI
at the lowest threshold. Adding the mask-style loss yielded better results in most cases.
As mentioned before, the original models yielded better results than the GANs for CSI at
the lowest threshold, but this changed at higher thresholds. The GANs produced better
LPIPS scores, which were even better when using the mask-style loss function (0.412 for
the original ConvLSTM and 0.27 for the ConvLSM with both GANs and the loss function).
The PSDS scores were significantly improved when using the GANs and the loss function
(0.78 for the original ConvLSTM and 0.16 for the ConvLSTM with both GANs and the
loss function).

Choi and Kim [31] also used GANs to improve the performance of U-Net mod-
els. Their goal was to predict radar reflectivity using radar reflectivity as the input data.
The authors proposed a precipitation nowcasting model (Rad-cGAN) that was based on a
conditional generative adversarial network (cGAN). To evaluate their model, they com-
pared their estimated precipitation values using the ZR model to the observed ground
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truth precipitation values that were gathered at several dams. They obtained a Pearson
correlation coefficient of 0.86, an RMSE of 0.42, a Nash–Sutcliffe efficiency (NSE) of 0.73
and a CSI of 0.81.

2.2. Case Studies

In the following section, we describe the case studies that were used to evaluate
the proposed NeXtNow model. The two case studies were conducted using datasets
from Romania (provided by the NMA) and Norway (provided by the MET), which were
selected because they belonged to different geographical/climatic areas and contained
different radar measurements (as further highlighted in Table 1), thus allowing us to test
the performance of the NeXtNow model more thoroughly.

2.2.1. First Case Study (NMA Data)

The NMA dataset that was used in our first case study was collected by a Doppler
single-polarization radar that is located in central Romania. During a full volume scan,
which is completed every 6 min, the radar outputs many different products that are related
to the location, intensity and movement of precipitating clouds and their associated me-
teorological phenomena. For the experiments, we used the base reflectivity (R) product
and the base velocity (V) product. The radar collects these base products at nine elevation
angles, effectively gathering nine sets of velocity and reflectivity data at each time step.
For both products, we used the data from the lowest four elevation angles, which resulted
in eight products in total: R01, R02, R03, R04, V01, V02, V03 and V04. The reflectivity and
Doppler radial velocity were used for the NMA case study as these are the first products
that are analyzed by forecasters to identify weather features. The use of velocity fields
can be theoretically useful because they can introduce the effects of convergence zones
into the model for the prediction of the initiation and evolution of convective storms.
The experiments that are presented in Section 3 empirically sustained this hypothesis.

To train, validate and test the model, 20 summer days with heavy rain, wind and hail
and without any meteorological events were extracted from the observations, which cor-
responded to events that were observed in June 2010 (2nd, 10th, 12th, 13th, 14th, 19th,
20th, 22nd, 23rd and 24th), June 2017 (from 3rd to 7th) and June 2018 (11th, 13th, 15th,
16th and 21st). The study area was the central Romania region (central Transylvania) as
the radar is located near the village of Bobohalma. The month of June was selected for
the NMA case study as, in Romania, it is the month that the most convective storms and
convective systems develop in the Carpathian basin. The dataset included days both with
and without severe meteorological events and thus, a diverse dataset was obtained. Out of
the entire area that is scanned by the radar, we focused on a central square with a size of
256 × 256 cells (the radar is located in the middle of this square).

2.2.2. Second Case Study (MET Data)

The MET radar dataset that was used in our second case study consisted of composite
reflectivity values that were obtained from the MET Norway Thredds Data Server [32].
The data, which are available at [33], were obtained by processing the raw reflectivity
measurements that were retrieved from multiple radars. Thus, the reflectivity product
that is stored at the MET Norway is a composite map that is obtained from all elevations
and tilts by taking into account the radar scans that have the best quality and not the
strongest reflectivity across the elevations. This composite reflectivity product is obtained
by applying an interpolation procedure and using different weights for the various radars,
depending on their quality and other meteorological or non-meteorological factors that can
alter the radar measurements. The reflectivity values that were used in our experiments
were collected at intervals of 5 min.

To train, validate and test the model, days with and without meteorological events
were selected from December 2020 (23rd, 25th, 26th and 27th), January 2021 (17th and
18th), March 2021 (3rd and 4th), April 2021 (12th and 13th), June 2021 (the entire month)
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and January 2022 (1st–25th). The days were selected so as to obtain a diverse dataset that
contained days both with and without severe meteorological events and included both
summer and winter months. The analyzed geographical area was a region surrounding
Oslo. From the entire map, a square of 256 × 256 pixels was selected.

Table 1 describes the datasets that were used in our case studies. The second column
in the table indicates the radar products of interest and the last column shows the number
of days on which the radar data that were used in each case study were collected.

Table 1. A description of the datasets that were used in our case studies.

Case Study Radar Products Number of Days

NMA

Reflectivity and velocity at the
four lowest 20
elevations (R01, R01, R03, R04,
V01, V02, V03 and V04)

MET Composite reflectivity (CR) 65

2.3. Methodology

With the goal of answering our first research question (RQ1), we developed and
evaluated our NeXtNow deep learning model, which was customized for the short-term
prediction of weather radar products. NeXtNow was adapted for radar data prediction from
the ResNeXt [17] architecture, which is mainly used for image processing. To the best of our
knowledge, no other architecture that is based on ResNeXt has been proposed for weather
nowcasting or spatiotemporal prediction problems. While several works have proposed
fully convolutional or convolutional–recurrent neural networks for weather forecasting,
they have employed simple and causal 2D or 3D convolutional architectures [34] and
architectures that were inspired by U-Net [24] or the Xception model [19]. The basic details
of the ResNeXt deep learning model are presented in Section 2.3.1, then Section 2.3.2
introduces the model that was used in our approach. Our NeXtNow learning model is
introduced in Section 2.3.3, while the testing stage of NeXtNow and the methodology that
was employed for the performance evaluation is discussed in Section 2.3.4.

2.3.1. ResNeXt Architecture

The ResNeXt architecture was proposed by Xie et al. [17] as an improved version of
the ResNet model [35]. The ResNet architecture [35] addresses the difficulty in training
very deep neural networks by introducing shortcut connections, a technique in which the
input of an architectural block is added to its output in order to obtain the final output.
By passing information from earlier layers to deeper layers, the network can optimize
residual mappings, thus making it possible to efficiently train very deep architectures. This
process can be viewed as a form of feature fusion, in which features at different levels of
depth are combined using an addition operation [36]. Multiple residual blocks are stacked
to form deep networks [35].

