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Abstract: Crop classification is an important part of crop management and yield estimation. In recent
years, neural networks have made great progress in synthetic aperture radar (SAR) crop classification.
However, the insufficient number of labeled samples limits the classification performance of neural
networks. In order to solve this problem, a new crop classification method combining geodesic
distance spectral similarity measurement and a one-dimensional convolutional neural network
(GDSSM-CNN) is proposed in this study. The method consisted of: (1) the geodesic distance spectral
similarity method (GDSSM) for obtaining similarity and (2) the one-dimensional convolutional neural
network model for crop classification. Thereinto, a large number of training data are extracted by
GDSSM and the generalized volume scattering model which is based on radar vegetation index
(GRVI), and then classified by 1D-CNN. In order to prove the effectiveness of the GDSSM-CNN
method, the GDSSM method and 1D-CNN method are compared in the case of a limited sample. In
terms of evaluation and verification of methods, the GDSSM-CNN method has the highest accuracy,
with an accuracy rate of 91.2%, which is 19.94% and 23.91% higher than the GDSSM method and the
1D-CNN method, respectively. In general, the GDSSM-CNN method uses a small number of ground
measurement samples, and it uses the rich polarity information in multi-temporal fully polarized
SAR data to obtain a large number of training samples, which can quickly improve the accuracy of
classification in a short time, which has more new inspiration for crop classification.

Keywords: crop classification; synthetic aperture radar (SAR); deep learning; fully polarimetric;
multi-temporal; sample limited

1. Introduction

Crops are the basis for maintaining human civilization and are of great significance
to human diet and social stability [1,2]. Obtaining crop planting distribution information
is very important for growth monitoring, yield estimation and food security [3–6]. The
ground survey is a traditional way to obtain information on crop planting distribution,
which consumes a lot of time and money. Agricultural remote sensing technology, which
offers the advantages of a large monitoring range and low cost, has gradually replaced the
traditional methods [7,8].

Optical sensors have been widely used in crop classification for a long time [9–11].
However, optical sensors are limited by weather conditions. Images cannot be created in
sufficient quality in the case of bad weather (such as cloudy, rainy or foggy) or during the
nighttime [12,13]. Crops will experience significant changes to their shape at important
phenological periods. However, many farmlands are obscured by clouds, making it more
likely that the optical sensor will fail to capture images during the crucial phenological
period for crops [14,15]. Synthetic aperture radar (SAR) is an active microwave sensor,
which cannot be affected by cloudy and foggy weather [16]. Moreover, SAR is sensitive
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to the dielectric properties and structure of plants and is very suitable for monitoring
and classifying crops [17,18]. In addition, polarimetric SAR (PolSAR), which can provide
rich information, can extract a large number of polarimetric features. These polarimetric
features are very valuable in crop classification [19,20]. Therefore, the multi-temporal
RadarSat-2 image is used as the main data source of crop classification in this study.

There is a long history of extracting polarimetric features from PolSAR data for crop
classification [21]. Polarization decomposition technology is the main method of extracting
polarization characteristics [22–24] and has been used by researchers in agricultural remote
sensing applications [25,26]. Guo et al. [26] used various features of H/α decomposition
and support vector machine (SVM) to classify crops. The results show that the features
obtained by polarization decomposition provide accurate polarization information, and the
classification accuracy of crops exceeds 80%. The method of polarization decomposition is
helpful for crop classification. However, the polarization decomposition method is sensitive
to the target orientation and uses a specific volume model, which is rarely applicable to all
phenological stages of different crops [27,28]. Therefore, there is great potential to classify
crops by using polarization characteristics that correlate the relevant physical scattering
mechanisms of vegetation canopy with phenology. It has been proved that the generalized
volume scattering model which is based on the radar vegetation index (GRVI) can well
reflect the relevant physical scattering mechanism of the crop canopy and follow the growth
and development of crops [29,30].

