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Abstract: It is difficult to detect bridges in synthetic aperture radar (SAR) images due to the inherent
speckle noise of SAR images, the interference generated by strong coastal scatterers, and the diversity
of bridge and coastal terrain morphologies. In this paper, we present a two-step bridge detection
method for polarimetric SAR imagery, in which the probability graph model of a Markov tree is used
to build the water network, and bridges are detected by traversing the graph of the water network to
determine all adjacent water branch pairs. In the step of the water network construction, candidate
water branches are first extracted by using a region-based level set segmentation method. The water
network is then built globally as a tree by connecting the extracted water branches based on the
probabilistic graph model of a Markov tree, in which a node denotes a single branch and an edge
denotes the connection of two adjacent branches. In the step of the bridge detection, all adjacent water
branch pairs related to bridges are searched by traversing the constructed tree. Each bridge is finally
detected by merging the two contours of the corresponding branch pair. Three polarimetric SAR data
acquired by RADARSAT-2 covering Singapore and Lingshui, China, and by TerraSAR-X covering
Singapore, are used for testing. The experimental results show that the detection rate, the false alarm
rate, and the intersection over union (IoU) between the recognized bridge body and the ground truth
are all improved by using the proposed method, compared to the method that constructs a water
network based on water branches merging by contour distance.

Keywords: bridge detection; polarimetric synthetic aperture radar (PolSAR); water network connec-
tion; graph model; Markov tree

1. Introduction

Bridge detection in synthetic aperture radar (SAR) images is essential in applications
such as autonomous navigation, urban monitoring and planning, flood monitoring, and
disaster prevention, among others. With respect to geometric structures, a bridge is a long
strip-shaped area that spans a water tributary connecting two land regions. Usually, the
two sides of a bridge are straight and parallel to each other. In term of physical scattering
characteristics, the double-bounce scattering generated from various components of man-
made structures on bridges make large bridges show as bright regions in SAR images. As
shown in Figure 1, some bridges marked in red circles are located on a single tributary.
Because the scattering intensity of water is much lower than that of land in SAR images,
bridges seem easy to detect by extracting water tributaries and finding the connecting land
regions on the tributaries. However, it is not a simple procedure, as the imaging geometry
may play a factor in significantly reducing the radar returns from the bridge so that it is
difficult to discriminate between the bridge and speckle noise in the water (region 1 in
Figure 1). Additionally, the interference caused by strong scatterers along the coast and
the diversity of bridge and coastal terrain morphologies [1] (region 2 in Figure 1) are also
influencing factors.
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Figure 1. Diagram of bridge distribution in polarimetric SAR images, where some bridges are marked
in red circles, the region indicated by yellow box 1 is a high speckle noise region, and the region
indicated by yellow box 2 is a complex coastal terrain morphology.

In almost all existing bridge detection methods, water branches are extracted by
sea-land segmentation or classification first before bridges are detected by geometric and
scattering feature extraction and recognition. Luo et al. [2] extracted water regions using
Gauss Markov random fields (MRFs) in combination with support vector machine methods
and detected bridges by extract line across the water area based on the prior knowledge
of the bridge width. Chaudhuri et al. [3] extracted river branches by classifying the
image into one of three types, including water, building, and background, and recursively
scanning the extracted water. Bridges were then detected based on the spatial relationship
of the bridge and river. Wang et al. [4] extracted water regions using an edge detection
method and detected bridges by the spatial relationship of the bridge and water area.
Chen et al. [5] tracked water contours using a particle filter and detected bridges by
scanning the binary segmentation result of water regions. Chen et al. [6] extracted water
regions using a global thresholding segmentation method and detected bridges by a
combination of morphological processing and the geometric model of the bridge. Because
the geometric feature of the bridge is salient, the methods based on spatial relationships
and geometric structures can easily detect bridges. However, the performance of the
methods depends on the accuracies of the water–land segmentation and the geometric
feature extraction. It is error-prone in SAR images due to strong coherent speckle and
scattering interference. Except the methods based on the geometric structure and spatial
distribution of bridges, Wang et al. [7] extracted and identified the region of interest (ROI)
of bridges by a combination of the context information, the scattering intensity and the
spatial structure of the bridge in the SAR image. Song et al. [8] detect bridges using a
constant false alarm rate (CFAR) detector based on the high intensity of the bridge in the
SAR image. The problem with the intensity-based method is that only some bridges are
strong scatterers. In polarimetric SAR imagery, Yu et al. [9] first extracted water using a
polarimetric parameter to enhance the contrast between bridges and water. Bridges were
then detected by examining the side lines of the bridge extracted by a ratio edge detector.

Accurate extraction and connection of tributaries of water are crucial steps for bridge
detection. When all the branches of water area are accurately extracted, we only need to de-
termine the small land areas that connect different water branches to detect bridges. In the
existing methods, water and land are segmented only by using thresholding segmentation
or MRF segmentation methods. It is not applied when the water branches are so complex
that they form a network. For the extraction of a complex water network, the existing
methods are mainly based on digital elevation model (DEM) images and optical images.
Fern et al. [10] first proposed extracting a water network by building a local network
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structure model using the elevation of water. Bai et al. [11] extracted and connected the
water network by building a binary search tree model using DEM data. In the method
based on optical remote sensing images, the water area is first extracted using the global
thresholding segmentation method with a normalized difference water index (NDWI) [12]
parameter. The water network is then constructed by extracting the centerline of the water
branches using morphological processing and merging the centerlines by distance. Isikdo-
gan et al. [13] extracted water regions with a modified NWDI index, then determined water
branches using a proposed curve singularity index, and finally built the water network by
tracing the centerline of the water branches by a non-maximum suppression. Yang et al. [14]
also extracted water regions using the modified NWDI index, but connected the water
component regions using a multi-point marching method. Chen et al. [15] proposed a
supervised water network extraction method based on multi-temporal data, which counts
the frequency of the water regions that appear in different time phases. The main and
central lines of the water network were obtained from water in a drought period, whereas
the small branches were extracted from water in a flood period. Isikdogan et al. [16] pro-
posed a water network extraction method based on a supervised deep neural network.
However, the methods based on DEM and optical images are not applied to SAR images
due to the strong speckle and scattering interference. In SAR and polarimetric SAR images,
Klemenjak et al. [17] proposed a method based on the morphological processing and a su-
pervised classification method. Liu et al. [18,19] proposed two water and land segmentation
methods using multi-level and multi-scale level set segmentation. Liu et al. [20] segmented
the water and land using a proposed volume scattering polarimetric parameter to perform
the offshore port detection. Liu et al. [21] proposed an improved level set segmentation
method by limiting the initial segmentation to segment the water and offshore oil platforms.
Obida et al. [22] proposed a water extraction method based on a combination of DEM and
SAR data. However, the existing SAR-based methods are not applied to the extraction of a
complex water network. The problem of mixing DEM and SAR data is that the DEM data
are often inaccurate or incomplete [22], particularly when observing waterways, making it
difficult to fuse the two data types for an effective water detection technique.

If we represent a water branch as a set of centerlines with constant width, the con-
nection of water branches is similar to a network of roads. Tupin et al. [23] connected the
candidate sets of road lines extracted by edge detection using a Markov graph model. Krish-
namachari et al. [24] defined energy terms related to distance and direction for the extracted
edge lines and extracted the boundaries of buildings using an MRF model. Tu et al. [25,26]
first defined the energy terms of a single curve branch, parallel curve branch and curve
group with tree structure, respectively. Images were then parsed to region, curve, and
curve group using the Markov Monte Carlo method. However, when using the existing
line segments connection model, it is difficult to achieve high accuracy in SAR images due
to the strong speckle and scattering interference.

