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Abstract: Two modeling approaches for the estimation of durum wheat yield based on Sentinel-2
data are presented for 66 fields across three growing periods. In the first approach, a previously
developed multiple linear regression model (VI-MLR) based on vegetation indices (EVI, NMDI) was
used. In the second approach, the reflectance data of all Sentinel-2 bands for several dates during
the growth periods were used as input parameters in three machine learning model algorithms, i.e.,
random forest (RF), k-nearest neighbors (KNN), and boosting regressions (BR). Modeling results
were examined against yield data collected by a combine harvester equipped with a yield mapping
system. VI-MLR showed a moderate performance with R2 = 0.532 and RMSE = 847 kg ha−1. All
machine learning approaches enhanced model accuracy when all images during the growing periods
were used, especially RF and KNN (R2 > 0.91, RMSE < 360 kg ha−1). Additionally, RF and KNN
accuracy remained high (R2 > 0.87, RMSE < 455 kg ha−1) when images from the start of the growing
period until March, i.e., three months before harvest, were used, indicating the high suitability
of machine learning on Sentinel-2 data for early yield prediction of durum wheat, information
considered essential for precision agriculture applications.
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1. Introduction

The early, accurate and broadscale prediction of durum wheat yield has always been
a great challenge for the scientific community, who aim to provide vital information for
farmers, the food industry, policymakers, and other stakeholders [1]. Each one antici-
pates considerable assets from such a forecast. Farmers, for instance, may empower their
decisions by aligning the inputs according to the expected production and schedule preci-
sion farming applications. Food industry and commodity traders are interested on early
estimates of regional productivity to arrange imports or exports, manage logistics, and
establish price policies. National and international bodies are concerned about country
level, down to field-scale productivity, to gather crucial information that may assist to direct
agriculture subsidies, identify yield-limiting and yield-enhancing areas and promote the
sustainable use of natural resources by establishing land management plans. National and
private crop insurance entities may also utilize such early information to provide effective
crop insurance plans.

The first yield prediction models, e.g., CERES [2], CROPSYST [3], and SAFY [4],
were empirical statistical and process-oriented approaches that aimed to simulate crop
growth based on numerous biophysical, environmental, and managerial parameters that are
often hardly accessible or require great effort, especially for broadscale or high resolution
predictions [1,5].

With the rapid development of remote sensing (RS) technology, broadscale data with
high spatial and temporal resolution have been made widely available. Remote sensing
data obtained from the National Oceanic and Atmospheric Administration’s (NOAA)
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Advanced Very High Resolution Radiometer (AVHRR) instrument have been used to
monitor large-scale cropping systems and to forecast yield from the 1980s [1]. Since then,
multispectral instruments onboard various satellites, such as LANDSAT [6], MODIS [7],
SPOT [8], and lately the Sentinel satellites launched by the Copernicus program of the
European Space Agency (ESA) have provided free, independent, and continued global
remote sensing observations for modeling crop growth [9–11]. The new RS-based models
are either empirical linear regressions between biophysical parameters and crop yield
or biomass production models. The first may incorporate above-ground crop parame-
ters (biomass, LAI, chlorophyll etc.) accessed through vegetation indices (VIs), such as
the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),
Soil-Adjusted Vegetation Index (SAVI) etc. [12–15]. The latter may also incorporate environ-
mental data like topography, weather information, fraction of absorbed photosynthetically
active radiation (fAPAR), and other parameters from common simulation models to esti-
mate crop productivity and the resulting final yield [11,16,17]. The first method does not
provide an explanation of physiological processes, dismissing important components of
crop yield, while the latter method is complicated and may require some hardly accessible
inputs [18]. The compromises in both approaches result in moderate prediction power,
with a coefficient of determination (R2) ranging generally from 0.50 to 0.75 and models that
are usually applicable at a regional scale [15,19,20].

An important technological breakthrough to overcome the above limitations has been
introduced lately, with the wide implementation of machine learning (ML) techniques
over broadscale RS data [21]. These techniques can handle multi-dimensional datasets [22]
and thus are capable to deal with complexities in yield prediction by exploiting the un-
derlying physiological processes and interactions hidden by the simple linear regression
models [21,23]. With the ability to manage both linear and non-linear relationships [24]
and potential to exploit the most important relations, ML can utilize the entire range of the
primary spectral information instead of a set of few spectral bands used in VIs [21]. Hence,
ML is capable to extract the most from the RS information, while correctness, modularity,
and reusability are feasible over pre-established baseline workflows, allowing transfer to
other crops and locations [25].