Multi-temporal PolSAR has very rich characteristics [31]. In order to improve the
accuracy of crop classification, people have proposed various methods to use the rich
information in PolSAR, such as support vector machine [32] and random forest (RF) [33].
SVM and RF have attracted much attention because of their good performance and ease
of use in limited training samples, but the feature extraction of these methods is still
limited [34]. Because of the exceptional results in the area of computer vision, deep
learning has become the mainstream method in the field of SAR image processing. In
recent years, many scholars have proposed various deep learning methods for crop clas-
sification [35,36]. Zhang et al. [35] proposed a novel crop discrimination network with
multi-scale features (MSCDN), which proved that the neural network can efficiently extract
features in multi-temporal PolSAR, with an overall accuracy rate of crop classification of
99.33%. Chang et al. [36] proposed a convolutional long short-term memory rice field
classifier (ConvLSTM-RFC) and demonstrated the effectiveness of the convolutional block
attention module (CBAM) in handling multi-temporal features, with the highest accuracy of
98.08%. However, because sample sampling requires great time and money costs, the sam-
ple is often limited in the process of crop classification. These deep learning methods easily
overfit and degrade the classification performance when the samples are limited [37–39].
Therefore, it is still a challenge to develop a multi-temporal PolSAR crop classification
method in the case of limited samples.

The motivation of this study is to propose a multi-temporal and fully polarized crop
classification method that can accurately classify crops with limited samples. Firstly, the
geodesic distance spectral similarity measure (GDSSM) method is used to calculate the sim-
ilarity between unlabeled pixels and the samples. Secondly, the open mask product Global
Food Security-Support Analysis Data at 30 m (GFSAD) is used to generate a farmland mask
in combination with GDSSM to extract farmland areas and non-farmland areas in the study
area. Thirdly, multi-temporal backscattering coefficient and GRVI are extracted as features.
Fourthly, the data with GDSSM greater than the threshold are selected as training data.
Finally, the one-dimensional convolutional neural network (1D-CNN) is used to classify
crops. The main contributions of this paper are summarized as follows:

1. For multi-temporal and fully polarimetric SAR images, a crop classification method
combining the geodesic distance spectral similarity measure and a one-dimensional
convolution neural network (GDSSM-CNN) is proposed. This method can still have
excellent classification ability when the sample is limited.
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2. The backscatter coefficient and GRVI are extracted from multi-temporal and fully
polarized images and combined.

3. For multi-temporal and fully polarimetric SAR images, a farmland region extrac-
tion method combining GFSAD data and GDSSM is proposed. Farmland and non-
farmland areas can be extracted by this method delicately.

The rest of this paper is arranged as follows: In Section 2, the research area, data and
methodology are introduced. The experimental results of crop classification are given in
Section 3. The discussion of the proposed method and its performance is introduced in
Section 4. Section 5 concludes this paper.

2. Materials and Methods

In this section, the materials and methods used for the experiments are described.
Section 2.1 briefly introduces the study area, Section 2.2 describes the data used and the
preprocessing of the data and Section 2.3 details the GDSSM-CNN method.

2.1. Study Area

The study area (114◦27′40′′E–114◦48′57′′E, 34◦35′34′′N–35◦54′7′′N) is located in the
east of Kaifeng City, Henan Province, on the south bank of the Yellow River, as shown in
Figure 1. Kaifeng has a temperate monsoon climate. It is cold and dry in winter and hot
and humid in summer. The annual rainfall is 635 mm, and the annual average temperature
(1981–2010) is 14.52 ◦C. Kaifeng is located on a plain with many rivers and moist soil, which
is suitable for planting crops. In addition, Kaifeng City, with a farmland area of 3933 square
kilometers and a total grain output of 3.06 million tons in 2021, is an important agricultural
city in China. Crops are mainly divided into summer harvest crops and autumn harvest
crops. In Kaifeng, summer harvest crops refer to the crops grown from October to June of
the next year, mainly including winter wheat and a small amount of garlic; autumn harvest
crops refer to crops grown from June to October, mainly including corn, peanuts and a
small amount of rice and vegetables. This study focuses on summer crops; the planting
area of winter wheat in 2021 was about 3098 square kilometers, and the garlic planting area
was about 706 square kilometers.
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Figure 1. (a) The location of the field survey sites in Kaifeng, Henan Province, China. (b) The location
of the study area within Henan Province.

2.2. Datasets and Preprocessing

RadarSat-2 is a ground imaging sensor equipped with C-band full polarimetric
SAR [40]. It supports applications in various fields, including crop monitoring and pollu-
tion detection, target recognition and geological mapping. RadarSat-2 can perform imaging
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tasks all day, and the revisit cycle is 24 days. The specific parameters of the data are shown
in Table 1. In this study, the RadarSat-2 data of SLC (Single Look Complex) of the fine
quad polarization mode are used. The five-scene data of winter wheat growth in 2020 were
obtained, which were 20 February, 15 March, 8 April, 2 May and 26 May, respectively. The
time basically covered the complete life cycle of winter wheat from hibernation to maturity
in the area.