ResNeXt further builds on this architectural blueprint by using grouped convolutions
instead of plain convolutions inside the residual blocks. Grouped convolutions are a type of
convolutional layer in which the input is split channel-wise into multiple groups, with each
group being processed individually by convolutions and concatenated at the end to obtain
the final result. This construction has been shown to be equivalent to applying a set of
aggregated transformations, which can be formalized as follows.

Given an input x and a hyperparameter that is called cardinality C, an aggregated
transformation can be obtained from a set of transformations {τ1, . . . , τC} as:

F (x) =
C

∑
i=1

τi(x)
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Following the strategy in ResNet, the aggregated transformation is a residual connec-
tion, which leads to the following computation for the output:

y = x +
C

∑
i=1

τi(x)

Figure 1 shows a schematic representation of the two types of blocks that are used in
the ResNet and ResNeXt architectures. It has been shown experimentally that tuning the
hyperparameter C can lead to significant performance improvements in image classification
tasks [17].

As in the case of ResNet, the ResNeXt architecture is composed of a succession of
blocks [17].

Figure 1. The ResNet (left) and ResNeXt (right) blocks. The kernel size in each convolution is shown
in the figure.

2.3.2. Formalization, Data Modeling and Preprocessing

We denoted the radar products of interest by P = {r1, r2, . . . , rn}, where n is the
dimensionality of P (the number of radar products that were used). For our case studies
that were described in Section 2.2, we obtained the following values for P and n:

• For the first case study (NMA dataset), n = 8 and P = {R01, R02, R03, R04,
V01, V02, V03, V04};

• For the second case study (MET dataset), n = 1 and P = {CR}.
The radar data that were input at a certain time moment t were denoted by It and were

modeled as 3D images with n channels (corresponding to the available radar products), with
the i-th channel representing the value of the radar product ri at time t. More specifically,
the OX and OY axes represented the longitudinal and latitudinal values of the geographical
area and the OZ axis represented the channels (i.e., the values of the radar products P at
time moment t).

A sample 4-channel 3D image (with n = 4 products) is shown in Figure 2.
Given a certain step k, the goal of our learning problem was to predict the 3D

image at time moment t from the 3D images that were collected at the time moments
t − k, t − k + 1, . . . , t − 1. In our model, the output was also an n-channel 3D image,
in which the value of a point on the i-th channel of the image It was the value that was
predicted for the radar product ri at time t. We noted that one time step (i.e., the time
period between two consecutive time moments t− 1 and t) represented the time resolution
between two consecutive radar scans. More specifically, a time step was 6 min for the NMA
case study and 5 min for the MET case study.

We denoted the sequence of 3D images that represented the radar data that were
collected at time moments t− k, t− k+ 1, . . . , t− 1 by Seq(t, k) = < It−k, It−k+1, . . . , It−1 >.
In this context, the target function of our learning problem was a function M that mapped
the k-length sequence of n-channel 3D images (Seq(t, k)) onto another n-channel 3D image
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(It), i.e., It = M(Seq(t, k)). The NeXtNow deep learning model learned hypothesis h,
which was an approximation of M (h ≈ M), i.e., h(It−k, It−k+1, . . . , It−1) ≈ It ∀t. Thus,
for a sequence of images (Seq(t, k)), NeXtNow provided a multi-channel 3D image It that
contained the estimation of the values of the radar products at time t.

10 20 0 15
15 10 5 0
0 10 25 10

10 5 5 155 10 20 10
10 20 15 5
15 20 5 0
10 10 5 50 15 20 10

10 25 25 10
5 10 15 5
0 5 10 1510 5 10 5

20 15 15 0
15 20 15 20

5 10 20 10

Figure 2. A sample 4-channel 3D image for It.

A sequence of 3D images that contained radar data that were collected at different
time moments t was available. A dataset D was created from sequences in the form of
< It−k, It−k+1, . . . , It−1 >, i.e., a sequence of n-channel 3D images that represented radar
data that were collected at time moments t− k, t− k + 1, . . . , t− 1. For each instance, the
Seq(t, k) from the ground truth D (i.e., the n-channel 3D image It that contained the values
of the radar products at time t) was available and was used to train the model.

Before building the NeXtNow deep learning model, a preprocessing step was applied
to the 3D images It to correct any possible errors that existed in the radar data. For the
NMA dataset, two different preprocessing methods were used, depending on the product.
For R, the only preprocessing that was carried out was to replace the “No Data” (NaN)
values with “0”. For the V product, there was a more complex preprocessing step. The issue
with V was that it was a very noisy product because it represented the velocity relative
to the radar, so there were some cases in which the radar could not properly estimate the
direction or the speed, thus producing invalid values. These invalid values appeared
often enough that they could interfere with the model learning [37]. We addressed this
problem by introducing a cleaning step, which replaced the invalid values with valid values.
The new values were computed as the weighted average of the values in the neighborhood
surrounding the invalid value. The weight of a value in the neighborhood was inverse
proportional to the difference between that value and the invalid value.

The raw MET data were preprocessed as follows. Since the raw data had negative
reflectivity values, which were not important for nowcasting, these values were all replaced
with a constant value of −1. Additionally, the NaN values that corresponded to missing
radar measurements were replaced with values that were outside the domain of valid
reflectivity values, i.e., −5, in order to be able to distinguish them from the negative values
and the reflectivity values that were of interest (i.e., the positive values).

As well as the previous preprocessing steps, the data were normalized using the
classical min-max normalization method. For the min-max normalization, we used the
minimum and maximum values from the domain of the radar products instead of the
minimum and maximum values from the training dataset. This way, we made sure that the
same values in different datasets were assigned the same normalized values. In the case
of the MET dataset, the minimum value that was used for normalization was −5, which
corresponded to the missing radar measurements.
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2.3.3. Building the NeXtNow Model

The predictive model NeXtNow was built using a training dataset that consisted of
training samples in the form of (Seq(T, k), It), where It = M(Seq(T, k)) represented the
ground truth (the 3D image that consisted of the real values of the radar products at time t)
that was used to train the instance Seq(t, k) =< It−k, It−k+1, . . . , It−1 >.

The proposed model had a fully convolutional encoder–decoder architecture, which
was formed of three main components. The first component was an encoder, which was
inspired by the ResNeXt architecture.