There are numerous ML techniques utilized to represent various biophysical processes
like artificial neural networks (ANNs) [21], support vector machine (SVM) [26], Gaussian
process regression (GPR) [5], partial least squares regression (PLSR) [26], multilayer per-
ceptron (MLP) [26], random forest (RF) [27], k-nearest neighbors (KNN) [26], boosting
regressions (BR) [27], and others [28]. Each technique has its strengths and drawbacks,
making it suitable for different purposes. ANNs, for instance, present high accuracy and
stability and offer a higher computational speed, while support vector regression (SVR), an
extension of SVM, presents good intrinsic generalization ability and has a robustness to
noise in the case of limited availability of the reference samples [28]. RF has been broadly
used as a classification tool and may handle efficiently large datasets, while it is less prone
to outliers and reduces the risk of overfitting [5,29]. KNN is noise-tolerant but performs
poorly when applied to small training datasets [30]. BR is capable of squeezing additional
predictive accuracy out of other ML algorithms but increases the model’s complexity [27].

ML algorithms have been used recently to exploit complex relationships between RS
information and various crop traits. Their ability to handle both linear and non-linear
relations has made them suitable for the investigation of the non-linear traits of RS and
crop yield [31]. Moreover, they are flexible to decide which bands are most valuable
for predicting crop yield [11]. Since ML algorithms require large training and validation
datasets to build accurate models, an important precondition is the availability of an
adequate number of yield data at a resolution similar to the RS information. This has also
been made possible recently by fixing yield mapping devices to the harvesting equipment.
Recent studies have attempted to match these yield data with RS spectral information to
feed ML algorithms and develop yield estimation models. In [11], for instance, RF models
were trained and validated using over 8000 data points from yield monitors onboard
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combine harvesters from 39 wheat fields in the UK. In [32], the authors matched several
VIs retrieved from the Sentinel-2 satellites with wheat grain data retrieved from a combine
harvester. Subsequently, they implemented different ML techniques to model the within-
field grain variability. The authors tested also different time intervals and single dates
during the growing period to identify the most suitable model feeding the dataset. Their
findings suggest that the RF algorithm was the most suitable for estimating wheat yield.
The coefficient of determination reached an R2 = 0.89 value when all available images
were used, but since the study was conducted in northern Spain, only two cloud-free
images were available per year. Cloud cover and scarcity of available satellite images is a
serious drawback for RS modeling in high latitudes [11]. Nevertheless, in [32], RF with only
one image at stem elongation posed a relatively high R2, offering potential for precision
farming management applications. In [22], three separate empirical RF models were created
based on pre-sowing, mid-season and late-season conditions to explore the time changes
in the predictive ability of the model. The models concerned wheat, barley and canola
and the data were aggregated at a field-size spatial resolution. As more within-season
information became available, the models performed better. Han et al. [5] also agree with
this suggestion. It appears that RF models are more suitable for the whole growing period,
while other ML methods, like ANN and KNN, are more appropriate for specific growth
periods [26]. Han et al. [5] separated the growth period of wheat into four time windows
and assessed their corresponding predictive ability by testing eight ML algorithms. They
found that a time window including the whole growing period (starting from sowing at
end of September and reaching the harvest period in June) provided the best prediction
accuracy. SVM, GPR, and RF represent the three best methods for predicting wheat yields,
with an R2 of about 0.8. SVM performed slightly better for the whole growing period.

Using explainable predictors in relation to crop growth and development, combining
agronomic features with RS information is a valuable step in building ML baselines for
large-scale crop yield forecasting [25,33]. Leaf area index (LAI), for instance, improved
significantly an RF modeling approach for predicting within field wheat yield [32]. Leaf
angle distribution (LAD) and leaf mean tilt angle (MTA) are some other important canopy
structural traits. They are used to quantify the direction of the leaf surface, and combined
with LAI, they help determine the light interception [26]. In [26], the authors found that the
red edge band of Sentinel-2 had a strong correlation with MTA. Consequently, they applied
three different ML techniques for estimating the three canopy structural parameters and
found that RF had the best association with findings from the PROSAIL model simulations
and MLP with actual field data. Filippi et al. [22] suggest a workflow collating in a data
cube high-density data that varies only in space (e.g., gamma radiometrics), high-density
data that varies in space and time (e.g., in-season imagery), and lower-resolution data that
varies in space (e.g., soil physical test results) or space and time (rainfall). Within-season
variables proved to be vital in the models, with received rainfall, forecasted rainfall, and
within-season EVI images amongst the most important covariates.