There are two main challenges for offshore bridge detection in SAR images. One is
some branches are too narrow and too small to be correctly extracted. The other is the
scatterings of some branches are too ambiguous due to the scattering interference caused by
coastal building to be correctly segmented. If some branches are wrongly classified as land,
the tributary that contains these branches will be broken for a long distance and cannot
be correctly connected. However, the whole topology of those water branches is usually
very similar to a tree. Thus, to improve the performance of the extraction and connection
of water branches, this paper proposes an offshore bridge detection method in SAR and
polarimetric SAR imagery by connecting water networks based on a Markov tree. Unlike
traditional methods directly connecting water branches by the local spatial relationship
of branches, the proposed method globally constructs the water network by a tree using
the probabilistic graph model of Markov, in which branches are taken as nodes and the
adjacent branches are taken as edges. Based on the tree structure of branches, the ROIs
of bridges are easy to extract by traversing the tree to determine all the edges. Bridges
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are finally detected by merging the feature points of the two contours of each adjacent
branch pair.

The rest of this paper is organized as follows. In Section 2, the general segmentation
model of the water network is introduced. In Section 3, the proposed method is introduced
in detail. Experimental results are shown and discussed in Section 4. The discussion is
given in Section 5. The conclusion is given in Section 6. The nomenclature of all symbols in
the article is shown in Appendix A. The structure diagram of all symbols used in the water
network construction is shown in Appendix B.

2. General Segmentation Model of the Water Network

Bridges cross over water, and the minimum distance between two water branches
adjacent to a bridge is near equal to the width of the bridge. To detect bridges, we only
need to extract water branches and connect the branches to determine the break part
of the tributary of the branches. For a coastal image, the land is composed of several
homogeneous regions, and the water network is composed of inland water regions, a main
water trunk, and a number of tributaries. The shape of the water network is so similar
to a tree that the topological structure can be represented by a tree structure, in which a
node denotes a single branch, the main trunk denotes the root of the tree, and an edge
denotes two branches are adjacent. Thus, the image can be modeled as a set including some
homogeneous regions, some single branches, some water tributaries with a tree structure,
and the topological structure of different regions. By building the probability model of each
component of the set, we can get the maximum a posteriori probability (MAP) model for
the image parse based on Bayesian criterion.

2.1. General Model of the Global Segmentation

If R denotes the image plane, and the given polarimetric SAR image is represented
as T, the objective of image segmentation is to parse the image into a set of terms, in-
cluding some homogeneous regions Rr, free curve branches Rc, tree regions Rψ, and the
topological relationship TP. If the parameter set of the segmentation is represented as
Θ =

(
Rr, Rc, Rψ, TP

)
and Ω denotes the parameter space, the MAP model can be repre-

sented as
Θ∗ =

argmax
Θ∈Ω − log(p(T|Θ)p(Θ)), (1)

where p(Θ) denotes the prior probability of the model, and it is related to the prior model
of different terms; p(T|Θ) denotes the conditional likelihood probability distribution of
the coherent matrices, and it is related to the probability distribution of regions.

2.2. Probability Distribution of a Region

If both regions Rr and all curve branches are homogeneous, the coherent matrix of a
homogeneous region obeys the complex Wishart distribution in polarimetric SAR imagery
(for SAR images, the intensity of a homogeneous branch obeys a Gamma distribution). If
the average coherent matrix is Σ and the number of looks is L, then the coherent matrix
T ∼W(Σ, L, p) [27],

f (T |Σ, L, p) =
LpL|T |L−pexp

{
−Ltr

(
Σ−1T

)}
K(L, p)(|Σ|)L , (2)

where p denotes the number of polarimetric channels; tr(.) denotes the trace of matrix;
K(L, p) = πp(p−1)/2Γ(L) . . . Γ(L− p + 1); and Γ(.) is the Gamma function.

The segmentation regions are limited by the length of the contour and the area of the
region in prior. Thus, the prior probability of regions satisfies

p(R) ∝ exp
{
−γr|D(R)|ρ − λr|∂R|

}
, (3)



Remote Sens. 2022, 14, 3888 5 of 31

where γr, ρ, λr are constant, |D(R)| denotes the area of region R, and |∂R| denotes the
contour length of region R.

2.3. Model of a Single Water Branch

Similar to reference [25], a single water branch is represented as a long strip area
with a curve as its centerline, and its width is nearly constant. Based on the probability
distribution of the coherent matrix in the homogeneous region (2), if the average coherent
matrix is Σj, and the coherent matrix of a single water area obeys T ∼W

(
Σj, L, p

)
. Given

curve branch C, if its whole length is S and the arc coordinates are s = [0, S], it can be
represented as a region D(C) where the center curve is c(s) = (xm(s), ym(s)) and the width
is w(s) for region D(C). The value of w(s) is almost invariant in the region and w(s)� S.
Then, the prior probability of the curve branch C is

p(C) ∝ p(D(C))p(c(s))p(w(s)) ∝ exp{−E(C)}. (4)

As E(C) depends on the area, length, and width of the region, we define it as

E(C) = γc|D(C)|ρ − λcS + µcEo(w), (5)

where γc, ρ, λc, µc are constant; |D(C)| denote; the area of region D(C); Eo(w) is a function
of the consistency of w(s). If w(s) is high, then Eo(w) is small. The expression γc|D(C)|ρ
denotes the energy related to the area, λcS denotes the energy related to the length, and
µcEo(w) denotes the energy related to the consistency. The energy E(C) limits the water
branch to be a region with small area, large length, and high consistency.

2.4. Model of Water Tributaries with a Tree Structure

Because the region of the water tributaries with a tree structure is homogeneous, its
coherent matrix satisfies T ∼W(Σ, L, p). Given a tree tributary ψ, if it consists of n single
branches {C1, C2, . . . , Cn} that denote the node of the tree, the structure relationship TP
formed by the branches is 〈α1, βk〉, 〈αk, βl〉, . . . , 〈αl , βn〉. Both αi and βi are the index of
branch Ci; 〈αk, βl〉 denotes the edge of the tree such that αk is the father node and βl is the
child node. Then we have

ψ = (n, {C1, C2, . . . , Cn}, TP). (6)

Supposing that ψ satisfies the hypothesis of a Markov field that the label of a single
node is only determined by the labels of the adjacent parent and children nodes, then p(ψ)
obeys the Gibbs distribution according to the Hammersley Clifford theorem [28]:

p(ψ) =
1
Z ∏

c∈Cψ

ϕ(Xc) ∝ exp

− ∑
c∈Cψ

E(Xc)

, (7)

where Cψ is the set of a series of cliques in graph ψ, and Z is the normalization constant.
From (7), we get the prior probability of ψ

p(ψ) ∝ exp

{
−λψn−

n

∑
i=1

E(Ci)− ∑
αi 6=∅

E
(
Ci, Cβi

)}
, (8)

where E(Ci) denotes the energy of branch Ci, E
(
Ci, Cβi

)
denotes the energy of the branch

pair Ci and Cβi , and ∑αi 6=∅ E
(
Ci, Cβi

)
denotes the total energy of all branches adjacent to

Ci; λψn is the regularization term related to the number of branches.
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According to (3), (4) and (8), if the number of regions Rr is Nr, the number of single
branches is Nc, and the number of trees is Nψ, the prior probability of image R is

p(Θ) =
Nr

∏
i=1

p(Ri)
Nc

∏
j=1

p
(
Cj
) Nψ

∏
k=1

p(ψk). (9)

Because a free single branch can be considered as a special tree with one node, if the
total number of trees including single branches and branches in tree structures is M, the
likelihood probability is

p(T|Θ) =
Nr

∏
i=1

∏
(x,y)∈Rri

f (T i(x, y)|Σi, L, p)

M

∏
j=1

∏
(x,y)∈Rcj

f
(
T j(x, y)

∣∣Σj, L, p
)
,

(10)

where T i(x, y) denotes the coherent matrix of point (x, y).
Based on the prior and likelihood probability Formulas (9) and (10) as well as the

prior model Formulas (3), (4) and (8), we get the final general model of the segmentation
from (1).