Table 1. Parameters for RadarSat-2.

Parameters RadarSat-2 Parameters RadarSat-2

Product type SLC Pass direction Ascending
Imaging mode Fine quad polarization Center frequency 5.4 GHz

Polarization VV&VH&HH&HV Look direction Right
Resolution 8 × 8 m Incidence angle 29◦–31◦

Band C Dates
20 February 2020, 15 March 2020,

8 April 2020, 2 May 2020,
26 May 2020

RadarSat-2 data are preprocessed using the Sentinel Application Platform (SNAP) soft-
ware provided by the European Space Agency (ESA) and The Environment for Visualizing
Images (ENVI), a product of American Exelis Visual Information Solutions company. Pre-
treatment mainly includes the following: (1) orbit file application; (2) calibration, in which
the backscattering coefficient of each pixel can be obtained; (3) polarimetric generation,
in which the polarization coherency T matrix of each pixel can be obtained; (4) multi-
looking; (5) refined Lee filtering; (6) range Doppler terrain correction; (7) conversion of
the backscatter coefficient from linear to dB scale; (8) study area extraction; (9) registration.
Each pixel in the multi-temporal SAR image corresponds to the same resolution unit. After
preprocessing, ArcGIS software extracts the backscattering coefficient and polarization
coherence matrix through the longitude and latitude coordinates of the sampling points.

The field survey data are essential information for crop classification and accuracy
verification. In order to ensure the authenticity and accuracy of the ground field survey
data, field surveys were conducted at the time of each satellite transit from July 2019 to
June 2020 to collect and record the sample data of crops in the study area. During the
field survey, Jisibao UG905 GPS (positioning accuracy is 1 to 3 m) was used outdoors to
record the longitude and latitude information of the sampling point, and photos were
taken to record the crop category information of the sampling point. Finally, 10 winter
wheat sampling sites and 5 garlic sampling sites were randomly selected as samples. Two
areas in the study area were selected randomly as the verification area through Google
Earth software, and the types of crops in the verification area were determined through
ground field investigation. The validation area contains 32,361 pixels in total, including
18,473 pixels for winter wheat, 6859 pixels for garlic and 7029 pixels for non-farmland areas.
The distribution of the verification area and sampling points are shown in Figure 1a.

2.3. Methodology

The flow chart of this method is shown in Figure 2. The method combines the similarity
calculation method GDSSM and the deep learning method 1D-CNN (GDSSM-CNN) to
increase the number of training data and classify crops when the samples are limited. After
collecting data and preprocessing, the method of crop type recognition is mainly divided
into five steps. The first step is to calculate the GDSSM of pixels and samples, which can
comprehensively compare the similarity of multi-temporal and fully polarimetric SAR
data. In step 2, more refined farmland areas are extracted through the open farmland
data GFSAD and GDSSM to prevent the interference of non-farmland factors. In step 3,
the threshold method is used to extract the pixels that are very similar to the sample
category as training data, which can fully train the neural network when the samples
are very limited. In step 4, the GRVI of the pixel is calculated and combined with the
backscatter coefficient as the feature. GRVI reflects the physical scattering characteristics
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and phenological characteristics of crops and can improve the performance and efficiency
of classification. In step 5, the 1D-CNN neural network model is used for training, which
can effectively extract the features of multi-temporal data. Finally, the classification results
of the model are analyzed and verified.
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Figure 2. Flow chart of the proposed method.

2.3.1. Geodesic Distance Spectral Similarity Measure

GDSSM (shown in Equation (8)) defines the similarity between the reference target
and unknown pixels; it is composed of geodesic distance similarity (GDS) (shown in
Equations (1)–(3)), spectral correlation similarity (SCS) (shown in Equations (4) and (5))
and Euclidean distance similarity (EDS) (shown in Equations (6) and (7)). The specific
descriptions of SCS and EDS appear in [41,42], and the specific description of GDS appears
in [29]. GDS compares the scattering similarity of the polarization coherence matrix T of a
reference target and an unknown pixel. In the polarization scattering theory, the Kennaugh
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matrix of the scattering of incoherent targets reflects the dependence of the radar received
power on the transceiver antenna, which is shown by the coherence matrix T:

K =


T11+T22+T33

2 <(T12) <(T13) =(T23)

<(T12)
T11+T22−T33

2 <(T23) =(T13)

<(T13) <(T23)
T11−T22+T33

2 −=(T12)