In a previous study in Greece [34], we obtained EVI and NDVI from Sentinel-2 and
proved that the two VIs presented a high correlation with in situ measurements of wheat
canopy reflectance and were good predictors of LAI. It was also shown that the Normalized
Multiband Drought Index (NMDI) corresponded very well to in situ measurements of
leaf water potential. The same index presented a very good correlation with soil apparent
electric conductivity (ECa) when it was retrieved from an image of bare soil (right before
sowing). The above findings were used to build linear regression models that relied
strictly on RS data to address explainable wheat yield predictors. The models utilized
EVI and NDVI as plant vegetation signals, NDMI as plant water signal, and bare soil
NDMI as a soil signal. Accordingly, the models were evaluated on 31 durum wheat fields
for two growing periods and for different time intervals as well as single dates, finding
that the best period for predicting wheat yield was the time window from 20 April to
31 May (R2 = 0.629, RMSE = 528 kg ha−1), which is rather late because it is very close to
harvest. Nevertheless, the last 10 days of April also provided high prediction accuracy
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(R2 = 0.587, RMSE = 568 kg ha−1) more than 1 month earlier. The proposed model relies
on asily accessible Sentinel-2 data of high spatial resolution that are extremely valuable for
the small farms of Southern Europe, but the optimum period is still rather late for precision
farming applications. On the other hand, ML approaches have the potential to explore
hidden information on the datasets, providing the opportunity for early season estimations.
However, the relevant research presented above is still rather limited and has some serious
gaps, mainly on the number of available cloud-free images.

In the present work, we introduce some ML techniques to a full-season Sentinel-2
dataset and compare the performance with our previous linear regression models. The aim
is to increase the accuracy and improve the timeliness of wheat yield prediction by retaining
a simple database restricted to the high spatial resolution of the Sentinel-2 images. In this
approach, we avoid estimating VIs and use all the available Sentinel-2 bands, allowing the
ML algorithms to decide what is the more valuable information. We also introduce extra
yield data from 66 fields across three growing periods and check again for different time
intervals to find the optimum predicting period.

2. Materials and Methods
2.1. Study Sites

All study sites are located in Thessaly plain, central Greece, and the monitoring
involved the 2017–2018, 2018–2019, and 2019–2020 growing periods (Figure 1 and Table 1).
In sum, 66 fields—21 from the 2017–2018 growing period, 21 from 2018–2019, and 24 from
2019–2020—were used. The criteria for selecting the fields were i) the availability of yield
map data and ii) an adequate size, scheme, and orientation capable of providing a sufficient
number of Sentinel-2, 10 × 10 m resolution pixels. Fields were cultivated with durum
wheat of different varieties (Iridae, Meridiano, Normano, Simeto, Svevo) and belonged
to different farmers who followed their own cultivation practices. That way, the results
of the study could be evaluated at different conditions, ensuring that they are applicable
regardless of the cropping practices. For all fields, sowing took place during November
and harvesting during June.

Table 1. Details of the studied fields.

Growing Period No of Fields Area, ha No of Pixels No of Images

2017–2018 21 53.04 5304 35

2018–2019 21 50.31 5031 26

2019–2020 24 85.91 8591 32

Total 66 189.26 18,926 93

2.2. Yield Measurement

At the end of the growing periods (June) the fields were harvested with a John Deere
S660i combine harvester equipped with a yield mapping system providing through the
associated MyJD software [35] (https://myjohndeere.deere.com, accessed on 24 October
2021), yield maps in a point vector format at a spatial resolution of 1.75 by approximately
2.5 m (depending on the traveling speed). The initial maps were further processed manually
in QGIS [36] for the removal of outliers (due to start and end point grain flow delays).
Accordingly, the yield maps were interpolated to rasters by the inverse distance weighting
(IDW) process of QGIS and finally, resampled at 10 × 10 m pixel size corresponding to the
Sentinel-2 image pixels (see also [34]).

https://myjohndeere.deere.com
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Figure 1. Satellite image of the Thessaly plain, Greece (inset), with the studied fields indicated with
different colors for the three growing periods.