3. The Proposed Method
3.1. Overview of the Proposed Method

The optimum parameter Θ can be searched using the Markov Monte Carlo method
based on (1). However, the complexity of the algorithm is very high because the parameter
space is huge. To reduce the complexity of the general model, a hierarchical model is pro-
posed to divide the model into two layers: one is water branch extraction by segmentation,
and the other is a water network connection, as shown in Figure 2b. The general model of
the segmentation presented in Section 2 can be represented in Figure 2a, where the latent
random variables R, C, ψ, TP denote the four parameters of the model

(
Rr, Rc, Rψ, TP

)
,

and variable T denotes the observed coherent matrices. The hierarchical model is shown in
Figure 2b, where the latent variable K denotes whether the water branches belong to the
water network, and the latent variable Y denotes whether the segmented regions belong to
the land or the water. The hierarchical model can be greedily solved layer by layer based
on each graph.

(a) (b)

Figure 2. The graph model for the water network construction: (a) the general model; (b) the
hierarchical model.
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The flowchart of the proposed method is shown in Figure 3. The first part of the
algorithm performs the water network construction. The first step of this part performs the
water branch extraction, which corresponds to the first layer of the hierarchical model. The
second step performs the water branch connection, which corresponds to the second layer
of the hierarchical model. The second part of the algorithm performs the bridge detection
and bridge body extraction.

Figure 3. Diagram of the proposed bridge detection method based on water network construction
using a Markov tree, where the steps of the water branch extraction are marked in box a, and the
steps of the water branch connection are marked in box b.

The first part of the algorithm is described in Sections 3.2 and 3.3. The steps of the water
branch extraction are shown in box a, where the water and land are segmented using a level
set method, and all water branches are extracted by a post-process of the segmentation
result. The steps of the water branch connection are shown in box b, where the branches
are scanned, tracked, and connected recursively to construct the water network. First,
the centerline, endpoints, and directions of each branch are extracted by a morphological
processing in a combination of the spline interpolation. Next, the main water trunk and its
bifurcations are extracted from the branches using a binary image scanning method. Then,
the initial graph structure of a local tributary takes a bifurcation as a root is constructed
by connecting branches based on the distance and direction angle of different centerlines.
The initial whole graph structure of the water is constructed by connecting different local
tributaries. Finally, by defining the node and edge energy of the graph, the optimal Markov
tree can be dynamically solved using the simulated annealing algorithm.

The second part of the algorithm is described in Section 3.4. In this part, the adjacent
branch pairs for the bridge detection are extracted by traversing the edges of the tree
first. The feature points of each branch contour are then extracted using a curve polygon
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approximation algorithm. Finally, merging the feature points on the contours of the branch
pair by distance, the bridge body is extracted to finish the bridge detection.

3.2. Water Branch Extraction

If curve Γ denotes the boundary of the water and land segmentation, then the objective
of the two-region segmentation is as follows according to (1):

Γ∗ =
argmax
Γ∈Ω − log(p(T|Γ)p(Γ)), (11)

where p(T|Γ) denotes the probability of each region given the segmentation Γ, and p(Γ)
denotes the prior probability of Γ.

According to (3), (10) and (11), the objective energy function of the segmentation can
be represented as

E(Γ) =γr|D(R1)|ρ + λr|Γ| −
∫

R1

log f (T1(x, y)|R1)dxdy

−
∫

R2

log f (T2(x, y)|R2)dxdy,
(12)

where R1 is the region inside the curve Γ, R2 is the region outside the curve Γ, and
f (T i(x, y)|Ri) is the probability distribution function of region Ri(i ∈ {1, 2}).

If the curve Γ is implicitly embedded into a level set function Φ, the optimal segmen-
tation can be solved by iteratively evolving Φ as the derivative of the energy function to
Φ [29]. When the segmentation is finished, the water and land regions can be identified
by comparing the average scattering total power of the two segmented regions. After the
final binary result of the land and water segmentation B is obtained, all water branches
D =

{
dj
}(

j ∈
{

1, . . . , Nd
})

(Nd denotes the number of branches) can be extracted by
determining all connection regions from the water segmentation result.

3.3. Water Branch Connection

If W denotes the water network, the class labels of the branches D are K =
{

k j
}
(j ∈ {0, 1}),

where k j = 1 means that dj belongs to W , and the value space of W is W, then the general
connection model is

K∗ = argmax
K∈W − log(p(D|K)p(K)). (13)

According to (9), the prior probability of labels K is

p(K) =
Nc

∏
i=1

p(Ci)
Nψ

∏
j=1

p
(
ψj
)
, (14)

where D is composed of several single water branches Ci(i ∈ {1, . . . , Nc}) and water tribu-
taries with tree structure ψj

(
j ∈
{

1, . . . , Nψ
})

.
Because a single water branch can be considered as a water tributary with a tree

structure only containing a root node, formula (14) is equivalent to

p(K) =
M

∏
i=1

p(ψi) ∝ exp

{
−

M

∑
i=1

E(Ki)

}
, (15)

where M is the sum of Nc and Nψ; Ki is the label vector of tributary ψi; and E(Ki) is the
prior energy of tributary ψi, which can be computed from Formula (8).

According to (10), the likelihood probability model of labels K is

p(D|K) =
M

∏
i=1

f (T i(Di)|ψi) ∝ exp

{
−

M

∑
i=1

E(Di|Ki)

}
, (16)
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where f (T i(Di)|ψi) denotes the likelihood probability of the average coherent matrix
T i(Di) of region Di in case of tributary ψi, and E(Di|Ki) is the likelihood energy of the
tributary ψi.

Similarly, joining (15) and (16), the objective energy function of water connection can
be represented as

K∗ = argmin
K∈W

M

∑
i=1

(E(Ki) + E(Di|Ki)). (17)

To construct the whole water network of the branch set D based on (17), we need to
get the geometric representation of the branches first. We then construct the initial graph
structure of the branches based on the spatial adjacent relationship of different branches.
Finally, we can search the optimal graph structure by defining the prior and connection
energy of the branch and solving the connection probabilistic graph model.

3.3.1. Geometric Representation of a Branch

From Section 2.3, we know that to represent a branch, the centerline and its endpoints
and directions need to be obtained first. It is difficult to extract the centerline because the
shape of branch is varied and some branches are winding. To get a reasonable centerline,
we first extract the raw skeleton of the branch using morphological processing and then
fit the skeleton into a curve using the spline interpolation. If the extracted centerline of a
branch is cm(s) = (xm(s), ym(s)), and s ∈ [0, S], the two endpoints of the branch are cm(0)
and cm(S), and the two directions of the branch are the tangent directions of points cm(0)
and cm(S).

3.3.2. Main Trunk and Bifurcations Extraction

The whole water feature is composed of a trunk, several tributaries, and some isolated
branches. If the extracted branches set is D =

{
dj
}(

j ∈
{

1, . . . , Nd
})

, where Nd denotes
the number of branches, the branch with the maximum area dm is selected as the main
trunk of the water. There are several bifurcations in the main truck, each of which forms
the starting point of a tributary. To determine the adjacent relationship of branches on a
tributary, the bifurcations need to be extracted first. The bifurcations are areas protruding
from the trunk, flanked by land. Taking a pixel on a bifurcation as the center, the pixels
with a certain distance along the two sides of the horizontal or vertical direction are on the
land. Thus, we can get the bifurcation by a scanning method. An example segmentation
result is shown in Figure 4a, where the region in white is water and the region in black is
land. One bifurcation of the main trunk is shown in Figure 4b. We find that the bifurcation
is a long strip with land on both sides. Because the direction of the bifurcation is varied, the
scanning is carried out in multiple directions at the same time. In this paper, we scanned
in two group orthogonal directions, where one group is horizontal and vertical, and the
other group is 45 degrees and 135 degrees counterclockwise. As shown in Figure 4b, for
pixel P on a bifurcation, the scanning is carried out in four directions. For scanning along
the direction ~τ, if there are land pixels in the range from positive δrad to negative δrad with
P as the center; P is considered as a point in the bifurcation branch. If P is scanned as a
bifurcation pixel in the two orthogonal directions, P is classified as a bifurcation pixel in
the group directions. If P is classified as a bifurcation pixel in one of the two groups, P is
finally classified as a bifurcation pixel.