The encoder consisted of two classical convolutions, which had the role of providing
multiple feature maps for the inputs, followed by three ResNeXt blocks. The blocks were
constructed according to the original ResNeXt paper [17], as presented in Section 2.3.1.
The final convolution in the block multiplied the filter size by four, while the group convo-
lution downsampled the input image by a factor of two. Each convolution in the block was
followed by a batch normalization layer and the ReLU activation function. The convolu-
tions that were used in the encoder had a kernel size of 3 × 3.

The second component was a series of eight identical ResNeXt blocks, with 1024 filters
each. In contrast to the blocks that were used in the encoder, the blocks that were included in
this component did not change the resolution or number of filters of their inputs, but they
did have the aim of obtaining refined representations for the feature maps that were
retrieved from the encoder. Empirically, we found that the addition of these additional
blocks was beneficial to the model’s overall performance.

While the first two components benefited from the use of ResNeXt blocks, we opted
for a succession of simple convolutional layers for the decoder as experimenting with more
complex architectural components did not lead to a better performance for the forecasting
model. Therefore, in our proposed model, the decoder consisted of a series of upsampling
layers, followed by convolutions. Following a standard approach to designing architectures
for image-to-image tasks, the number of filters was progressively increased in the encoder
and decreased in the decoder.

A schematic representation of the NeXtNow architecture is shown in Figure 3.

Figure 3. The proposed NeXtNow architecture. The ResNeXt blocks are depicted in blue, while
classical convolutional layers are shown in orange. In the case of the ResNeXt blocks, the filters that
correspond to the first and last convolutions in the block are shown, while only only the number
of filters is shown for the plain convolutions. This figure was created using the PlotNeuralNet
package [38].

The proposed architecture represented a new purely convolutional approach to
weather nowcasting. The main advantage of our model was the simplicity and flexibility of
the architecture, which allowed it to be easily adapted for other spatiotemporal prediction
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tasks with few hyperparameters that needed to be tuned. A limitation of our approach
was that it did not incorporate a recurrent component for modeling the time dimension,
relying instead on a simple concatenation operation for the time steps. Our model could be
extended, however, by including modules from our architecture in recurrent architectures
as feature extractors.

The datasets for both case studies (NMA and MET) were split into train, validation
and testing subsets from the total number of days that were available (i.e., 20 days for the
NMA dataset and 65 days for the MET dataset): 80% for training, 10% for model validation
and the remaining of 10% for testing. From each subset (training/validation/testing),
the complete days (with no missing time steps) were used.

2.3.4. Performance Evaluation and Testing Methodology

As shown in Section 2.3.3, after the NeXtNow model was trained, it was evaluated using
10% of the instances from the datasets D, which were unseen during the training stage.

Various performance metrics were computed to assess the performance of NeXtNow
using a testing subset. The experiments were repeated three times using three different
training–validation–testing splits and the values for each of the performance metrics were
averaged over the three runs.

Depending on the type of the input data that was used in the forecasting problem, there
were three types of verification methods that were used for the performance evaluation:
categorical, continuous (real values) or probabilistic approaches. Our experiments used
the continuous approach since we modeled the problem as a regression task and used
continuous input data that were mapped onto a continuous output.

The first set of evaluation metrics that we considered used the continuous ground
truth data and the continuous forecasts that were made by the NeXtNow model. Given
a testing dataset with n ground truth data samples in which each sample was an image
containing m points, we denoted the ground truth (observation) value for the i-th point in
the t-th testing instance by Ot,i and the prediction (forecast) value for the i-th point in the
t-th testing instance by Ft,i. The following evaluation metrics that have been used in the
regression literature were computed for each testing sample [39]:

• Root mean square error (RMSE), which was computed as the square root of the mean
square errors that were obtained using the tth testing data sample:

RMSE(t) =

√√√√√ m

∑
i=1

(Ot,i − Ft,i)
2

m
.

Lower RMSE values indicated better predictions.
• Correlation coefficient (CC), which expressed a linear relationship between the forecast

and the actual observation (ground truth) and was computed as

CC(t) =

m

∑
i=1

(Ft,i − Ft)(Ot,i −Ot)√
m

∑
i=1

(Ft,i − Ft)
2

√
m

∑
i=1

(Ot,i −Ot)
2

,

where Ot represents the average of the actual observations (Ot =
1
m ·

m

∑
i=1

Ot,i) and Ft is

the average of the forecasts (Ft =
1
m ·

m

∑
i=1

Ft,i). CC produced values between [−1, 1],

where CC = 1 represented a perfect fit between the forecast and the true observation
that was obtained. Higher values of CC indicated better predictions.
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• The radar reflectivity data included numerous missing points, which corresponded to
the regions for which the radar did not detect any signals. In the NMA case study, these
points were associated with 0 values, while for the MET dataset, which contained
negative values, we encoded missing radar reflectivity data using a value of −5,
as presented in Section 2.3.2. In order to present common terminology and notations,
we referred to these points as zero-labeled points. Since we were not interested in the
prediction performance at these points, we only computed the values for the RMSE
and CC performance metrics for the non-zero labeled instances , i.e.,:

RMSEnz(t) =

√√√√√ ∑
i,Ot,i 6=0

(Ot,i − Ft,i)
2

nz(t)

where nz(t) = |{i ∈ {1, . . . , m}|Ot,i 6= 0}| is the number of non-zero points in testing
sample t and

CCnz(t) =

∑
i,Ot,i 6=0

(Ft,i − Ft)(Ot,i −Ot)√
∑

i,Ot,i 6=0
(Ft,i − Ft)

2
√

∑
i,Ot,i 6=0

(Ot,i −Ot)
2

where Ot and Ft represent the mean observations and forecasts that were computed
across the non-zero points.

The values that were obtained for all of the testing samples were averaged in or-

der to obtain the final evaluation metrics for the testing subset: RMSE =

n

∑
t=1

RMSE(t)

n ,

RMSEnz =

n

∑
t=1

RMSEnz(t)

n , CC =

n

∑
t=1

CC(t)

n and CCnz =

n

∑
t=1

CCnz(t)

n .
For a thorough assessment of NeXtNow’s performance, we discretized its continuous

output by applying a threshold in order to evaluate the performance of our model using
additional evaluation metrics. For meteorologists, the classes of the values of the radar
products are particularly relevant, for example, for stratiform and convective rainfall
classification. By applying a threshold τ to the continuous output values that were provided
by NeXtNow, the set of evaluation metrics was enlarged with the performance metrics that
were used for binary classification: values that were higher than τ could be considered
as belonging to the positive class, while values that were lower than τ belonged to the
negative class.