2.3. Satellite Data

A total of 93 cloud-free Sentinel-2 (A and B) images from October to June across the
study period (2017–2020, Table 1) were downloaded from ESA’s Copernicus Open Access
Hub [37] (https://scihub.copernicus.eu/, accessed on 26 October 2021). During the 3-year
study, there was no period longer that 20 days with no images available due to cloud
cover. The MultiSpectral Instruments (MSI), onboard the Sentinel-2 satellites, provide
information at 13 spectral bands (443–2190 nm), at a variable spatial resolution of 10, 20 or
60 m pixel size and with 5-day revisit time. In the present study, Level 2A (radiometrically
and atmospherically corrected) bottom of atmosphere (BOA) reflectance products provided
by ESA, were used. For all images, all bands were resampled at 10 m pixel size using the
SNAP—ESA Sentinels Application Platform version 7.0 [38] (http://step.esa.int, accessed
on 26 October 2021) free open-source software. The images included a total of 18,926 pixels
from 66 fields during a 3-year period, and spectral information comprising 13 spectral
bands per pixel was extracted on a tabular database.

2.4. Modeling

Two modeling approaches were used for the estimation of wheat yield, a previously
developed multiple linear regression approach using vegetation indices as yield predictor
(VI-MLR) and a machine learning (ML) approach exploring the performance of three ML
algorithms on the Sentinel-2 MSI multiband dataset as yield predictors.

2.4.1. VI-MLR-Based Model

In the first approach, we adopt the best performing multiple linear regression model of
our previous study [35]. This model involves the EVI integral from 20 April to
31 May as plant signal, NMDI before sowing as soil signal and NMDI at the end of

https://scihub.copernicus.eu/
http://step.esa.int
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April as water signal (independent variables). For the scope, the B2 (R490), B4 (R665),
B8 (R842), B11 (R1610), B12 (R2190) Sentinel-2 spectral bands of the 18,926 pixels were used to
estimate corresponding time series of EVI and NMDI as follows:

Enhanced Vegetation Index, EVI = 2.5
R842 − R665

R842 + 6R665 − 7.5R490 + 1
(1)

Normalized Multiband Drought Index, NMDI =
R842 − (R1610 − R2190)

R842 + (R1610 − R2190)
(2)

where Rx, reflectance at wavelength x, with x denoting the center wavelength of the
corresponding Sentinel-2 band. Accordingly, the time series were linearly interpolated
without any smoothing process producing complete daily datasets for the interested period
(20 April to 31 May plus one image from October, prior sowing).

2.4.2. ML-Based Models

In the second approach, the reflectance data for all Sentinel-2 spectral bands were used
as independent variables in three commonly used ML algorithms, i.e., random forest (RF),
k-nearest neighbors (KNN) and boosting regression (BR).

Random forest was chosen for its suitability in yield prediction by exploring impor-
tant underlying information from the whole growing period while reducing the risk of
overfitting [5,26,29]. RF is a supervised ML technique that establishes decision trees on
different subsets of a dataset. Each tree is a predictor built by selecting a random sample of
the original dataset, but all the trees in the forest have the same distribution characteristics.
After generating a large number of individual trees, the algorithm will choose the most
popular classes based on the majority votes of the predictors [5].

K-nearest neighbors is also a supervised ML technique that is used to solve both
classification and regression problems. It is a non-parametric algorithm not making any
assumption on underlying information and it is considered noise-tolerant and suitable
to focus on more specific periods [26,30]. It relies on an instance-based learning concept
by assuming the similarity between a new predictor variable and a training group. Then
it classifies the new predictor into the most similar category. The classification depends
greatly on the distance of the predictor variables to the nearest training group [5,30].

Boosting regression is an ML generic algorithm with an enhanced prediction accu-
racy [28,39] that relies on a family of single ML techniques. BR assumes that all the single
predictions of the ML algorithms are weak and performs parallel computations following
an iterative process using average and weighted average estimations to vote for the most
dominant prediction. After many iterations, the boosting algorithm combines these weak
predictions into a single strong prediction rule.

From the 93 images spanning across the three growing periods, 33 images between
the end of October and the end of May were selected. This image selection resulted in a
dataset with 11 images per growing period (one to three images per month), with dates no
more than ±5 days between growing periods. For each date, the 13 Sentinel-2 bands were
used as independent variables in the ML algorithms, resulting in 143 variables in the full
dataset (13 bands × 11 dates). Initially, all images (dates) were used and gradually—one
date at a time—starting from the latest one, was excluded, to find the earliest time interval
with sufficient prediction accuracy.

In all modeling approaches, data were randomly split into a training set (50% of data)
and a validation set (50% of data) for assessment of performance efficiency. The same data
splitting was used for all models.