Because the coastal terrain is uneven, some convex regions are wrongly scanned as
bifurcations. To reduce the false regions, the scanned bifurcations are identified by the ratio
of length to width, area, and the consistency of width. If the perimeter of a region is lP and
the area is A, the ratio of length to width lL/lW can be represented as follows:

ρLW =
lL
lW

=

(
lP +

√
l2
P − 16A

)
(

lP −
√

l2
P − 16A

) . (18)
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There are some bifurcations with large width and area. As shown in Figure 4a, the
tributary marked in the red box is broken into two parts by a bridge. The tributary cannot
be extracted as a bifurcation using the scanning method. For this kind of tributary, if a
branch in the tributary satisfies that the distance between the contour of the branch and
the main water is less than δre f and its area is greater than ∆re f , then it is classified as
a bifurcation.

(a) (b)

Figure 4. Bifurcation of the main water and diagram of bifurcation scanning: (a) diagram of bifurca-
tion; (b) diagram of scanning, where P denotes a bifurcation pixel, and two crosses indicate two pairs
of scanning directions.

3.3.3. Graph Structure Construction

The N-tree is used to represent the graphical structure of a water tributary. As shown
in Figure 5, each node Xi in the N-tree denotes a water branch di. A single node contains
one parent node and j(j ≤ N) children nodes. Taking a bifurcation as the root node, a tree
is constructed by searching for children nodes according to the distance and direction angle
between the centerlines of two branches.

Figure 5. The N-tree structure of a tributary.

For the branch set D, if dm denotes the extracted main trunk, and H = {hx}
(

x ∈
{

1, . . . , Nh
})

denotes the extracted bifurcations on dm, the graph structure of the water network can
be recursively built based on the construction algorithm of the tree. First, the angle and
distance between each two branches in D are calculated. We take dm as the root node. Using
a flag set to mark whether the branches have been built, all branches are initially marked
as 0 except branch dm. Then, starting with bifurcation hx, the successor nodes of N-tree
are searched in distance limitation δre f and direction limitation θre f . The children nodes
are set to root nodes and the successor nodes are iteratively searched until the leaf node is
reached. We mark all the nodes in the N-tree that have been built. Finally, by following the
same steps, each sub-tree of the root node dm is successively constructed by starting with a
bifurcation that is not searched.
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3.3.4. Node and Edge Energy Definition

To construct the graph of branches using the probability model, the prior energy of the
branch and the connection energy of two adjacent branches need to be defined according
to (8) and (15). As a branch is represented as a node and the connection of two branches is
represented as an edge, the prior energy of a branch is called node energy Enode, and the
connection energy is called edge energy Eedge.

The expression of the node energy of a branch Enode is defined in (5). The values of
the area |D(C)| and length S are easy to calculate based on the geometric representation
of the branch. However, the consistency function of a branch Eo(w) needs to be defined.
Given branch dj, if ci(s) denotes the centerline curve of dj, the left boundary is cl(s) and
right boundary is cr(s), then the width function w(s) is equal to |cr(s)− cl(s)|. Because
w(s) may gradually increase or decrease as s for a water branch, Eo(w) is defined as the
average of the local width consistency of each point on the centerline. The local width
consistency of a point is defined as the difference between its width and the average width
of the point in a window region. The average width of each point is calculated using a
sliding window. If the average width function is wo(s), the width consistency of the branch
is defined as follows:

Eo(w) =

(
1

|ci(s)|∑s
(wo(s)− w(s))2

)1/2

, (19)

where |ci(s)| denotes the length of ci(s).
The edge energy of two adjacent branches is determined by the distance and direction

angle of the branches. Supposing that the distance between node Q and node P is δPQ and
the angle of direction is θPQ, the energy of the edge PQ can be defined as

Eedge(PQ) = εsinθPQ + ηδPQ − Ere f , (20)

where the term εsinθPQ restricts the angle of two connected branches; ηδPQ restricts the
distance of two connected branches; Ere f is the reference edge energy; and Ere f is subtracted
in Eedge is a mean normalization process so as to keep a balance between the energy of Eedge
and the energy of Enode. If the reference angle is θre f and the reference distance is δre f , Ere f
is εsinθre f + ηδre f .

3.3.5. Markov Tree Construction

To construct the tree using (17), the prior and likelihood energies of the whole tree
need to be defined.

(1) Prior energy of Markov tree

From the N-tree structure, we see that the clique of a N-tree ψ is composed of a node,
a parent node, and several children nodes adjacent to the node.

As shown in Figure 5, given node Q, if the father node is P and there are j(j ≤ N)
children nodes, then the prior energy of Q is the sum of node energy and all edge energies
related to Q, and the expression is as follows:

Eprior(Q) = Enode(Q) +
1
2

(
Eedge(PQ) + ∑

i∈O
Eedge(Qi)

)
(21)

where O is the children nodes set of Q. Because edge PQ is the common edge of two nodes
Q and P, the edge energy is only set to half for Q.

Calculating the energy of each node respectively and according to (8), the total energy
of N-tree ψ is

Eprior(ψ) = λψn + ∑
Q∈ψ

Eprior(Q), (22)
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where n is the number of nodes.

(2) Likelihood energy of Markov tree

Given node Q, if it belongs to tree ψ, the likelihood energy is determined by the
average coherent matrix Σψ of region ψ:

Elike(Q) = E
(
dQ
∣∣kQ
)
= −log f

(
T̄
(
dQ
)∣∣Σψ

)
, (23)

where kQ is the class label of Q; dQ denotes the region of branch Q; and T̄
(
dQ
)

is the average
coherent matrix of dQ.

Similarly, the total likelihood energy of N-tree is the sum of the likelihood energy of
each node:

Elike(ψ) = ∑
Q∈ψ

Elike(Q). (24)

The structure diagram of the symbols defined in the model of the water network
construction from Sections 2, 3.2 and 3.3 is shown in Appendix B.

(3) Network construction based on Markov tree in global searching

According to (22) and (24), the energy of the whole water network (17) can be obtained.
The optimum solution of labels K can be solved by searching the minimum of the objective
energy function in space W using the Monte Carlo method or the simulated annealing
method [30].

If we add the rate parameter ξ in a Gibbs distribution, i.e., p(K) ∝ exp(−ξE(K)), the
steps of the simulated annealing algorithm (Algorithm 1) are as follows.

Algorithm 1: Water network construction based on Markov tree in global searching.

Step 1: Initialization. Initialize the label vector of water network branches to K(0)

randomly. Set the limited angle of branches to θre f and the limited distance to
δre f . Set the maximum number of the children nodes of tree to N, the initial
parameter ξ, the learning rate lr, the step size of parameter update Nup, and
the maximum number of iterations Nmax.

Step 2: Build the network graph model. For branches with label 1 in K(i), the angle
and distance between each two branches are calculated first. Take the branch
with the maximum area as the root node. The successor nodes of the N-tree
are then searched in distance limitation δre f and direction limitation θre f . The
children nodes are set to root nodes, and the successor nodes are iteratively
searched until the leaf node is reached. Mark all the nodes in the N-tree that
have been searched. Following the same steps, the unmarked node with the
maximum area is set as the new root node to search a new tree until all the
branches with label 1 are marked. After all the sub-trees ψ(i) have been
searched, the total energy of the network E(i)(K) is calculated using ψ(i).