=(T23) =(T13) −=(T12)
−T11+T22+T33

2

 (1)

where < and = represent the real and imaginary parts of the complex number. The geodesic
distance similarity value (GDSV) describes the similarity of geodesic distances between
two Kennaugh matrices on the unit sphere. The equation used to calculate GDSV is
as follows:

GDSV = GD
(
Kp, Kq

)
=

2
π

cos−1
Tr
(

KT
q Kp

)
√

Tr
(

KT
q Kq

)√
Tr
(

KT
p Kp

) (2)

where Kp and Kq denote the unknown pixel Kennaugh matrix and reference target Ken-
naugh matrix, respectively. Tr represents the matrix trace, KT represents the transposition
of the of pixel Kennaugh matrix, and the range of GDSV is [0, 1]. GDS is the average of
GDSV for five dates. The equation used to calculate GDS is as follows:

GDS =
1
n

n

∑
i=1

GDSVi =
1
n

n

∑
i=1

GD
(
Kpi, Kqi

)
(3)

where n is the number of Radarsat-2 data images, Kpi and Kqi are the Kennaugh matrices
of unknown pixel and reference target in the image, respectively.

SCS and EDS compare the similarity of backscattering coefficient vectors of a reference
target and an unknown pixel. The objects of SCS and EDS are the spectral information
in optical remote sensing. However, in this study, the multi-phase characteristics of the
backscattering coefficient are used to replace the spectral information; that is, the fully
polarized backscattering coefficient at a certain time represents a spectral value. The multi-
temporal fully polarized backscattering coefficient of each crop in the sample set is used as
the vector of the reference target. The multi-temporal backscattering coefficient of a pixel in
the dataset to be classified is taken as the vector of the unknown target. The equation used
to calculate SCS is as follows:

SCSorig =
1

n− 1

(
∑n

i=1(Pi − µP)(Qi − µQ)

σPσQ

)
(4)

and

SCS =
SCSorig −ms

Ms −ms
(5)

where µ and σ are the mean and standard deviation of the vector; P and Q are the backscat-
tering coefficient vectors of the unknown pixel and the reference pixel, respectively; and Pi
and Qi are the backscattering coefficients of the unknown pixel and the reference pixel at a
certain time, respectively. ms and Ms are the minimum and maximum values of SCSorig.
The range of SCS is [0, 1]. The larger the value, the more similar the reference pixel is to the
target pixel.

The Euclidean distance measure is used to measure the degree of separation or prox-
imity between two vectors. The equation used to calculate EDS is as follows:

Edorig =

√
n

∑
i=1

(Pi −Qi)
2 (6)
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and

EDS =
Edorig −mE

ME −mE
(7)

where mE and ME are the minimum and maximum values of Edorig, respectively. The
range of EDS is [0, 1]. The smaller the value, the more similar the reference pixel is to the
target pixel. GDSSV is composed of GDS, SCS and EDS, and its equation is as follows:

GDSSV =

√
SCS2 + (1− Ed)2 ×GDS (8)

The range of GDSSV is [0, 1]. The larger the GDSSV, the more similar the unknown
pixel is to the reference pixel. When the GDSSV of a pixel and the reference pixel is greater
than 0.80, it is considered that the unknown pixel and the reference pixel belong to the
same category of crops.

2.3.2. Generalized Volume Scattering Model-Based Radar Vegetation Index

GRVI describes the similarity between Kennaugh matrix K and generalized volume
scattering model Kv of pixels. It has been proved to have the potential to monitor the
growth of rice at different phenological stages [29,30]. Kv is related to the generalized
volume scattering model [43], which is shown as follows:

Kv =
1

3(1+γ)
4 −

√
γ

6


3
2 (1 + γ)−

√
γ

3 γ− 1 0 0

γ− 1 1
2 (1 + γ) +

√
γ

3 0 0

0 0 1
2 (1 + γ) +

√
γ

3 0

0 0 0 1
2 (1 + γ)−√γ

 (9)

where γ indicates the co-polarized ratio. Geodesic distance fv between K and Kv is
as follows:

fv = 1−GD(K, Kv) (10)

where GD describes the geodesic distance between two Kennaugh matrices. GRVI (shown
in Equation (2)) is composed of geodesic distance fv and modulation parameters β. The
equation used to calculate GRVI and β is as follows:

β =

(
p
q

)2GD(K,Kv)

(11)

p = min


GD(K, Kt)
GD(K, Kc)
GD(K, Kd)
GD(K, Knd)

, q = max


GD(K, Kt)
GD(K, Kc)
GD(K, Kd)
GD(K, Knd)

 (12)

GRVI = β fv (13)

where p and q are the minimum and maximum geodesic distances between K and elemen-
tary targets, respectively. Kt is the Kennaugh matrix of a trihedral; Kc is the Kennaugh
matrix of a cylinder; Kd is the Kennaugh matrix of a dihedral; Knd is the Kennaugh matrix
of a narrow dihedral. This Kennaugh matrix of elementary targets is shown in the work of
Ratha et al. [44].