2.5. Statistics

The multiple linear regressions between the independent variables and final yield for
the first modeling approach and the machine learning for the second, were performed with
JASP software version 0.16 [40]. Models’ performance was evaluated by the coefficient of
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determination (R2), root mean square error (RMSE) and slope of the best-fit line between
measured and modeled yield values.

3. Results

The performance of the first VI-MLR modeling approach was medium with R2 = 0.532
and RMSE = 847 kg ha−1 (Figure 2a). As shown in Figure 2a, yield for several fields
especially during the 2018–2019 growing period (red points on top left and right) are not
well predicted by the model, deteriorating its performance. As a result, the slope of the
best-fit line is 0.536, far from 1 which would indicate a perfect fit.
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Figure 2. Relationships between measured and modeled yield based on the vegetation indices ap-
proach through multiple linear regression (VI–MLR, (a)) and machine learning approaches (ML, (b–f)).
The type of regression, the number of images per growing period used in ML regressions with the
corresponding date span, the coefficient of determination (R2), the root mean square error (RMSE)
and the slope of the best-fit line are shown in the inserts. Data concern 66 fields during three growing
periods (indicated by different colors), corresponding to 9463 pixels. The thin black line corresponds
to the 1:1 line and the thick black line to the best-fit line.

In the second modeling approach, all three ML algorithms performed better than the
VI-MLR model, when images from the start of the growing period until the end of April
or later are used (33 images in the full dataset, 11 images per growing period). However,
even though BR performs better than VI-MLR (R2 = 0.723) it retains rather high RMSE
(668 kg ha−1) and low slope (0.622) (Table 2 and Figure 2b). Interestingly, the same fields
that are not well predicted by the VI-MLR approach are also not well predicted by the BR
model. RF and KNN, however, show very good and similar performances, with R2 > 0.91,
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RMSE < 360 and slopes close to 1 (Figure 2c,d). In both cases, all fields appear very close
to the 1:1 line without any outliers. Additionally, even though BR loses its superiority
to VI-MLR when images before the end of April are used, both RF and KNN retain their
high performance, even when less than five or only three images per growing period,
corresponding to dates until mid-March or mid-January respectively, are used (Figure 2e,f
and Table 2).

Table 2. Performance comparison of the three machine learning approaches for yield estimation,
with the use of different number of images per growing period. R2, coefficient of determination
and RMSE, root mean square error (kg ha−1) between measured and modeled yield. Data concern
66 fields during three growing periods, corresponding to 9463 pixels.

Random Forest
(RF)

K-Nearest
Neighbors (KNN)

Boosting
Regression (BR)

Dates R2 RMSE R2 RMSE R2 RMSE

26 Octocer–24 May
11 images 0.923 347 0.917 357 0.723 668

26 October–29 April
8 images 0.915 366 0.908 375 0.684 709

26 October–10 March
5 images 0.894 408 0.897 396 0.460 938

26 October –28 February
4 images 0.890 419 0.897 397 0.410 980

26 October–19 January
3 images 0.871 455 0.883 425 0.357 1009

4. Discussion

Utilizing satellite RS data to build yield prediction models has become a common
approach since such data have been made publicly available. The high spatial resolution
and short revisit time of the ESA Sentinel-2 satellites has provided extra interest in the
above approach and several attempts have been made recently to estimate or predict wheat
yield in small fields through RS information. However, relevant literature is still rather
scarce, mainly due to low availability of spatial yield data produced by combine harvesters
with yield mapping systems [11,18,32,34]. Large amounts of such data are essential for
building and validating the models.

In this paper, we evaluated two different modeling approaches for the estimation of
durum wheat yield from Sentinel-2 satellite data. In the first VI-MLR approach, vegetation
indices are used in multiple linear regressions with yield, while the second approach
concerns machine learning with three different algorithms, random forest (RF), k-nearest
neighbors (KNN) and boosting regressions (BR).