Step 3: Update the state variables. Flip the label k j of branch dj randomly to update
K(i) to K(i+1). Build the network graph again according to step 2 and update
the energy of network to E(i+1)(K′). Accept the change of label k j according
the following probability:

aξ = min
(

1, exp
(
−ξ
(

E(i+1)(K′)− E(i)(K)
)))

. (25)

Step 4: Update parameter ξ. Repeat step 3 until the maximum number of iterations
is reached, where ξ is updated to ξ ∗ lr every Nup iterations.
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(4) Network construction based on Markov tree in local searching

Because the water network is complex, as the number of branches is large and the
sizes of different branches are varied, global searching is difficult to converge to the optimal
value. For SAR images, the area of some tributaries is very small, and the contours are
uneven due to speckle noise. It is easy to ignore the branches with weak energy if the
global searching algorithm is used. However, an important feature of the N-tree is that
the global optimum must be the local optimum. According to (21) and (24), the energy of
an N-tree can be decomposed into the energy of the root node, adding all the energies of
the sub-tree, taking each child node as root. Thus, the global optimum can be dynamically
searched locally. If H = {hx} denotes the extracted bifurcations of the main trunk, the
water network construction algorithm based on local iterative searching (Algorithm 2) can
be described as follows.

Algorithm 2: Water network construction based on Markov tree in local searching.

Step 1: Extract the main trunk and bifurcations. The branch with the maximum area

dm from the branch set D =
{

dj
}(

j ∈
{

1, . . . , Nd
})

is selected as the main
water. Extract the main trunk and bifurcations H = {hx} using the scanning
method in a scanning radius δrad.

Step 2: Build the network graph of a tributary. Take dm as the root node and start
with bifurcation hx in H to build a tree. Calculate the angle and distance
between hx and others branches dj(j 6= m). Search the children nodes of hx in
the tree under the limitation of θre f and δre f . Then, take each child node as the
root node to search its children nodes until the leaf node is reached to get the
current sub-tree ψx.

Step 3: Search the Markov tree using simulated annealing. Take ψx as a water
network and search the optimal tree using simulated annealing similar to
Algorithm 1.

Step 4: Iteration. Repeat steps 2 and 3 until all elements in H complete the
tree construction.

3.4. Bridge Detection and Bridge Body Extraction

When the final water network is obtained, all the adjacent branch pairs can be easily
extracted by determining all edges of the network using the depth traversal algorithm of
the tree because each edge denotes an adjacent branch pair. For an extracted branch pair, if
the ROI of the bridge is directly extracted by merging the points on the two contours by
distance, some boundary points that are not on the bridge will be wrongly classified to the
ROI of bridges when the branch is narrow enough. As shown in Figure 6a, two narrow
branches are adjacent to each other, where the region in gray is the land. The region marked
by the black rectangle box is the ROI extracted by distance merging. We find that part of
the boundary on the land is wrongly extracted.

Because the angle between a bridge and the surrounding land is nearly 90 degrees,
the junction between the bridge and the water contour is distinct. To avoid the wrong
extraction, the ROI of a bridge is extracted by merging the distinct points extracted from
the water contour.

The feature points of the water contour are extracted using the Douglas–Peucker
(DP) splitting and merging algorithm [31]. The DP algorithm recursively splits a curve to
two segments at the middle point of the curve until the distance between each point on
the curve and the straight line linking two adjacent feature points is less than a distance
tolerance δtol . Given two adjacent branches shown in Figure 6b, if the set of feature points
of branch 1 is P1 and branch 2 is P2, the feature point pairs in close distance can be extracted
under the threshold of the reference distance δre f . The feature points on the boundary can
then be obtained by the spatial coordinate relationship. If the feature points of branch 1
are {o11, o12} and branch 2 are {o21, o22}, the pixels on the land inside the quadrilateral
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surrounded by points {o11, o12, o21, o22} are recognized as the bridge body. Sometimes only
one feature point can be detected in branch 1 or 2, so the bridge body can be recognized
as follows.

In the case of o11 = o12 and o21 = o22, the segment linking o11 to o21 is recognized as
the bridge body.

In the case of o11 6= o12 and o21 = o22, given a land pixel s in the quadrilateral, if
(o11o12 × o11s) · (o11s× o11o21) > 0, (o12o21 × o12s) · (o12s× o12o11) > 0 and (o21o11 × o21s) ·
(o21s× o21o12) > 0, then s is inside the triangle o11o12o21 and is recognized as a pixel on
the bridge body, where “×” denotes the vector cross product, “·” denotes the vector dot
product, and if a =

(
ax, ay

)
, b =

(
bx, by

)
then a× b = axby − aybx.

In the case of o11 = o12 and o21 6= o22, the rule is the same as the case of o11 6= o12 and
o21 = o22.

In the case of o11 6= o12 and o21 6= o22, given a land pixel s in the quadrilateral, if
(o11o12 × o11s) · (o11s× o11o22) > 0, (o12o21 × o12s) · (o12s× o12o11) > 0, (o21o22 × o21s) ·
(o21s× o21o12) > 0, and (o22o11 × o22s) · (o22s× o22o21) > 0, then s is inside the quadrilat-
eral o11o12o21o22 and is recognized as a pixel on the bridge body.

(a) (b)

Figure 6. Interested branches pair of bridge extraction: (a) diagram of method based on contour
distance; (b) diagram of method based on feature points distance.

4. Experimental Results and Analysis

Three quad-polarization SAR data acquired by RADARSAT-2 and TerraSAR-X sensors
are used to test the proposed algorithm. The ground truth (GT) was drawn with reference
to the Google earth map. The algorithm parameters were obtained by making statistics of
true bridges and water branches first. Five experiments were then carried out to evaluate
the performance of the proposed algorithm. In the first experiment, data over part of
Singapore region was tested to show the detailed process flow of the proposed method.
In the second experiment, the proposed method was tested for different sites. In the
third experiment, the proposed method was compared with the method that constructed
the water network by merging water branches by contour distance [32]. In the fourth
experiment, the performance of the proposed method using quad-polarization SAR images
was compared with that of three different single-polarization channel data. Finally, the
bridge body recognition performance of the proposed method was compared with that of
the traditional method based on spatial relationships [3]. In all the tests, the performance of
the bridge detection was evaluated using detection rate and false rate. The performance of
the bridge body recognition was evaluated using the intersection over union (IoU) index.

4.1. Data Description

Single look quad-polarization SAR data acquired by RADARSAT-2 sensor over the
Singapore region in 2013 and the Lingshui, Hainan province, China region in 2014 and
Multi-look quad-polarization SAR data acquired by TerraSAR-X sensor over the Singapore
region in 2014 are used to test the proposed algorithm. When the proposed method is
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carried out, the coherent matrix (directly transformed by the Sinclair matrix for single
look data) is calculated as the input data. The details of the data are listed in Table 1. The
size of image is 6161× 4256 for the Singapore image from RADARSAT-2, 5937× 3920
for the Lingshui image, and 5500× 2500 for the Singapore image from TerraSAR-X. The
corresponding resolutions are 4.73 m ×4.80 m, 4.73 m ×5.47 m, and 2.06 m ×6.59 m,
respectively. The detailed parameters of data are listed in Table 1. The Pauli pseudocolor
images and geographic legends of the three data are shown in Figure 7, where “R”, “G”,
and “B” denote the three components of the Pauli vector. To keep the balance of color
contrast, each component is divided by its mean when the image is shown. The data of
Singapore from RADARSAT-2 is shown in Figure 7a, the data of Lingshui is shown in
Figure 7b, and the data of Singapore from TerraSAR-X is shown in Figure 7c. The color code
of the image is shown in Figure 7d. The geographic legends are shown in Figure 7e–g. The
topology of the water in Singapore is so complex that it forms a network from Figure 7a,c.
The topology of the water in Lingshui is simple, but the tributary is so narrow that the
bridges are difficult to detect from Figure 7b. If the main water branch is taken as the root
of a tree, the structure of the whole water network is very similar to a tree.

(a) (b) (c) (d)

(e) (f) (g)

Figure 7. The Pauli pseudocolor images of the three experimental datasets: (a) data of Singapore
from RADARSAT-2; (b) data of Lingshui fromf RADARSAT-2; (c) data of Singapore from TerraSAR-X.
(d) The color code of the Pauli image, where (T11, T22, T33) are the diagonal of the coherent matrix,
and (HH, VV, HV) are the three components of the Sinclair matrix. (e) Legend of data 1. (f) Legend
of data 2. (g) Legend of data 3.
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Table 1. Experimental dataset details; UTC stands for the international standard time; AOI stands
for the angle of incident; m×m stands for meter times meter.