For the testing dataset, after computing the confusion matrix that corresponded to the
binary classification task (TP, number of true positives; FP, number of false positives; TN,
number of true negatives; FN, number of false negatives), the evaluation metrics that are
described below were calculated:

• Critical success index (CSI), which was obtained as CSI = TP
TP + FN + FP ;

• False alarm rate (FAR), which was computed as FAR = FP
FP + TP ;

• Probability of detection (POD), which represented the recall of the classifier and was
computed as POD = TP

TP + FN ;
• Bias (BIAS), which was used for categorical forecasts and was equal to the total

number of events that were positively predicted divided by the total number of actual
positive events, i.e., BIAS = (TP + FP)/(TP + FN).

We note that the CSI, FAR, POD and BIAS metrics have been widely used for per-
formance assessment in the forecasting literature. CSI, FAR and POD ranged between
[0, 1], while the domain of BIAS was [0, ∞). Higher values of CSI and POD and lower
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FAR values were expected for better predictions, while BIAS values of closer to 1 were
expected for better forecasting models.

3. Results

This section aims to answer the second research question (RQ2) and present the
experimental results that were obtained when evaluating the performance of the NeXtNow
forecasting model, which was built to predict the values of radar products using the
methodology that was introduced in Section 2.3. The model was implemented using the
TensorFlow library [40]. The experiments were run on two laptops, which had the following
configurations: an Intel i9-10980HK CPU, 32 GB of RAM and an Nvidia RTX 2080 Super
for GPU acceleration; an Intel i7-9750H CPU and an Nvidia GeForce GTX 1660 GPU.

3.1. Datasets

The datasets that were used in our experiments were collected during the two case
studies that were described in Section 2.2 and are publicly available at [41] (NMA dataset)
and [33] (MET dataset).

3.1.1. NMA Dataset

The meteorological radar at NMA collects data at every 6 min (240 acquisitions per
day) at nine elevation angles. Every collection at every elevation is a matrix of floating point
numbers and contains 460 × 460 = 211,600 data points, ranging from 0 to 70. A custom
cleaning process was applied to the raw radar from NMA and the cleaned data were used in
the experiments. The data were stored in .NetCDF (network common data form) files [42]
and each collection (for each elevation and each radar product) was stored in a separate file
(460 × 460 × 240 × 9 = 457,056,000 data points for a single product for an entire day).

Figure 4 summarizes the reflectivity radar product for all elevation levels and all
acquisitions during one full day and highlights the area that is covered by the radar, both
in terms of raw data and geographical location (projected onto the map).

Figure 4. A visualization of the data points that are missing for all acquisitions at all elevation
levels during an entire day in the NMA dataset for the reflectivity product. On the left, there is
a visualization of the data matrix, in which each red pixel indicates that the value is present all
day for all elevations. On the right, there is a visualization of the missing data projected onto the
map, in which the red color indicates that the values are missing all day for all acquisitions at all
elevation levels.

The histogram in Figure 5 reveals the imbalance between the larger values and smaller
values and also highlights the fact that during the cleaning process, the data points were
grouped into categories ([0–5), [5–10), [10–15). . .). There were significantly fewer high
values (> 50 usually indicated severe meteorological phenomena) than small values (the x
axis used a logarithmic scale) and this imbalance in the data made the prediction problem
more difficult.
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Figure 5. A histogram of the non-missing values in the NMA dataset for the entire region for a whole
day, including all acquisitions at all elevations. A logarithmic scale was used on the OY axis.

3.1.2. MET Dataset

The meteorological radars at MET collect data at every 5 min (288 acquisitions per day).
The data that were used in the experiments were measurements of composite reflectivity, which is
a derived (computed) radar product that aggregates the actual radar data for all elevations. Every
collection is a matrix of floating point numbers and contains 2134 × 1694 = 3,614,996 data
points, ranging from −33 to 80. All data that correspond to a single day are stored inside a
single .NetCDF file (2134 × 1694 × 288 = 1,041,118,848 data points).

Figure 6 graphically presents the data points that are missing for all acquisitions
during a day in the MET dataset. Each pixel in the picture represents 288 data points (all
acquisitions during the day). A pixel is red when the data were missing for the entire day
in that region. The left-hand picture illustrates the data matrix, while the right-hand figure
shows the data when projected onto a map.

Figure 6. A visualization of data points that are missing for all acquisitions during a day from the
MET dataset. Each pixel in the picture represents 288 data points (all acquisitions during a day).
A pixel is colored in red when the data were missing for the entire day at that pixel. On the left, there
is a visualization of the data matrix; on the right, there is a visualization of the data projected onto
a map.

The available MET data presented some challenges in terms of applying deep learning
methods. Approximately 50% of the data were missing (zero-value) due to various factors.
Figure 7 depicts the number of missing data points during a day. Each pixel in the picture
represents the number of times the data were present during the day. A pixel is colored in
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dark red when the data were present for all acquisitions during a day and white/transparent
when the data were missing for the entire day. On the left, there is a visualization of the
data matrix; on the right, there is a visualization of the data projected onto a map. As shown
in Figure 7, the data are never collected in some regions because those regions are not
covered by the radars or the geographic topology prevents data collection. For other areas,
as shown in Figure 7, data are sometimes present and sometimes not (data are temporarily
unavailable at a given point because measurements are eliminated from the composite
product, etc.).

A histogram of the non-missing values in the MET dataset for the entire region
and for all acquisitions during a day is presented in Figure 8. As shown in the figure,
the distribution of the actual values in the dataset was highly imbalanced, as for the NMA
dataset (Section 3.1.1). Larger values were of more interest from a meteorological viewpoint
as these indicated severe weather phenomena, but those were relatively rare. This severe
imbalance was a challenge from a supervised learning viewpoint.

Figure 7. A visualization of the number of missing data points in the MET dataset during a day.
Each pixel in the picture represents the number of times the data were present during the day.
A pixel is colored in dark red when the data were present for all acquisitions during the day and
white/transparent when data were missing for the entire day. On the left, there is a visualization of
the data matrix; on the right, there is a visualization of the data projected onto a map.