Clearly, machine learning with RF and KNN showed far superior performance com-
pared to VI-MLR or BR. Our results agree with the findings in [11,29,32], where RF regres-
sion models for predicting wheat yield outperformed multiple linear regression models.
RF models have key advantages over traditional regression models for yield estimation,
because they explore relationships between explanatory variables to control for confound-
ing factors [11]. They separate a random subset from calibration for performance testing
and use only the remaining set of data for model training, reserving thus information for
assessing model accuracy [29]. In [5] the authors compared the performance of eight ML
algorithms in predicting wheat yield from RS data and demonstrated also that RF was
the best method. The worst performance, however, was found for KNN. KNN presented
an R2 of about 0.65 between the predicted and the observed wheat yields, and an RMSE
over 1000 kg ha−1, that the authors consider insufficient for wheat yield prediction. These
findings are in contrast with our findings were KNN performed comparable to RF with an
R2 of 0.917 for the whole growing period and an RMSE of 357 kg ha−1. The authors in [5],
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however, derived RS data from the MODIS satellite instrument, which has a low spatial
resolution of 250 m, and KNN algorithm relies on the distance of the predictor variables to
the nearest training group known to the model [41], so the low spatial resolution may have
provided some irrelevant or biased neighbor values. According to [31], the KNN model
is very sensitive to the selection of the k value: increasing the k reduces the variance, but
may increase the bias. In [31], KNN performed very well for predicting wheat yield, but
the authors used measurements of whole field yields as training and validation datasets.
It is also worth mentioning that BR presented the worst performance, even though the
algorithm is considered to derive extra power compared to other ML techniques [39,42].

Our modeling approaches suggest a relatively simple workflow, since they are based
on raw Level 2A reflectance data, i.e., without secondary level estimation of vegetation
indices and neither use any additional biophysical or meteorological parameters. Adding
secondary level Vis to the basic Sentinel-2 dataset has not always shown an improvement
in wheat yield estimation [11]. According to the authors in [11], it is possible to produce
accurate maps of within-field yield variation at 10 m resolution (RMSE 660 kg ha−1) using
only Sentinel-2 raw data. In [32] the authors assessed the biophysical parameter of LAI
with the PROSAIL radiative transfer model, but the improvement in wheat prediction was
rather small in contrast with Sentinel-2 basic bands and VIs.

In order to identify the best period for yield prediction and explore opportunities for
early yield estimations, we split our 11 images per growing period dataset into smaller
periods down to single dates. The availability of a high number of cloud-free Sentinel-2
images in Southern Europe allowed us to fine tune the models by investigating very small
timeframes even down to 5 days which is the Sentinel-2 revisiting period. Our results
reveal that even when only a few images from the start to the middle of the growing
period are used, the accuracy of prediction remains very high. The lowest RMSE for the RF
method was 347 kg ha−1 when the whole growing period was accounted and increased to
419 kg ha−1 for the period of sowing until end of February, an error that is still acceptable.
Other studies have also tried to identify optimum period for wheat yield prediction by RS
data. In [11] for instance, the authors found that the accuracy of the estimation increases
considerably when additional RS information from December to June is provided, but the
findings rely only on three cloud-free available images since the study was conducted in
the UK. In [5] it is shown that ML models based on MODIS RS data can accurately predict
yield 1~2 months before the harvesting dates at a county level in China. Sentinel data
in [32] posed that single date images at stem elongation can provide good estimations
of wheat yield by using an RF model. Nevertheless, this study relied also in a couple
of satellite images per year. Our results explore the whole growing period in detail and
demonstrate clearly that it is feasible to predict durum wheat yield in Southern Europe
with a high accuracy as early as January. Such information would be extremely important
for making management decisions for the whole field, as also for precision agriculture
applications. Variable rate application of nitrogen in wheat during the springtime dressings
is an essential practice for improving fertilizer efficiency, optimizing inputs, reducing risks
of N leaching, and ensuring N applications according to defined legislation limits [43,44].
The concept for deciding the amount of fertilizer to be applied at different management
zones is greatly based on spatial predictions of expected yields [44] and satellite available
data at a high resolution are extremely valuable for that purpose [45]. According to [46]
Sentinel-2 imagery was successful for delineation of management zones after Zadocks
growth stage 30, and thus is useful for producing fertilization maps for the upcoming
season. In [45] it is denoted that satellite data best represented nitrogen uptake in BBCH 39
and 55 growth stages (BBCH scale is the same as the Zadocks scale). The stages from 30
to 39 describe the period from plant pseudo stem erection to just visible flag leaf. These
are the stages when springtime dressings of nitrogen are applied and in Southern Europe
occur from end of February to the beginning of April. Providing a yield estimation as early
as February, as depicted in our study, by utilizing primary Level2A data from Sentinel-2
images may give a new dimension to such precision agriculture applications.
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Even though the results of this study demonstrated that machine learning techniques
are promising for yield estimation/prediction, they have to be extended in space and time
(more growing periods) and for different crops to be generally applicable. All fields used
in the study are located in the same plain in close vicinity, with maximum between-field
distance approximately 30 km, i.e., meteorological conditions are similar between fields.
Consequently, an obvious next step would be to examine the performance of our modeling
approach for fields of different areas and during more growing periods (i.e., under different
climatic conditions), incorporating meteorological parameters as independent variables in
the process, as proposed also by [11]. However, as the number of data may enormously
increase, classical ML techniques like RF and KNN may reach their limits. In that case,
deep learning (DL) architectures that are capable to process unstructured data at maximum
capacity and explore more subtle dependencies may be the solution [47,48]. DL is a branch
of ML that has come to the fore in natural language processing and image classification
and have taken the lead when it comes to image-based analysis [48].