- Scene Sensor Size Resolution UTC AOI
(m × m) (◦)

1 Singapore RADARSAT-2 6161× 4256 4.73× 4.80 19 January 2013 47.311:31:08

2 Lingshui RADARSAT-2 5421× 3500 4.73× 5.47 12 June 2014 37.210:49:49

3 Singapore TerraSAR-X 5500× 2500 2.06× 6.59 10 March 2014 34.711:07:06

4.2. Parameters Setting

According to Section 3, the parameters of the proposed method include four parts:
level set segmentation, the main water scanning, the water network connection, and
the bridge bodies recognition. With respect to the water and land segmentation using
the level set method, the curve regularization parameter λr is set to 0.2 and γr is set
to 0.1, as in reference [18]. With respect to the main water scanning, supposing that
the input image resolution is Rx × Ry, the equivalent resolution in x and y directions is

R= =

√(
R2

x + R2
y

)
/2. The maximum length of the bridge is Lb. The maximum width of

the bridge is Wb. Then, the equivalent value of Lb is L′b = Lb/R= The equivalent value of
Wb is W ′b = Wb/R=. With respect to the main water scanning, the scanning radius δrad is
initially set to W ′b/2. As a scanned bifurcation is also a long strip area, its length is usually
far larger than the width, so that the ratio of length to width ρLW is usually far greater than
2. To avoid missing the scanned bifurcations of some water tributaries, the ratio of length
to width ρLW is set to a small value, 3, according to experimental statistics. Thus, when
selecting the broken adjacent branches of the main water, the reference distance δre f is set
to W ′b and the reference area ∆re f to

(
L′b × 4L′b

)
.

With respect to the water network connection, when building the graph of the tree
structure, the maximum number of children nodes N is set to 2 or 3 and the reference angle
to 45◦. To set the optimum parameters for the energy calculation of the tree structure, we
first extracted 270 water branches by segmenting data 1 in Table 1, as shown in Figure 8.
The histogram distribution of three geometric parameters, including length lL, area, and the
defined width consistency Eo(w), of the 270 water branches were then computed through
statistics, as shown in Figure 9, where the area is processed by quadratic square root.
Statistics results show that the median of the length is 28.0, the area is 19.6, and the width
consistency is 0.68. We observe that the histograms of length and area are concentrated, but
the histogram of consistency is scattered from Figure 9. When calculating the energy of the
tree structure, to keep a balance among the three parts of energies, the parameter of node
energy µc is set to 10, γc to 1, ρ to 0.5, and λc to 1 because the counted median of the length
and the square root area is about 10 times the width consistency. To keep a balance between
the edge energy related to distance and the edge energy related to direction, parameter ε is
set to 50 and η to 1 because the average distance between two adjacent branches is almost
50 times to the average sine of the angle. When calculating the total energy, λψ is set to
1. When the simulated annealing algorithm is carried out, the initial parameter ξ is set to
0.05, the learning rate lr is set to 1.1, the updating step parameter Nup is set to 50, and the
maximum number of iterations Nmax is set to 1000, according to experimental statistics.

With respect to bridge bodies extraction, the distance tolerance for the extraction of

feature points δtol is set to 0.1
√

L′2b + W ′2b to ensure the endpoint junction of the bridge
is correctly extracted. The distance tolerance for the merging of feature points is also set
to δre f .
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Figure 8. The water branch extraction result of data of Singapore from RADARSAT-2.

Figure 9. The histogram of three parameters of different water branches.

4.3. Example Results

An image covering part of the Singapore region obtained by a 4× 4 multi-look pro-
cessing of data 1 is tested to show the algorithm flow of the proposed method. The size
of the image is 1000× 1000. The Pauli pseudocolor image is shown in Figure 10a. From
Figure 10a, we find that the coastal topography of the data is complex. Bridges are dis-
tributed in various tributaries with different shapes. There is a large sea-crossing bridge
and some small bridges over narrow tributaries. It is difficult to segment and connect
the branches on the narrow tributaries. The result of water and land segmentation using
level set is shown in Figure 10b. The observation result shows that water and land are
correctly separated, but some low scattering regions in the land are wrongly classified as
water regions. The extracted main water is shown in Figure 10c. The branches other than
the main water are shown in Figure 10d. We observe that there are some tributaries in the
main water from Figure 10c. The shapes of tributaries are varied, and some of them are
so narrow that the branches on the tributary cannot be connected from Figure 10d. The
bifurcation scanning results of the main water is shown in Figure 10e, where the regions in
gray marked in the red box are the scanned bifurcations. The observation result shows that
the bifurcations of the main water are well scanned by the orthogonal direction scanning
method. The final connection result of the water network is shown in Figure 10f. We find
that all tributaries are correctly extracted and some small branches on the tributaries are also
correctly connected. The results of bridge detection and bridge body extraction are shown
in Figure 10g, where the detected bridge bodies are marked in red. The corresponding
regions of the detected bridges in the original image are shown in Figure 10h, where the
detected bridges are marked by yellow boxes and the bridge bodies are drawn in green. We
find that most of the bridges are correctly detected and the corresponding bridge bodies
are also accurately extracted.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Bridge detection result of data in part of Singapore region: (a) the Pauli pseudocolor
image; (b) water and land segmentation result using level set; (c) the extracted main water; (d) water
branches other than the main water, where the regions in gray marked in the red box are the scanned
bifurcations; (e) the bifurcation scanning result; (f) the water network connection result; (g) the bridge
detection and bridge body extraction results, where the detected bridge bodies are marked in red;
(h) the detection results in the original image, where the detected bridges are marked by yellow boxes
and the bridge bodies are drawn in green.
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4.4. Performance Evaluation of the Proposed Method under Different Sites

To validate the robustness of the proposed method, the method was tested for different
sites using the three testing datasets listed in Table 1. The results of data 1, data 2, and data
3 are shown in Figure 11, Figure 12 and Figure 13, respectively. The ground truth of the
bridges is shown in Figures 11a, 12a and 13a, where the bridges are marked by green boxes.
Different bridges are located on different branches in Figures 11a, 12a and 13a. An enlarged
view of part of the image near a narrow tributary is presented in Figures 11b, 12b and 13b.
Some bridges are too small to be clearly observed from Figures 11b, 12b and 13b. The
water branch extraction result is shown in Figures 11c, 12c and 13c. There are so many
branches of different sizes that they are difficult to connect. The water branch connection
result is shown in Figures 11d, 12d and 13d. We observe that the water network is well
constructed, and even some small branches on the narrow tributaries are correctly connected
in Figures 11d, 12d and 13d. The results of bridge detection and bridge body extraction are
shown in Figures 11e, 12e and 13e, where the detected bridges are marked by yellow
boxes and the bridge bodies are drawn in green. The detection results of the enlarged
part of Figures 11e, 12e and 13e corresponding to Figures 11b, 12b and 13b are shown in
Figures 11f, 12f and 13f. Comparing Figures 11b, 12b and 13b with Figures 11f, 12f and 13f,
we find that almost all the small bridges over the narrow tributary are correctly detected.

According to the ground truth, the detection performance of the three datasets are
listed in Table 2. For data 1, 13 of the 16 bridges are correctly detected and only 1 false
alarm target is detected. The detection rate is 81.3%, and the false alarm rate is 7.14%. For
data 2, all 5 bridges are correctly detected, and the number of false alarm targets is 0. The
detection rate is 100%, and the false alarm rate is 0. For data 3, 10 of the 11 bridges are
correctly detected, and only 1 false alarm target is detected. The detection rate is 90.9%,
and the false alarm rate is 9.09%.

Table 2. Detection performance of the proposed method under different sites, where Num denotes
the number of targets, Pd denotes the detection rate, and Pf denotes the false alarm rate.