Figure 8. A histogram of the non-missing values in the MET dataset for the entire region and for all
acquisitions during a day. A logarithmic scale was used on the OY axis.
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3.2. Parameter Setting

Our model was trained to minimize the errors between the ground truth radar data
values and the predicted outputs using the root mean square error loss. The Adam opti-
mizer was also used with an initial learning rate of 0.0005 for the MET experiments and
an initial learning rate of 0.001 for the NMA experiments. A learning rate scheduler was
applied to reduce the learning rate by a factor of two after every five epochs with no
improvements in the validation loss. For the MET case study, the 32 grouped convolutions
were used in the ResNeXt blocks while for the NMA case study, 64 groups were used.

As described in Section 2.3.4, for performance evaluation purposes, a threshold τ
was used to transform the continuous output of the NeXtNow model into a discrete out-
put. The values that we considered for the threshold τ were 5, 10, 15, 20 and 30, which
corresponded to light to moderate rainfall.

3.3. Experimental Results

This section presents the results that were obtained for our proposed model using the
two case studies that were presented in Section 2.2. We first evaluated our model in terms of
predicting the evolution of the radar data products using a lead time of one time step (5 or
6 min) in the future. Table 2 shows the results that were obtained for the regression metrics
using the two case studies for predicting one time step in the future, where k denotes the
number of previous time steps that were used in the prediction (as presented in Section 2.3).
The results for the classification evaluation metrics that were obtained for the considered
thresholds are presented in Table 3. The best values are highlighted.

By analyzing the performance metrics that are shown in Table 3, we observed that
the performance decreased with the increases in the threshold value, which was to be
expected since high reflectivity values were scarce in the dataset, thus were challenging
to predict accurately. For both the NMA and MET datasets, the results in Tables 2 and 3
revealed that the average performance for predicting one time step in the future using four
previous time steps (k = 4) was better than that when only using one previous time step
(k = 1) in terms of the FAR, CC and CCnz performance metrics. We noted that for the NMA
dataset, the FAR value was better for k = 1 with high values for the threshold τ (i.e., 20
and 30). For the other performance metrics (RMSE, RMSEnz, CSI, POD and BIAS) the
performance was better for k = 1. This suggested that when the NeXtNow model used four
previous time steps, it reduced the number of forecasts that were false alarms; however, it
forecasted a smaller number of events than when it only used one previous time step.

The values for the performance metrics (Tables 2 and 3) that were obtained by our
NeXtNow model using one previous time step (k = 1) for both the NMA and MET datasets
were tested against those that were obtained using four previous time steps (k = 4) using
a two-tailed paired Wilcoxon signed-rank test [43,44]. A p-value of less than 0.00001 was
obtained, which highlighted that the differences between the NeXtNow performances when
using one and four previous time steps were statistically significant, with a significance
level of α = 0.01. Thus, the results revealed that using multiple time steps did not improve
the performance of predictions for one time step in the future, which corresponded to a
lead time of 6 min for the NMA case study and 5 min for the MET case study.

While this result might seem counter-intuitive, it was not completely unexpected for
the NMA experiments. In our previous work on radar data from NMA [45], we used
unsupervised neural network techniques (self-organizing maps) to mine relevant patterns
from the data and empirically showed that when predicting the value of the next step at a
location, there were no significant differences between the patterns that were mined from
one previous time step and those that were mined from five previous time steps. In other
words, when the patterns were similar, adding more time steps did not add much more
information. We hypothesized that this occurred because we were using both reflectivity
and velocity, thus the network had the possibility to find the trajectory of the meteorological
event from a single time step because of the velocity product, so multiple time steps did
not add much information.
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Table 2. The results for the regression evaluation metrics for predicting one time step in the future,
where k denotes the number of previous time steps that were used in the predictions. The means
and standard deviations that were computed across the three experimental runs are shown. The best
values for the performance metrics are marked with bold and colored with yellow (for the NMA case
study) and with blue (for the MET case study).

Case Study k
RMSE (↓) RMSEnz (↓) CC (↑) CCnz (↑)

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

NMA 1 2.442 0.091 7.988 0.371 0.550 0.005 0.666 0.020
4 2.539 0.079 8.038 0.184 0.557 0.025 0.674 0.033

MET 1 1.582 0.584 5.213 1.817 0.747 0.060 0.603 0.042
4 1.606 0.542 5.295 1.584 0.823 0.057 0.693 0.059

Table 3. The results for the classification evaluation metrics for predicting one time step in the future.
The means and standard deviations that were computed across the three experimental runs are shown.
The best values for the performance metrics are marked with bold and colored with yellow (for the
NMA case study) and with blue (for the MET case study).

Case Study k
Threshold CSI (↑) FAR (↓) POD (↑) BIAS (↑)

τ Mean Stdev Mean Stdev Mean Stdev Mean Stdev

NMA

1

5 0.683 0.009 0.134 0.043 0.767 0.046 0.888 0.100
10 0.595 0.068 0.074 0.035 0.629 0.094 0.682 0.130
15 0.459 0.126 0.060 0.034 0.477 0.145 0.511 0.174
20 0.311 0.170 0.076 0.043 0.325 0.187 0.359 0.220
30 0.135 0.144 0.204 0.115 0.151 0.167 0.210 0.245

4

5 0.674 0.025 0.116 0.033 0.741 0.052 0.841 0.089
10 0.578 0.072 0.066 0.027 0.605 0.089 0.650 0.112
15 0.434 0.101 0.056 0.029 0.448 0.111 0.477 0.130
20 0.266 0.099 0.081 0.057 0.275 0.107 0.305 0.131
30 0.094 0.089 0.309 0.266 0.106 0.103 0.192 0.179

MET

1

5 0.735 0.060 0.114 0.043 0.809 0.038 0.913 0.009
10 0.660 0.048 0.136 0.027 0.737 0.044 0.853 0.036
15 0.584 0.061 0.160 0.017 0.657 0.067 0.781 0.068
20 0.517 0.061 0.177 0.013 0.581 0.071 0.705 0.078
30 0.212 0.195 0.204 0.018 0.232 0.216 0.293 0.270

4

5 0.663 0.094 0.020 0.011 0.673 0.099 0.687 0.105
10 0.467 0.175 0.011 0.005 0.470 0.177 0.476 0.180
15 0.293 0.176 0.005 0.002 0.293 0.176 0.295 0.178
20 0.139 0.126 0.008 0.009 0.139 0.126 0.140 0.127
30 0.003 0.005 0.001 0.002 0.003 0.005 0.003 0.005

In light of these new results, it might just be that because meteorological data change
very slowly from one time step to another [46], the trajectory of the meteorological event
was not so relevant when only predicting one time step (5 to 6 min) in the future. While the
velocity product might still be enough to make multiple past time steps redundant, this could
explain why using multiple previous time steps did not improve the results for the MET
experiments, in which the velocity product was not used. This meant that using multiple
previous time steps, which would allow the network to learn to compute the trajectory of an
event, could be more useful when predicting further than 5 min in the future.