2.3.3. Farmland Extraction

Since the scattering characteristics of the non-farmland area are so complicated, it is
possible that parts of the structure and scattering characteristics of crops at different growth
stages are similar to those of non-farmland areas, which could lead to incorrect results
in the classification findings. In this study, the open dataset GFSAD is used to provide a
farmland mask with a resolution of 30 m. It has been widely used in various agricultural
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applications [45]: farmland type identification, spatial and temporal changes in farmland
extent, cropping intensities, etc. However, farmland and villages in Kaifeng are distributed
in a scattered way, so there are only dense non-farmland areas such as villages, roads and
waters in GFSAD, and many small roads and scattered buildings have not been identified.
Unknown pixels with GDSSM similarity less than 0.3 for all crop categories are marked as
non-farmland pixels. These non-farmland pixel sets in GDSSM and non-farmland pixel
sets in GFSAD form the non-farmland areas in the study area, which are shown as follows:

NF = NFGDSSM ∩ NFGFSAD (14)

where NFGDSSM and NFGFSAD are the sets of non-farmland pixels in GDSSM and GFSAD,
respectively. NF is the set of non-farmland pixels in the study area.

The farmland mask can be obtained by removing all non-farmland areas in the study
area, which is shown as follows:

FM = SM− NF (15)

where SM is the set of all pixels in the study area. FM is the set of all farmland pixels in the
study area. This method, which combines the geodesic distance spectral similarity measure
and GFSAD data, can accurately extract the farmland and non-farmland areas in the study
area and finally remove the non-farmland areas in the study area.

2.3.4. Training Data Extraction

Deep learning models usually require sufficient data training. Because the dataset of
SAR image is less than that of natural scene and SAR image is very sensitive to the incident
angle and other information, current optical images and data enhancement operations
used in natural scenes are not reasonable for SAR images [46]. The crops planted in
different areas may have large morphological differences. For example, the wheat in Henan
Province is generally 80 cm high after ripening, while the wheat in Zhejiang Province is
generally 65 cm high after ripening. Due to the morphological differences between crops,
transfer learning, meta-learning and other sample migration methods are not suitable for
crop applications. In this study, GDSSM and the threshold method are used to obtain a
large number of samples. GDSSM describes the similarity between the reference target
and unknown pixels. The larger the value, the more similar the two pixels are. When
the GDSSM of the unknown pixel and the reference pixel is greater than the threshold,
the unknown pixel is regarded as the same training data as the reference target category.
Through the threshold method, a large number of training data can be selected, which can
be used for the training of the neural network. In order to ensure that the training data and
samples have a very high degree of similarity, the threshold value needs to be greater than
or equal to 0.8. Finally, four thresholds are selected, namely 0.95, 0.9, 0.85 and 0.8, and the
effects of different thresholds on classification results are compared.

2.3.5. One-Dimensional Convolutional Neural Network

In order to make effective use of the information in multi-temporal and fully polari-
metric SAR images, the backscatter coefficients and GRVI of the four polarization modes
are combined into features in the order of HH, HV, VH, VV and GRVI. These combined
features are arranged according to the time of five SAR images. In order to use feature
combinations effectively, a convolution neural network (CNN) model is used to classify
crops. The convolutional neural network is a widely used method in deep learning and has
been applied in various applications of agricultural remote sensing. It has been proved to
have excellent feature extraction ability. Among CNNs, the one-dimensional convolutional
neural network model has more advantages in analyzing sequence characteristic data [47].
Three convolutional filters are set in the 1D-CNN model. Three-layer convolution can
comprehensively extract the features of sequence data integration. The maximum pool
layers and batch normalization layers are set after the convolution layer, which can reduce
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the size of the model and improve the calculation speed. Finally, the dimension of the data
is transformed by using the flatten layer, and the data are sent to the Softmax layer for
classification. The 1D-CNN model is created through the Keras framework.