5. Conclusions

In this study, three machine learning algorithms were used for the estimation of durum
wheat yield based on Sentinel-2 satellite data and compared to a previously developed
multiple linear regression model based on vegetation indices (VI-MLR). Modeling results
were examined against yield data collected by a combine harvester equipped with a
yield mapping system. All machine learning approaches showed enhanced estimation
accuracy compared to VI-MLR, when all images during the growing periods were used,
especially random forest and k-nearest neighbors. Additionally, RF and KNN accuracy
remained high when images from the start of the growing period until March, i.e., 3 months
before harvest, were used, indicating the high suitability of machine learning on Sentinel-
2 data for early yield prediction of durum wheat, essential information for precision
agriculture applications.
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24. Kumhálová, J.; Matějková, Š. Yield variability prediction by remote sensing sensors with different spatial resolution. Int.
Agrophysics 2017, 31, 195–202. [CrossRef]

25. Paudel, D.; Boogaard, H.; de Wit, A.; Janssen, S.; Osinga, S.; Pylianidis, C.; Athanasiadis, I.N. Machine learning for large-scale
crop yield forecasting. Agric. Syst. 2021, 187, 103016. [CrossRef]

26. Zou, X.; Zhu, S.; Mõttus, M. Estimation of Canopy Structure of Field Crops Using Sentinel-2 Bands with Vegetation Indices and
Machine Learning Algorithms. Remote Sens. 2022, 14, 2849. [CrossRef]

27. Ali, U.; Esau, T.J.; Farooque, A.A.; Zaman, Q.U.; Abbas, F.; Bilodeau, M.F. Limiting the Collection of Ground Truth Data for Land
Use and Land Cover Maps with Machine Learning Algorithms. ISPRS Int. J. Geo-Inf. 2022, 11, 333. [CrossRef]

28. Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of machine learning approaches for biomass and
soil moisture retrievals from remote sensing data. Remote Sens. 2015, 7, 16398–16421. [CrossRef]

29. Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE
2016, 11, 1–15. [CrossRef]

30. Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [CrossRef]
31. Gonzalez-Sanchez, A.; Frausto-Solis, J.; Ojeda-Bustamante, W. Predictive ability of machine learning methods for massive crop

yield prediction. Spanish J. Agric. Res. 2014, 12, 313–328. [CrossRef]
32. Segarra, J.; Araus, J.L.; Kefauver, S.C. Farming and Earth Observation: Sentinel-2 data to estimate within-field wheat grain yield.

Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102697. [CrossRef]
33. Van Wittenberghe, S.; Verrelst, J.; Rivera, J.P.; Alonso, L.; Moreno, J.; Samson, R. Gaussian processes retrieval of leaf parameters

from a multi-species reflectance, absorbance and fluorescence dataset. J. Photochem. Photobiol. B Biol. 2014, 134, 37–48. [CrossRef]
[PubMed]

34. Cavalaris, C.; Megoudi, S.; Maxouri, M.; Anatolitis, K.; Sifakis, M.; Levizou, E.; Kyparissis, A. Modeling of durum wheat yield
based on sentinel-2 imagery. Agronomy 2021, 11, 1486. [CrossRef]

35. My John Deere. Available online: https://myjohndeere.deere.com/ (accessed on 22 May 2022).
36. QGIS.org, 2022. QGIS Geographic Information System. Available online: http://www.qgis.org (accessed on 21 May 2022).
37. Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 22 May 2022).
38. STEP—Science Toolbox Exploitation Platform. Available online: http://step.esa.int (accessed on 22 May 2022).
39. Jia, P.; Zhang, J.; He, W.; Hu, Y.; Zeng, R.; Zamanian, K.; Jia, K.; Zhao, X. Combination of Hyperspectral and Machine Learning to

Invert Soil Electrical Conductivity. Remote Sens. 2022, 14, 2602. [CrossRef]
40. JASP—A Fresh Way to Do Statistics le. Available online: https://jasp-stats.org (accessed on 22 May 2022).