In other words, in the absence of radar products that relate to motion, we hypothesized
that including multiple radar measurements could encapsulate information regarding the
direction of movements and hence, improve the predictive performance for larger lead times
than just 5 min. In order to validate this hypothesis for the MET case study, we further
evaluated the predictive performance of forecasts that were performed by our model for
15 min in the future. The model was trained in a similar manner to before, with the
difference that it was optimized to predict the radar reflectivity values at a time point
15 min in the future using a series of k consecutive time steps. As previously, we performed
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the experiments for k ∈ {1, 4}. The results for the regression and classification metrics are
presented in Tables 4 and 5, respectively. The best obtained results are highlighted for each
regression metric (Table 4) and each classification metric for each value of the threshold τ
(Table 5).

By analyzing the results for both the regression and classification metrics in Tables 4
and 5, we observed that the results that were obtained for k = 4 time steps were better
than the results that were obtained using only one past time step, which confirmed our
hypothesis. Only for the threshold value of 30 were the values for FAR and BIAS slightly
better for k = 1 than for k = 4, but this might be due to the data imbalance (reflectivity
values that were higher than τ = 30 were scarce in the dataset). By comparing the regression
metrics in Tables 2 and 4 and the classification metrics in Tables 3 and 5, we also observed
that our model obtained better results for a 5-min lead time than for a 15-min lead time,
which could be explained by the fact that the forecasts were more challenging for lead
times that were further in the future.

Figure 9 illustrates some sample predictions from our NeXtNow model, which was
trained using the NMA dataset. The first column depicts the inputs, the second column
presents the predictions and the last column shows the actual radar observations. Each row
in the figure shows a different product (R01 to R04).

Table 4. The results for the regression evaluation metrics for predicting three time steps in the future
using the MET case study, where k denotes the number of previous time steps that were used in the
predictions. The means and standard deviations that were computed across the three experimental
runs are shown. The best values for the performance metrics are marked with bold.

k
RMSE (↓) RMSEnz (↓) CC (↑) CCnz (↑)

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

1 2.423 0.834 7.184 1.829 0.623 0.055 0.450 0.066
4 1.810 0.612 5.805 1.722 0.747 0.059 0.597 0.064

Table 5. The results for the classification evaluation metrics for predicting three time steps in the
future using the MET case study. The means and standard deviations that were computed across
the three experimental runs are shown. The best values for the performance metrics are marked
with bold.

k
Threshold CSI (↑) FAR (↓) POD (↑) BIAS (↑)

τ Mean Stdev Mean Stdev Mean Stdev Mean Stdev

1

5 0.467 0.136 0.155 0.105 0.522 0.167 0.633 0.232
10 0.342 0.208 0.155 0.116 0.384 0.240 0.478 0.313
15 0.230 0.179 0.143 0.129 0.252 0.200 0.320 0.265
20 0.133 0.139 0.107 0.132 0.143 0.154 0.181 0.210
30 0.006 0.010 0.208 0.294 0.006 0.010 0.010 0.017

4

5 0.660 0.026 0.096 0.041 0.710 0.008 0.786 0.032
10 0.511 0.081 0.082 0.035 0.537 0.094 0.587 0.115
15 0.359 0.118 0.064 0.027 0.370 0.128 0.397 0.146
20 0.195 0.154 0.060 0.029 0.199 0.159 0.211 0.171
30 0.007 0.011 0.431 0.497 0.007 0.011 0.007 0.012
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Figure 9. Sample predictions from our model that was trained using the NMA dataset. The first
column depicts the inputs, the second column presents the predictions and the last column shows
the ground truth observations. Each row shows a different product (R01 to R04). The illustrated
observations and predictions correspond to radar measurements that were gathered in an area of
approximately 250 × 250 km.

Figures 10 and 11 show sample predictions that were obtained using our model that
was trained using the MET case study for lead times of 5 min and 15 min, respectively.
In both figures, the first four columns show the inputs, the fifth column depicts the pre-
dictions and the last column shows the actual radar observations. As can be observed
from the figures, the predictions that were produced by the model were smoother than the
actual observations.

The experimental results that were previously presented revealed a decrease in
NeXtNow’s performance at higher reflectivity values, which was likely due to the im-
balance between the amounts of smaller and higher reflectivity values in the datasets.
Extending the dataset by including a much larger number of convective events could
improve the prediction at higher reflectivity values. Nevertheless, when dealing with
storm-based nowcasting, as per the NMA case study, the prediction of reflectivity spatial
patterns is equally important to assess the evolution of convective storms. Our future work
is envisaged to address this challenge.

By comparing the predictions of NeXtNow for one time step in the future using the
NMA (Figure 9) and MET (Figure 10) datasets, we could observe better predictions at high
reflectivity values using the NMA dataset. This improvement in NeXtNow’s prediction
performance at higher reflectivity values could be due to the velocity field introducing
supplementary information about convections.
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Figure 10. Sample predictions from our model that was trained using the MET dataset for a 5-min
lead time. The first four columns show the inputs, the fifth column depicts the predictions and the
last column shows the observations. The illustrated observations and predictions correspond to radar
measurements that were gathered in an area of approximately 250 × 250 km.

Figure 11. Sample predictions from out model that was trained using the MET dataset for a 15-min
lead time. The first four columns show the inputs, the fifth column depicts the predictions and the
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last column shows the observations. The illustrated observations and predictions correspond to radar
measurements that were gathered in an area of approximately 250 × 250 km.

4. Discussion

The literature review that was presented in Section 2.1 discussed the recent advance-
ments within the field of deep learning nowcasting. Still, there has been limited research
on short-term prediction of radar products’ values. Most of the related work has focused
on the precipitation nowcasting problem.