A RadarSat-2 image has four polarizations. Five features can be obtained from each
SAR image. They are four backscattering coefficients (σ0 HH, σ0 HV, σ0VH and σ0 VV)
and a generalized volume scattering model based on radar vegetation index. Since five
RadarSat-2 images at different times are used, the characteristic shape of each sample is
(1, 25). To facilitate the input of samples into the 1D-CNN model, the GRVI values of five
dates are copied, filled into the features and reshaped. The shape of each sample changes
to (15, 2), as shown in Figure 3.
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The 1D-CNN model is used to identify crop types. The detailed parameters of 1D-
CNN are shown in Figure 4. By using the training data obtained by GDSSM, the trained
1D-CNN model is used to classify the crops in the study area.
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3. Results

To evaluate the proposed method, this section will present the results of the exper-
iments. Firstly, Section 3.1 presents the backscattering coefficients and GRVI for multi-
temporal phases. Section 3.2 presents GDSSM for different crops. After that, Section 3.3
shows the farmland masks obtained by the GDSSM method. Finally, Section 3.4 presents
the classification results of different methods.

3.1. Temporal Profiles of the Backscatter Coefficient and GRVI

The backscattering coefficient represents the reflectivity of the target unit cross-sectional
area in the incident direction of the radar electromagnetic wave and can reflect the geomet-
ric and physical characteristics of the illuminated object, such as surface roughness and
water content, which can help identify the types of crops. Figure 5 shows the time profile of
four polarization modes, where the value of each point represents the average backscatter
coefficient of each crop type sample.

The radar vegetation index based on the generalized lifting scattering model is a
vegetation index that reflects the scattering mechanism of crops. The vegetation index
changes with the growth and development of crops and has been proved to have potential
in rice monitoring. This parameter is helpful in classifying crops. Figure 5 shows the time
profile of GRVI, where the value of each point represents the average GRVI for each crop
type sample.

3.2. GDSSM for Different Crops

Figure 6 shows the GDSSM between unknown pixels and winter wheat samples and
between unknown pixels and garlic samples in the study area. As can be seen from Figure 6,
GDSSM values of non-farmland pixels such as towns and paths are very low (within a
range of 0–0.4). In Figure 6a, the farmland mainly planted with winter wheat has a very
high GDSSM with the winter wheat sample (within a range of 0.8–1), while the farmland
mainly planted with garlic has a very low GDSSM with the winter wheat sample (within
a range of 0–0.2). The opposite is true in Figure 6b. Areas where winter wheat and garlic
are grown were identified during the field visit. This proves that GDSSM can accurately
show the similarity between unknown pixels and reference samples and is very helpful for
distinguishing crop types and farmland and non-farmland areas. Moreover, it is proved
that when GDSSM is greater than or equal to 0.8, the unknown pixel has a very high
similarity with the reference sample, which is conducive to selecting the pixel with high
similarity as the training data.

3.3. Farmland Mask

The extraction results of the farmland mask in some study areas and the mask of
GFSAD are shown in Figure 7. It can be seen from the figure that GFSAD only contains a
few dense buildings and large villages. After combining GDSSM, many paths and scattered
buildings are identified. The reason may be that the paths are very narrow and the image
resolution is very low, resulting in a path and a small part of the farmland beside the road
being in the same pixel. Through the GDSSM method, it can be judged that the similarity
between these mixed pixels and crops is not high, allowing the identification of paths and
discrete buildings. This fully shows that the farmland extraction method of GDSSM can
identify smaller non-farmland areas and finer farmland areas.
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3.4. Crop Classification

In order to prove the effectiveness of the model combining geodesic distance spectral
similarity measure and one-dimensional convolutional neural network (GDSSM-CNN),
the crop recognition method using GDSSM and the crop recognition method using the
1D-CNN model are compared. The use of similarity and threshold methods to classify crops
has been proved to have a good effect [48,49]. In addition, in order to study the influence
of different thresholds (in the training data generation part) on the classification results,
GDSSM-CNN methods with thresholds of 0.95, 0.9, 0.85 and 0.8 are used for comparison.
Pixels whose threshold value is greater than or equal to 0.8 are considered to have very
high similarities with reference samples (shown in Section 4.2). Therefore, only thresholds
greater than or equal to 0.8 are used.