Data Targets Correct Pd (%) False Alarm Pf (%)

1 16 13 81.3 1 7.14
2 5 5 100 0 0
3 11 10 90.9 1 9.09

4.5. Comparison of the Proposed Method with Branch Merging Method

In the third experiment, the performance of the proposed method was compared with
the one that constructs a water network by merging water branches by contour distance [32]
(branch merging method). The comparison results are shown in Figure 14. The comparison
results of the three testing datasets are shown in the three lines of Figure 14, respectively.
Figure 14a1–a3,b1–b3 are results of the comparison method. Figure 14c1–c3,d1–d3 are results
of the proposed method. Figure 14a1–a3,c1–c3 are results of the water network construction,
where the detected bridge bodies are marked in red. Figure 14b1–b3,d1–d3 are results of the
bridge detection, where the bridges are marked by yellow boxes and the bridge bodies are
drawn in green. Compared with Figure 14a1–a3,c1–c3 as well as Figure 14b1–b3,d1–d3,
the result of the proposed method is significantly better. The detection performance of the
comparison method is listed in Table 3. For data 1, 12 bridges are correctly detected but
with a higher number of false alarm targets, at 68. The detection rate is 75%, but the false
alarm rate is 85%. For data 2, all bridges are also correctly detected by the comparison
method but with a higher number of false alarm targets, at 16. The detection rate is 100%,
but the false alarm rate is 76.2%. For data 3, 10 bridges are correctly detected but with a
higher number of false alarm targets, at 57. The detection rate is 90.9%, but the false alarm
rate is 85%. Compared with the proposed method listed in Table 2, the number of correctly
detected targets of the proposed method is larger, while the number of false alarms is
greatly reduced.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Bridge detection results of data from RADARSAT-2 in Singapore: (a) the Pauli pseudocolor
image and the ground truth of the bridges, where the bridges are marked by green boxes; (b) an
enlarged view of part of the image (a) near a narrow tributary; (c) the water branch extraction result;
(d) the water network connection result; (e) the bridge detection result; (f) the detection result of the
enlarged part of (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Bridge detection results of data from RADARSAT-2 in Lingshui: (a) the Pauli pseudocolor
image and the ground truth of the bridges, where the bridges are marked by green boxes; (b) an
enlarged view of part of the image (a) near a narrow tributary; (c) the water branch extraction result;
(d) the water network connection result; (e) the bridge detection result; (f) the detection result of the
enlarged part of (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Bridge detection results of data from TerraSAR-X in Singapore: (a) the Pauli pseudocolor
image and the ground truth of the bridges, where the bridges are marked by green boxes; (b) an
enlarged view of part of the image (a) near a narrow tributary; (c) the water branch extraction result;
(d) the water network connection result; (e) the bridge detection result; (f) the detection result of the
enlarged part of (b).
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

Figure 14. Comparison of the proposed method with the branch merging method: (a1–a3) the water
network connection result of the comparison method, where the detected bridge bodies are marked
in red; (b1–b3) the bridge detection result of the comparison method; (c1–c3) the water network
connection result of the proposed method; (d1–d3) the bridge detection result of the proposed
method; (a1–d1) results of the data from RADARSAT-2 in Singapore; (a2–d2) results of the data from
RADARSAT-2 in Lingshui; (a3–d3) results of the data from TerraSAR-X in Singapore.
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Table 3. Detection performance of the branch merging method.

Data Targets Correct Pd (%) False Alarm Pf (%)

1 16 12 75 68 85
2 5 5 100 16 76.2
3 11 10 90.9 57 85

4.6. Comparison of Quad-Polarization with Single-Polarization Data

To evaluate the gains of polarization data, the performance of quad-polarization data
is compared with that of three different single-polarization channels. Compared with
quad-polarization data, all the algorithm steps and parameters of the single-polarization
data are the same except replacing the coherent matrix with intensity for the computation of
likelihood energy. The results of data 1 are shown in Figure 15, where the detected bridges
marked in red are shown on the water network result. The result of quad-polarization data
is shown in Figure 15a. The results of HH, HV, and VV channels are shown in Figure 15b–d,
respectively. We observe that there exist some false alarm targets for the HH and VV
channels and some missing targets for the HV channel. As the procedures of water network
construction and bridge body recognition are almost the same for the two kinds of data,
the cause for that is the difference of the water–land segmentation results. For HH and VV
channels, some low intensity regions along the ocean are wrongly recognized as bridge.
That is because the low intensity regions connecting different small water regions inside
the land are wrongly segmented, and then the area and direction of the water branch are
changed. For the HV channel, the cause for error is that some pixels on the bridge are
wrongly segmented as water, causing the bridge regions to be broken, and the two adjacent
branches are then directly connected. The detection performance is listed in Table 4. The
detection rate of the quad-polarization data is 81.3%, which is higher than that of the
three single-polarization data. The highest detection rate is 62.5% in the HH channel, and
the lowest detection rate is 25.0% in the VV channel among the three single-polarization
channels. The false alarm rate of the quad-polarization data is 7.14%, which is less than
that of the single-polarization data. The lowest false alarm rate is 38.5% in the HV channel
among the three single-polarization channels.

Table 4. Performance comparison of the proposed method using quad-polarization and three single-
polarization channels data in Singapore, where Polar denotes quad-polarization data, and HH, HV,
VV denote HH, HV, and VV channels, respectively.

Data Targets Correct Pd (%) False Alarm Pf (%)

Polar 16 13 81.3 1 7.14
HH 16 10 62.5 9 47.3
HV 16 8 50.0 5 38.5
VV 16 4 25.0 18 81.8

4.7. Comparison of the Bridge Body Recognition between the Proposed Method and the
Spatial Method

As the summary described in Section 1, most of the existing bridge detection methods
extract bridge bodies by the spatial relationship of bridge with water based on the water
segmentation result. However, some boundary points that are not on the bridge will be
wrongly classified to the bridge when the water branch is narrow if those spatial methods
are used, as shown in Figure 6. In the last experiment, we compared the bridge body
recognition performance of the proposed method with that of the traditional method based
on spatial relationship (the spatial method). Both methods obtain the water result from
the proposed water network construction method. The spatial distance threshold is set to
δre f , as in Section 3.2, for the spatial method. The results are shown in Figure 16, where the
recognized bridge bodies marked in red are all mapped on the water network result. The
result of the spatial method is shown in Figure 16a, where the recognized bridge bodies are
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marked in a blue box, and the extracted contour pixels by spatial relationship are marked
in green. The local region marked in cyan in Figure 16a is shown in Figure 16b. We observe
that some pixels of the recognized bridge bodies are not on the bridge. The result of the
proposed method is shown in Figure 16c, where the extracted feature points are marked in
green circles. The result of the same local region as Figure 16b is shown in Figure 16d. We
find that all the recognized bridge bodies are accurately located on the bridge. We compute
the IoU between the detected box and the ground truth shown in Figure 11a. The mean IoU
index of the proposed method is 99.5%, but the index of the spatial method is only 68.9%.
The performance of the proposed method is much better than that of the spatial method.

(a) (b)

(c) (d)

Figure 15. Bridge detection result of quad-polarization and three single-polarization channel data in
Singapore using the proposed method, where the binary images are the final water network results
and the detected bridges are marked in red: (a) result of quad-polarization data; (b) result of HH
channel data; (c) result of HV channel data; (d) result of VV channel data.
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(a) (b)

(c) (d)

Figure 16. Result of bridge body recognition, where the recognized bridge bodies marked in red
are mapped on the water network result: (a) the result of the spatial method, where the recognized
bridge bodies are marked in a blue box and the extracted contour pixels by spatial relationship are
marked in green; (b) the local region marked in cyan in (a); (c) the result of the proposed method,
where the extracted feature points are marked in greed circles; (d) the result of the local region of (c).

5. Discussion

With respect to the offshore bridge detection problem in SAR images, the proposed
method introduces a novel solution by constructing the water network using the probability
graph model of a Markov tree. The experimental results of two RADARSAT-2 data and one
TerraSAR-X datum show that the false alarm rates of the proposed method are less than
10%, and the detection accuracies are larger than 85%.