To answer our third research question (RQ3), the proposed NeXtNow model was
further compared to a convolutional architecture that has been previously proposed in the
nowcasting literature for the short-term prediction of radar data and has a goal similar to
ours (XNow [19]). XNow is an Xception-based deep learning model that was trained using
radar data that were collected at time t− 1 for a specific geographic area for predicting one
time step in the future (i.e., predicting the radar data at time t).

For an exact comparison between the NeXtNow and XNow models, XNow was evalu-
ated using the methodology that was employed for our evaluation of NeXtNow. The exper-
iments were repeated three times using three different training–validation–testing splits
and the values for each of the performance metrics that were described in Section 2.3.4
were averaged over the three runs.

Tables 6 and 7 illustrate the results for the regression and classification metrics for the
NeXtNow and XNow models, which were trained using one previous time step (k = 1) for
predicting one time step in the future using both the NMA and MET datasets. The results
for the classification metrics that are shown in Table 7 were evaluated for various values of
the threshold τ. The means and standard deviations that were computed across the three
runs are also shown in the tables. The best values are highlighted.

The comparative results in Tables 6 and 7 highlighted that for both the NMA and MET
datasets, NeXtNow outperformed XNow in most of the evaluation metrics and at most
of the considered thresholds. In all of these cases, the standard deviation was lower for
NeXtNow, which showed that the NeXtNow model was more stable than XNow. For the
NMA dataset, we noted that NeXtNow was outperformed by XNow, but only in terms of
FAR at all thresholds. This suggested that NeXtNow forecasted a higher number of events
than XNow, but it erroneously forecasted a slightly higher number of normal weather
conditions. For the MET dataset, on the other hand, there were only four cases when
NeXtNow was only slightly outperformed by XNow.

The improvement in the performance of NeXtNow with respect to XNow was statis-
tically significant, with a significance level of α = 0.01, as shown by a one-tailed paired
Wilcoxon signed-rank test [43,44]. A p-value of less than 0.00001 was obtained, which
highlighted the statistical significance of the differences that were observed between the
performances of NeXtNow and XNow, as shown in Tables 6 and 7.

The performance of NeXtNow could not be precisely compared to that of other ap-
proaches in the literature that focused on the prediction of the values of radar products as
the datasets that were used for their evaluation differed from ours (considering the radar
products that were employed, i.e., reflectivity, velocity and composite reflectivity in our
case) and the learning tasks were not formulated exactly as in this paper. When we were
only looking at the magnitude of the performance metrics that have been provided by the
literature and we disregarded the datasets that were used, we noted the following: RMSE
values ranging from 0.97 to 4.7 [22], CSI values ranging from 0.36 [21] to 0.81 [31], a POD
value of 0.61 [21] and a FAR value of 0.52. The experimental results that were presented in
Section 3.3 revealed that the performance of the NeXtNow model for the classification task
for predicting one step in the future (for τ = 5) compared favorably to the performances of
the models in the related work: a maximum RMSE of 2.442 for the regression task; CSI
values of 0.683 and 0.735 (for the two case studies); POD values ranging from 0.673 to 0.809;
and a maximum FAR of 0.134.
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Table 6. The results for the regression metrics for the NeXtNow and XNow models, which were
trained using one previous time step (k = 1) for predicting one time step in the future using both the
NMA and MET datasets. The means and standard deviations that were computed across the three
experimental runs are shown. The best values for the performance metrics are marked with bold and
colored with yellow (for the NMA case study) and with blue (for the MET case study).

Case
Study Model

RMSE (↓) RMSEnz (↓) CC (↑) CCnz (↑)

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

NMA NeXtNow 2.442 0.091 7.988 0.371 0.550 0.005 0.666 0.020
XNow 2.507 0.137 8.174 0.388 0.595 0.016 0.692 0.003

MET NeXtNow 1.582 0.584 5.213 1.817 0.747 0.060 0.603 0.042
XNow 1.630 0.615 5.410 1.857 0.737 0.068 0.580 0.053

Table 7. The results for the classification metrics for the NeXtNow and XNow models, which were
trained using one previous time step (k = 1) for predicting one time step in the future using both the
NMA and MET datasets. The means and standard deviations that were computed across the three
experimental runs are shown. The best values for the performance metrics are marked with bold and
colored with yellow (for the NMA case study) and with blue (for the MET case study).

Case
Study Model

Threshold CSI (↑) FAR (↓) POD (↑) BIAS (↑)

τ Mean Stdev Mean Stdev Mean Stdev Mean Stdev

NMA

NeXtNow

5 0.683 0.009 0.134 0.043 0.767 0.046 0.888 0.100
10 0.595 0.068 0.074 0.035 0.629 0.094 0.682 0.130
15 0.459 0.126 0.060 0.034 0.477 0.145 0.511 0.174
20 0.311 0.170 0.076 0.043 0.325 0.187 0.359 0.220
30 0.135 0.144 0.204 0.115 0.151 0.167 0.210 0.245

XNow

5 0.637 0.017 0.102 0.009 0.687 0.024 0.766 0.033
10 0.480 0.066 0.053 0.013 0.495 0.073 0.523 0.084
15 0.293 0.121 0.038 0.014 0.297 0.125 0.311 0.134
20 0.148 0.112 0.038 0.013 0.149 0.114 0.156 0.121
30 0.029 0.036 0.065 0.018 0.029 0.036 0.032 0.040

MET

NeXtNow

5 0.735 0.060 0.114 0.043 0.809 0.038 0.913 0.009
10 0.660 0.048 0.136 0.027 0.737 0.044 0.853 0.036
15 0.584 0.061 0.160 0.017 0.657 0.067 0.781 0.068
20 0.517 0.061 0.177 0.013 0.581 0.071 0.705 0.078
30 0.212 0.195 0.204 0.018 0.232 0.216 0.293 0.270

XNow

5 0.723 0.064 0.131 0.045 0.810 0.044 0.932 0.015
10 0.641 0.068 0.153 0.041 0.725 0.065 0.856 0.067
15 0.558 0.099 0.167 0.032 0.629 0.121 0.755 0.145
20 0.468 0.139 0.165 0.021 0.521 0.172 0.626 0.217
30 0.182 0.189 0.223 0.025 0.200 0.212 0.253 0.270

5. Conclusions

In this paper, we proposed a convolutional deep learning model called NeXtNow,
which was inspired by the ResNeXt architecture for weather radar data forecasting. NeXtNow
adapted the ResNeXt [17] architecture that has been proposed in the computer vision
literature for the task of spatiotemporal prediction. Our proposed model has an encoder–
decoder architecture, which maps past radar measurements onto radar measurements that
are recorded in the future. We noted the generality of the NeXtNow model, which was
proposed for short-term radar data prediction. The model could be applied not only to
nowcasting but also to predicting other meteorological phenomena, such as heatwaves
or droughts.

