
 

 

 

 
Remote Sens. 2022, 14, 3880. https://doi.org/10.3390/rs14163880 www.mdpi.com/journal/remotesensing 

Article 

Assessing Durum Wheat Yield through Sentinel-2 Imagery:  

A Machine Learning Approach 

Maria Bebie, Chris Cavalaris and Aris Kyparissis * 

Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Str.,  

38446 Volos, Greece 

* Correspondence: akypar@uth.gr 

Abstract: Two modeling approaches for the estimation of durum wheat yield based on Sentinel-2 

data are presented for 66 fields across three growing periods. In the first approach, a previously 

developed multiple linear regression model (VI-MLR) based on vegetation indices (EVI, NMDI) was 

used. In the second approach, the reflectance data of all Sentinel-2 bands for several dates during 

the growth periods were used as input parameters in three machine learning model algorithms, i.e., 

random forest (RF), k-nearest neighbors (KNN), and boosting regressions (BR). Modeling results 

were examined against yield data collected by a combine harvester equipped with a yield mapping 

system. VI-MLR showed a moderate performance with R2 = 0.532 and RMSE = 847 kg ha−1. All ma-

chine learning approaches enhanced model accuracy when all images during the growing periods 

were used, especially RF and KNN (R2 > 0.91, RMSE < 360 kg ha−1). Additionally, RF and KNN 

accuracy remained high (R2 > 0.87, RMSE < 455 kg ha−1) when images from the start of the growing 

period until March, i.e., three months before harvest, were used, indicating the high suitability of 

machine learning on Sentinel-2 data for early yield prediction of durum wheat, information consid-

ered essential for precision agriculture applications. 
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1. Introduction 

The early, accurate and broadscale prediction of durum wheat yield has always been 

a great challenge for the scientific community, who aim to provide vital information for 

farmers, the food industry, policymakers, and other stakeholders [1]. Each one anticipates 

considerable assets from such a forecast. Farmers, for instance, may empower their deci-

sions by aligning the inputs according to the expected production and schedule precision 

farming applications. Food industry and commodity traders are interested on early esti-

mates of regional productivity to arrange imports or exports, manage logistics, and estab-

lish price policies. National and international bodies are concerned about country level, 

down to field-scale productivity, to gather crucial information that may assist to direct 

agriculture subsidies, identify yield-limiting and yield-enhancing areas and promote the 

sustainable use of natural resources by establishing land management plans. National and 

private crop insurance entities may also utilize such early information to provide effective 

crop insurance plans. 

The first yield prediction models, e.g., CERES [2], CROPSYST [3], and SAFY [4], were 

empirical statistical and process-oriented approaches that aimed to simulate crop growth 

based on numerous biophysical, environmental, and managerial parameters that are often 

hardly accessible or require great effort, especially for broadscale or high resolution pre-

dictions [1,5]. 

With the rapid development of remote sensing (RS) technology, broadscale data with 

high spatial and temporal resolution have been made widely available. Remote sensing 

Citation: Bebie, M.; Cavalaris, C.; 

Kyparissis, A. Assessing Durum 

Wheat Yield through Sentinel-2  

Imagery: A Machine Learning  

Approach. Remote Sens. 2022, 14, 

3880. https://doi.org/10.3390/ 

rs14163880 

Academic Editor: Stefano Dietrich 

Received: 1 July 2022 

Accepted: 9 August 2022 

Published: 10 August 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Remote Sens. 2022, 14, 3880 2 of 12 
 

 

data obtained from the National Oceanic and Atmospheric Administration’s (NOAA) Ad-

vanced Very High Resolution Radiometer (AVHRR) instrument have been used to moni-

tor large-scale cropping systems and to forecast yield from the 1980s [1]. Since then, mul-

tispectral instruments onboard various satellites, such as LANDSAT [6], MODIS [7], SPOT 

[8], and lately the Sentinel satellites launched by the Copernicus program of the European 

Space Agency (ESA) have provided free, independent, and continued global remote sens-

ing observations for modeling crop growth [9–11]. The new RS-based models are either 

empirical linear regressions between biophysical parameters and crop yield or biomass 

production models. The first may incorporate above-ground crop parameters (biomass, 

LAI, chlorophyll etc.) accessed through vegetation indices (VIs), such as the Normalized 

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil-Adjusted 

Vegetation Index (SAVI) etc. [12–15]. The latter may also incorporate environmental data 

like topography, weather information, fraction of absorbed photosynthetically active ra-

diation (fAPAR), and other parameters from common simulation models to estimate crop 

productivity and the resulting final yield [11,16,17]. The first method does not provide an 

explanation of physiological processes, dismissing important components of crop yield, 

while the latter method is complicated and may require some hardly accessible inputs 

[18]. The compromises in both approaches result in moderate prediction power, with a 

coefficient of determination (R2) ranging generally from 0.50 to 0.75 and models that are 

usually applicable at a regional scale [15,19,20]. 