In order to compare the performance of various methods more precisely, the output
results of each model and the ground data labels are generated into a confusion matrix
for analysis, as shown in Figure 8. From these confusion matrices, it can be seen that
GDSSM-CNN models show high accuracy, while the accuracy of using 1D-CNN and
GDSSM methods alone is very low. The results are presented in Table 2. The GDSSM-CNN
method with a threshold of 0.8 for training data has the highest accuracy, with an accuracy
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rate of 91.20% and a Kappa coefficient of 0.8509. Experiments show that the combined
performance of the GDSSM classifier and 1D-CNN classifier is better than that of either of
them alone. The accuracy increased by 19.94% and 23.91%, respectively, and the Kappa
coefficient increased by 0.3018 and 0.5497, respectively.
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Table 2. Accuracy evaluation for different classifiers.

1D-CNN GDSSM GDSSM-CNN
(Threshold of 0.8)

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Non-farmland 14.44 1 91.88 42.57 91.22 74.31
Winter wheat 99.99 64.06 69.27 96.36 92.82 96.76

Garlic 11.78 32.18 55.52 99.70 86.82 99.08
Accuracy (%) 67.29 71.26 91.20

Kappa 0.3012 0.5491 0.8509

In order to intuitively prove the differences between methods, some classification
results are used for comparison, and the comparison results shown in Figures 9 and 10
show the final classification results of the study area obtained by the GDSSM-CNN model.
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4. Discussion

To demonstrate the superiority of the GDSSM-CNN method, this section will discuss
the results. Firstly, Section 4.1 discusses the need to combine the backscatter coefficient
and GRVI. After that, Section 4.2 explores the effect of different amounts of training data
on the classification results. Finally, the performance of the three methods is discussed in
Section 4.3.

4.1. Combination of Backscatter Coefficient and GRVI

By analyzing the backscattering coefficients of garlic and winter wheat, it can be seen
that the backscattering coefficient of winter wheat is always smaller than that of garlic.
From 15 March to 2 May, the backscattering coefficient of winter wheat is significantly
different from that of garlic, because during this period, the length of winter wheat increases
rapidly and the morphology changes significantly. However, the backscattering coefficients
of winter wheat and garlic are very close at some times, such as those on 20 February and
26 May, which means that it is difficult to distinguish crops by only using backscattering
coefficients.

Through the analysis of GRVI of garlic and winter wheat, it can be seen that GRVI of
winter wheat and garlic both show an upward trend with the growth of crops, but there is
little difference between GRVI values of winter wheat and garlic from 20 February to 2 May,
which means that it is difficult to distinguish crops by only using GRVI. Different from
the backscattering coefficients, the GRVI values of winter wheat and garlic differ greatly
on 26 May, which is caused by the harvesting of garlic. The backscattering coefficient and
GRVI provide two different kinds of information, which is very necessary. This not only
shows that combining the backscatter coefficient and GRVI can be beneficial in identifying
crops but also shows the importance of using multi-temporal features. In order to better
identify crops, the backscatter coefficient and GRVI are combined in the study.

4.2. Extraction of Training Data

In order to explore the impact of the number of training data on the performance
of the classifier, the number of training data generated by different thresholds and the
classification accuracy are compared, as shown in Table 3. By analyzing Table 3, it can be
found that:

1. From the number of training data, it can be seen that the number of training data
increases rapidly with the decrease in the threshold, and the model training time
increases rapidly with the increase in the amount of training.

2. From the number of training data and the accuracy of the classifier, it can be seen that
the accuracy of the classifier increases with the increase in training data. When the
threshold is 0.9, the increase in training data has little impact on the accuracy. This
means that the 1D-CNN model has been fully trained by the training data at this time.

3. As the number of training data increases, the number of noise data (training data
with wrong labels) increases. However, the accuracy of the classifier becomes higher
and higher. This means that when the threshold is greater than or equal to 0.8, the
number of noisy data is far less than the number of training data with correct labels,
and the increase in low-noise data does not affect the performance of the classifier.
When the threshold value is less than 0.8, the unknown pixel does not have a high
similarity with the reference target. Therefore, when the threshold value is in the
range of 0.8–0.9, the classifier can achieve very high accuracy.
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Table 3. Training data and accuracy of different thresholds.