To evaluate the performance of NeXtNow using radar data that were obtained from
different geographical/climatic areas and contained different radar measurements, two
case studies were considered: one using data that were collected from Romania and the
other employing data that were collected from Norway.
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The research questions that were formulated in Section 1 were answered. The NeXtNow
model that was designed for short-term radar data prediction answered RQ1. To the best of
our knowledge, the ResNeXt architecture has yet not been adapted for the task of spatiotem-
poral prediction or, more specifically, radar data prediction. RQ2 was answered by the
experiments that were performed using the time series of radar data that were provided by
the Romanian National Meteorological Administration and the Norwegian Meteorological
Institute. We empirically showed through these case studies that including multiple past
radar measurements did not improve predictions for one time step in the future, but they
did provide more accurate predictions for multiple time steps further in the future. Our
experimental evaluation of NeXtNow also highlighted an improvement in performance
when predicting the values of the radar products based on their historical values compared
to the performance of a convolutional architecture that has been previously proposed in
the nowcasting literature for short-term prediction of radar data (XNow [19]).

To answer to RQ3, the improvement in the performance of NeXtNow with respect to
that of XNow was proven to be statistically significant, with a significance level of α = 0.01,
as shown by a one-tailed paired Wilcoxon signed-rank test. Additionally, through our
experiments, we empirically showed that including multiple past radar measurements led
to more accurate predictions at time steps that were further in the future.

The NeXtNow architecture that was proposed in this paper offers one step toward the
broader goal of our research, which is to develop accurate ML-based prediction models
that can be integrated into both Romanian and Norwegian weather nowcasting systems.

Future work will be carried out with the aim of improving the predictive performance
of our model for extreme weather phenomena by using weighted loss functions, which
could emphasize the errors that are obtained for high reflectivity values. Comparisons
between our NeXtNow model and other classic methods for radar echo extrapolation are
also envisaged for a more thorough experimental validation. For instance, advection
methods (e.g., Lagrangian advection), which use reflectivity values from multiple past time
steps as inputs, are known for their very good performances and may offer comparable or
even better performances than NeXtNow by providing sharper predictions. Nevertheless,
the spatial resolution of our model’s predictions could be enhanced by using perceptual
losses or adversarial training techniques, which will also be investigated in future work.
Data that are collected from geographical areas other than Romania and Norway will be
used to further validate the NeXtNow model. Future performance improvements are also
envisaged for predicting multiple times steps in the future by extending our approach to
include a recurrent architecture.
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37. Czibula, G.; Mihai, A.; Mihuleţ, E. NowDeepN: An Ensemble of Deep Learning Models for Weather Nowcasting Based on Radar

Products’ Values Prediction. Appl. Sci. 2021, 11, 125. [CrossRef]
38. PlotNeuralNet. Available online: https://github.com/HarisIqbal88/PlotNeuralNet (accessed on 16 June 2022).
39. WCRP. Methods for Probabilistic Forecasts. Available online: https://www.cawcr.gov.au/projects/verification/#Methods_for_

probabilistic_forecasts (accessed on 20 December 2021).
40. Abadi, M. TensorFlow: Learning functions at scale. In Proceedings of the 21st ACM SIGPLAN International Conference on

Functional Programming, Nara, Japan, 18–22 September 2016.
41. Mihai, A. NMA Data Set. Available online: http://www.cs.ubbcluj.ro/~mihai.andrei/datasets/nextnow/ (accessed on 31

July 2022).
42. Network Common Data Form. Available online: https://www.unidata.ucar.edu/software/netcdf/ (accessed on 15

January 2022).
43. Siegel, S.; Castellan, N. Nonparametric Statistics for the Behavioral Sciences, 2nd ed.; McGraw–Hill, Inc.: NewYork, NY, USA, 1988.
44. Social Science Statistics. Available online: http://www.socscistatistics.com/tests/ (accessed on 15 April 2022).
45. Mihai, A. Using self-organizing maps as unsupervised learning models for meteorological data mining. In Proceedings of the

2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania,
21–23 May 2020; pp. 000023–000028.

46. Czibula, G.; Mihai, A.; Mihulet, E.; Teodorovici, D. Using self-organizing maps for unsupervised analysis of radar data for
nowcasting purposes. Procedia Comput. Sci. 2019, 159, 48–57. [CrossRef]

http://dx.doi.org/10.5194/gmd-13-2631-2020
http://dx.doi.org/10.1175/WAF-D-20-0080.1
http://dx.doi.org/10.3390/atmos11111157
http://dx.doi.org/10.1155/2020/8408931
http://dx.doi.org/10.3390/rs14010024
http://dx.doi.org/10.5194/gmd-15-5967-2022
https://thredds.met.no/thredds/catalog.html
https://thredds.met.no/thredds/catalog/remotesensing/reflectivity-nordic/catalog.html
https://thredds.met.no/thredds/catalog/remotesensing/reflectivity-nordic/catalog.html
http://dx.doi.org/10.1016/j.neucom.2020.09.060
http://dx.doi.org/10.3390/app11010125
https://github.com/HarisIqbal88/PlotNeuralNet
https://www.cawcr.gov.au/projects/verification/#Methods_for_probabilistic_forecasts
https://www.cawcr.gov.au/projects/verification/#Methods_for_probabilistic_forecasts
http://www.cs.ubbcluj.ro/~mihai.andrei/datasets/nextnow/
https://www.unidata.ucar.edu/software/netcdf/
http://www.socscistatistics.com/tests/
http://dx.doi.org/10.1016/j.procs.2019.09.159

	Introduction
	Materials and Methods
	Recent Literature Advances in Nowcasting, Based on Radar Data Prediction
	Case Studies
	First Case Study (NMA Data)
	Second Case Study (MET Data)

	Methodology
	ResNeXt Architecture
	Formalization, Data Modeling and Preprocessing
	Building the NeXtNow Model
	Performance Evaluation and Testing Methodology


	Results
	Datasets
	NMA Dataset
	MET Dataset

	Parameter Setting
	Experimental Results

	Discussion
	Conclusions
	References