http://doi.org/10.3390/rs11192228
http://doi.org/10.1016/j.rse.2019.111410
http://doi.org/10.1155/2017/1353691
http://doi.org/10.1016/0034-4257(81)90018-3
http://doi.org/10.1016/j.rse.2005.03.015
http://doi.org/10.1016/j.inpa.2015.06.001
http://doi.org/10.1016/0034-4257(85)90108-7
http://doi.org/10.1016/j.agrformet.2017.08.001
http://doi.org/10.3390/rs11232873
http://doi.org/10.1016/j.eja.2006.10.007
http://doi.org/10.1016/j.rse.2017.04.014
http://doi.org/10.1016/j.compag.2018.05.012
http://doi.org/10.1007/s11119-018-09628-4
http://doi.org/10.1088/1748-9326/aae159
http://doi.org/10.1515/intag-2016-0046
http://doi.org/10.1016/j.agsy.2020.103016
http://doi.org/10.3390/rs14122849
http://doi.org/10.3390/ijgi11060333
http://doi.org/10.3390/rs71215841
http://doi.org/10.1371/journal.pone.0156571
http://doi.org/10.1007/BF00153759
http://doi.org/10.5424/sjar/2014122-4439
http://doi.org/10.1016/j.jag.2022.102697
http://doi.org/10.1016/j.jphotobiol.2014.03.010
http://www.ncbi.nlm.nih.gov/pubmed/24792473
http://doi.org/10.3390/agronomy11081486
https://myjohndeere.deere.com/
http://www.qgis.org
https://scihub.copernicus.eu/
http://step.esa.int
http://doi.org/10.3390/rs14112602
https://jasp-stats.org


Remote Sens. 2022, 14, 3880 12 of 12

41. Appelhans, T.; Mwangomo, E.; Hardy, D.R.; Hemp, A.; Nauss, T. Evaluating machine learning approaches for the interpolation of
monthly air temperature at. Spat. Stat. 2015, 14, 91–113. [CrossRef]

42. Chen, S.; Liu, W.; Feng, P.; Ye, T.; Ma, Y.; Zhang, Z. Improving Spatial Disaggregation of Crop Yield by Incorporating Machine
Learning with Multisource Data: A Case Study of Chinese Maize Yield. Remote Sens. 2022, 14, 2340. [CrossRef]

43. Basso, B.; Dumont, B.; Cammarano, D.; Pezzuolo, A.; Marinello, F.; Sartori, L. Environmental and economic benefits of variable
rate nitrogen fertilization in a nitrate vulnerable zone. Sci. Total Environ. 2016, 545–546, 227–235. [CrossRef]

44. Guerrero, A.; Mouazen, A.M. Evaluation of variable rate nitrogen fertilization scenarios in cereal crops from economic, environ-
mental and technical perspective. Soil Tillage Res. 2021, 213, 105110. [CrossRef]

45. Stettmer, M.; Maidl, F.-X.; Schwarzensteiner, J.; Hülsbergen, K.-J.; Bernhardt, H. Analysis of Nitrogen Uptake in Winter Wheat
Using Sensor and Satellite Data for Site-Specific Fertilization. Agronomy 2022, 12, 1455. [CrossRef]

46. Uribeetxebarria, A.; Castellón, A.; Aizpurua, A. A First Approach to Determine If It Is Possible to Delineate In-Season N
Fertilization Maps for Wheat Using NDVI Derived from Sentinel-2. Remote Sens. 2022, 14, 2872. [CrossRef]

47. Waldamichael, F.G.; Debelee, T.G.; Schwenker, F.; Ayano, Y.M.; Kebede, S.R. Machine Learning in Cereal Crops Disease Detection:
A Review. Algorithms 2022, 15, 75. [CrossRef]

48. Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic
Literature Review. Agronomy 2022, 12, 748. [CrossRef]

http://doi.org/10.1016/j.spasta.2015.05.008
http://doi.org/10.3390/rs14102340
http://doi.org/10.1016/j.scitotenv.2015.12.104
http://doi.org/10.1016/j.still.2021.105110
http://doi.org/10.3390/agronomy12061455
http://doi.org/10.3390/rs14122872
http://doi.org/10.3390/a15030075
http://doi.org/10.3390/agronomy12030748

	Introduction 
	Materials and Methods 
	Study Sites 
	Yield Measurement 
	Satellite Data 
	Modeling 
	VI-MLR-Based Model 
	ML-Based Models 

	Statistics 

	Results 
	Discussion 
	Conclusions 
	References