Threshold Winter Wheat Training Data Garlic Training Data Accuracy
(%) Kappa Training Time

Use samples only 10 5 67.29 0.3012 10 s
0.95 994 259 89.13 0.8136 14 s
0.90 51,179 8183 91.18 0.8506 2 min 17 s
0.85 381,002 52,001 91.19 0.8507 14 min 1 s
0.80 1,040,634 149,326 91.20 0.8509 38 min 11 s

4.3. Comparison of Three Methods

By analyzing the confusion matrix, it can be found that the user’s accuracy for non-
farmland area is very low in the results using the GDSSM method. The reason is that
when only the threshold method is used for classification, the classification performance
is affected by the selection of threshold, the proportion of mixed pixels, and image noise,
which is also reflected in other classification results of the GDSSM model. In the results
using the 1D-CNN method, the user’s accuracy and producer’s accuracy for garlic are very
low. The reason for this result is that the sample size is too small, which makes the model
unable to fully learn the types of crops in the training stage. The GDSSM-CNN model has
very high user accuracy and producer accuracy, which proves that this model also has very
good performance when there is a limited number of samples.

From the difference diagram of the classification results of the three methods, it can be
clearly seen that the effect of the GDSSM-CNN model is better than that of other models. In
area A, the GDSSM model mistakenly identifies farmland as non-farmland. The 1D-CNN
model mistakenly identifies non-farmland as garlic and does not identify some paths. The
reason is that the model training is inadequate due to insufficient samples. Many farmlands
in the GDSSM-CNN model are correctly identified, which proves that the GDSSM-CNN
method has better identification ability and is rarely affected by the number of samples. In
area B, the GDSSM model can distinguish the areas where wheat and garlic are mixed, but
it still recognizes much farmland as non-farmland. A large amount of garlic was incorrectly
identified as winter wheat by the 1D-CNN model. The GDSSM-CNN model still has very
good classification results in the area where winter wheat and garlic are mixed, which
means that the GDSSM model can select the correct pixels as training data, thus improving
the performance of the 1D-CNN. It can be seen from Figure 10 that the planting area of
winter wheat gradually shrinks from north to south (shown in the red rectangular boxes in
Figure 10), and garlic is mainly planted in the southeast and southwest of the study area
(shown in the blue rectangular boxes in Figure 10). The southern part of the study area
is mainly planted with winter wheat and garlic (shown in the black circle in Figure 10).
Through comparison with optical images, these planting distributions are confirmed.

Based on the analysis and verification of classification results, the following conclu-
sions can be drawn: The GDSSM model can identify winter wheat and garlic, and it is less
affected by the limited samples. However, the classification performance of this model
is subpar. The 1D-CNN model has a strong feature extraction ability, but the number of
samples easily limits its performance. The GDSSM-CNN model, which combines the two
models, not only is free from the limitation of the number of samples but also has very high
accuracy and robustness.

5. Conclusions

In this study, a crop classification method based on GDSSM-CNN is proposed. This
method uses multi-temporal RadarSat-2 images, and the performance of the classifier is not
limited by the number of samples. The details are as follows: Firstly, the geodesic distance
spectral similarity between unknown pixels and crop samples is calculated. Secondly,
GDSSM is used in combination with the disclosed GFSAD farmland mask to remove
non-farmland areas and is compared with the GFSAD mask only. Thirdly, backscatter
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coefficients and GRVI features are extracted from multi-temporal images and combined
to generate crop classification models. Fourthly, GDSSM and the threshold method are
used to extract unlabeled data with very high similarity with samples as training data, and
the effects of different thresholds are compared. The optimal threshold selection range is
determined to be 0.8–0.9. Finally, the GDSSM classifier combining GDSSM and 1D-CNN is
used to train the model using the feature combination of backscatter coefficient and GRVI.

GDSSM, 1D-CNN and GDSSM-CNN models with different thresholds were used
for comparison. Only 10 winter wheat samples and 5 garlic samples were used. The
GDSSM-CNN method shows strong crop classification performance. The accuracy of the
GDSSM-CNN method with different thresholds is above 89%, which is higher than that
of the GDSSM method (the accuracy is 71.26%) and 1D-CNN method (the accuracy is
67.29%), which proves the accuracy of the GDSM-CNN method. Some classification results
were selected for comparison, proving that the GDSSM-CNN method has a satisfactory
classification effect. In a word, analysis and verification of three methods have proved that
the GDSSM-CNN model has incomparable advantages in crop classification.

In addition, the combination of backscatter coefficient and GRVI has proved to be
very useful for crop classification results. In addition, compared with the non-farmland
mask only using GFSAD, the non-farmland mask added with GDSSM can more finely
identify small-scale buildings and roads. This study shows that the use of rich polarization
information and multi-temporal SAR images brings new possibilities to crop classification
and also provides a new idea for the sample size limitation of neural networks in SAR
image applications.
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