The difficulties of offshore bridge detection include the extraction and connection of
water branches. By defining the internal and external energies of the segmentation curve
and embedding the energy into a level set function, all connected branches are accurately
extracted by the level set segmentation method. The segmentation results of the three
experimental data showed that the extracted water branches were accurate and smooth.
Because the number of water branches are large, the structure of the branches is complex,
and there are many small and narrow branches, it is difficult to connect the branches
merging directly by distance. By building the graph structure of the connection model
using the tree structure, the branches are effectively organized because the tree structure is
ordered from root to leaf so that each parent branch only has two or three child branches.
The observations of the three experimental data showed that the structure of the water of
each datum is similar to a tree. By defining the node energy and the edge energy of the tree
and searching the extremum of the energy using the simulated annealing algorithm, the
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global optimum solution of the water branch connection is solved. Experimental results
showed that the false alarm rates of the proposed method were greatly reduced compared
to the method of merging branches contour by distance. Because the sizes of bridges are
varied, there will some boundary points of the land wrongly recognized as the ROI of
bridges. By extracting the feature points of the branches and merging them by distance,
the bridge bodies are more accurately recognized. Experimental results showed that the
mean IoU index of the proposed method was 99.5%, which is much larger than 68.9% of
the spatial method.

Although the water connection algorithm is complex, the time-consuming step is
mainly in the water and land segmentation. For the segmentation, if the size of the image is
n× n, the time complexity is O

(
n2). For the bifurcation scanning, if the scanning windows

are designed before scanning, the time complexity of the scanning of one pixel is O(1).
Because the size of the image is n× n, the time complexity of the whole scanning is O

(
n2).

However, it is easy to scan in parallel, so the time complexity of the entire scanning is
O(1). For the graph construction, the time complexity of the tree construction algorithm
is O(n). For the Markov tree construction, if the number of nodes is n and the number of
iterations is m, the complexity of the simulated annealing algorithm is O(mn) because the
time complexity of the tree construction algorithm is O(n). Thus, the most time-consuming
step is segmentation, and the total time complexity of the proposed algorithm is O

(
n2).

In the test, the time of each step of the proposed algorithm was calculated. The testing
platform was MATLAB v9.5, and the CPU was an Intel Xeon at 3.6 GHz with 16 GB RAM.
For data of Singapore in the example test, the time of segmentation is 135.7 s, bifurcation
scanning is 0.85 s, graph construction is 2.46 s, and Markov tree construction is 2.78 s.

6. Conclusions

We have proposed a bridge detection method for quad-polarization SAR images,
which is based on a water network connection using the Markov tree probability graph
model. By establishing the general segmentation model of the whole water network using
Bayesian criterion, the bridge detection problem is converted to a two-layer hierarchical
model, including the segmentation of land and water and the connection of different water
branches. According to the similarity between the structure of water network and a tree, the
connection of water branches is converted to the construction of tree by taking each water
branch as a node. By defining the energy of the node and edge of the graph, the optimum
solution of the tree is recursively searched using a tree-structure simulated annealing
algorithm. Because a level set segmentation model and the Markov tree probability graph
connection model are used, the extracted water network is accurate and robust to speckle
noise and scattering interference. Finally, to avoid wrong results caused by merging contour
by distance, bridge bodies are extracted by merging the feature points of the contours of
each branch pair of interest. Evaluations of the proposed method as well as comparisons
with the bridge detection method of merging water branches by contour distance using
three quad-polarization data acquired by RADARSAT-2 and TerraSAR-X show the potential
of the proposed method. The detection rate of the proposed method is higher than 85%,
and the false alarm rate is lower than 10%. Compared with the branch merging method,
the false alarm rate of the proposed method is far less, whereas the detection rate is slightly
higher. Compared with the spatial method, the IoU index between the recognized bridge
body and ground truth of the proposed method is also much improved. Compared to the
three different single-polarization channels of the quad-polarization data, the performance
of quad-polarization data is much better because of accurate segmentation.

From the analysis and verification of the experimental results, we find that the pro-
posed method still cannot detect bridges over the tributaries interfered with by strong
scatterers. In future work, polarimetric scattering parameters that can reduce the strong
scattering interference components in the water area will be extracted to segment water
and land. The proportion of error segmented water regions will be effectively decreased by
those polarimetric parameters. At the same time, before the water network is connected by
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the proposed method, we will take a path tracking algorithm, such as particle filter, to track
the tributary broken by large distances.
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Appendix A

The nomenclature of all symbols in each section is shown in the following table.

Table A1. The nomenclature of all symbols in each section of the article.

Section Symbol Nomenclature

Section 2.1 R The image plane
T The given polarimetric SAR image

TP The topological relationship
Rr Homogeneous regions
Rc Free curve branches
Rψ Tree regions
Θ The parameter set

(
Rr, Rc, Rψ, TP

)
Ω The parameter space of Θ

p(Θ) The prior probability of Θ

p(T|Θ) The conditional likelihood probability of Θ

Nr The number of regions Rr

Nc The number of single branches Rc

Nψ The number of trees Rψ

Section 2.2 Σ, Σj The average coherent matrix
L The number of looks
T The coherent matrix
p The number of polarimetric channels

W(Σ, L, p) The Wishart distribution
f (T |Σ, L, p) The probability of the coherent matrix T

p(R) The prior probability of a segmentation region
|D(R)| The area of region R
|∂R| The contour length of region R

γr, ρ, λr The parameters of p(R)

Section 2.3 C A water branch
S The whole length of the centerline of a branch

D(C) The region of the branch C
c(s) The center curve of a branch
w(s) The width of a branch
p(C) The prior probability of branch C
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Table A1. Cont.

Section Symbol Nomenclature

p(D(C)) The prior probability of region D(C)
w(s) The width of a branch

p(w(s)) The prior probability of width w(s)
E(C) The prior energy of branch C
|D(C)| The area of region D(C)
Eo(w) The consistency function of w(s)

γc, ρ, λc, µc The parameters of E(C)

Section 2.4 ψ A tree tributary
p(ψ) The prior probability of ψ

E
(

Ci, Cβi

)
The energy of the branch pair Ci and Cβi

Section 3.2 Γ The boundary of the water and land segmentation
p(T|Γ) The likelihood probability given the segmentation Γ

p(Γ) The prior probability of Γ
dj A water branch

D =
{

dj

}
The set of the water branches

Nd The number of branches

Section 3.3 W The water network
K The labels of the branches D
W The value space of W
Ki The label vector of tree ψi

p(K) The prior probability of K
p(D|K) The likelihood probability of the K

p(Ki), p(ψi) The prior probability of tree ψi
E(Ki), E(ψi) The prior energy of tree ψi

E(Di|Ki), E(Di|ψi) The likelihood energy of tree ψi

Section 3.3.1 cm(s) The centerline of a branch
cm(0), cm(S) The two endpoints of a branch

Section 3.3.2 δrad The scanning radius
lP The perimeter of a region
A The area of a region

ρLW The ratio of length to width

Section 3.3.3 N-tree The number of children nodes in a tree
δre f The reference distance
θre f The reference angle

H = {hx} The extracted bifurcations
Nh The number of the bifurcations

Section 3.3.4 Eedge(PQ) The edge energy of the edge PQ
Ere f The reference edge energy

Section 3.3.5 Eprior(Q) The prior energy of branch node
Enode(Q) The prior node energy of branch node Q
Eprior(ψ) The prior energy of tree ψ

n The number of nodes in a tree
λψ The parameter of regularization term λψn

Elike(Q) The likelihood energy of branch node Q
Elike(ψ) The likelihood energy of tree ψ
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Appendix B

The structure diagram of all symbols used in the water network construction is shown
in Figure A1.
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Figure A1. Diagram of the symbols in the model of water network construction: (a) diagram of water
branch extraction; (b) diagram of water branch connection.
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