An important technological breakthrough to overcome the above limitations has 

been introduced lately, with the wide implementation of machine learning (ML) tech-

niques over broadscale RS data [21]. These techniques can handle multi-dimensional da-

tasets [22] and thus are capable to deal with complexities in yield prediction by exploiting 

the underlying physiological processes and interactions hidden by the simple linear re-

gression models [21,23]. With the ability to manage both linear and non-linear relation-

ships [24] and potential to exploit the most important relations, ML can utilize the entire 

range of the primary spectral information instead of a set of few spectral bands used in 

VIs [21]. Hence, ML is capable to extract the most from the RS information, while correct-

ness, modularity, and reusability are feasible over pre-established baseline workflows, al-

lowing transfer to other crops and locations [25]. 

There are numerous ML techniques utilized to represent various biophysical pro-

cesses like artificial neural networks (ANNs) [21], support vector machine (SVM) [26], 

Gaussian process regression (GPR) [5], partial least squares regression (PLSR) [26], multi-

layer perceptron (MLP) [26], random forest (RF) [27], k-nearest neighbors (KNN) [26], 

boosting regressions (BR) [27], and others [28]. Each technique has its strengths and draw-

backs, making it suitable for different purposes. ANNs, for instance, present high accu-

racy and stability and offer a higher computational speed, while support vector regression 

(SVR), an extension of SVM, presents good intrinsic generalization ability and has a ro-

bustness to noise in the case of limited availability of the reference samples [28]. RF has 

been broadly used as a classification tool and may handle efficiently large datasets, while 

it is less prone to outliers and reduces the risk of overfitting [5,29]. KNN is noise-tolerant 

but performs poorly when applied to small training datasets [30]. BR is capable of squeez-

ing additional predictive accuracy out of other ML algorithms but increases the model’s 

complexity [27]. 

ML algorithms have been used recently to exploit complex relationships between RS 

information and various crop traits. Their ability to handle both linear and non-linear re-

lations has made them suitable for the investigation of the non-linear traits of RS and crop 

yield [31]. Moreover, they are flexible to decide which bands are most valuable for pre-

dicting crop yield [11]. Since ML algorithms require large training and validation datasets 

to build accurate models, an important precondition is the availability of an adequate 

number of yield data at a resolution similar to the RS information. This has also been made 

possible recently by fixing yield mapping devices to the harvesting equipment. Recent 

studies have attempted to match these yield data with RS spectral information to feed ML 
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algorithms and develop yield estimation models. In [11], for instance, RF models were 

trained and validated using over 8000 data points from yield monitors onboard combine 

harvesters from 39 wheat fields in the UK. In [32], the authors matched several VIs re-

trieved from the Sentinel-2 satellites with wheat grain data retrieved from a combine har-

vester. Subsequently, they implemented different ML techniques to model the within-

field grain variability. The authors tested also different time intervals and single dates 

during the growing period to identify the most suitable model feeding the dataset. Their 

findings suggest that the RF algorithm was the most suitable for estimating wheat yield. 

The coefficient of determination reached an R2 = 0.89 value when all available images were 

used, but since the study was conducted in northern Spain, only two cloud-free images 

were available per year. Cloud cover and scarcity of available satellite images is a serious 

drawback for RS modeling in high latitudes [11]. Nevertheless, in [32], RF with only one 

image at stem elongation posed a relatively high R2, offering potential for precision farm-

ing management applications. In [22], three separate empirical RF models were created 

based on pre-sowing, mid-season and late-season conditions to explore the time changes 

in the predictive ability of the model. The models concerned wheat, barley and canola and 

the data were aggregated at a field-size spatial resolution. As more within-season infor-

mation became available, the models performed better. Han et al. [5] also agree with this 

suggestion. It appears that RF models are more suitable for the whole growing period, 

while other ML methods, like ANN and KNN, are more appropriate for specific growth 

periods [26]. Han et al. [5] separated the growth period of wheat into four time windows 

and assessed their corresponding predictive ability by testing eight ML algorithms. They 

found that a time window including the whole growing period (starting from sowing at 

end of September and reaching the harvest period in June) provided the best prediction 

accuracy. SVM, GPR, and RF represent the three best methods for predicting wheat yields, 

with an R2 of about 0.8. SVM performed slightly better for the whole growing period. 

Using explainable predictors in relation to crop growth and development, combining 

agronomic features with RS information is a valuable step in building ML baselines for 

large-scale crop yield forecasting [25,33]. Leaf area index (LAI), for instance, improved 

significantly an RF modeling approach for predicting within field wheat yield [32]. Leaf 

angle distribution (LAD) and leaf mean tilt angle (MTA) are some other important canopy 

structural traits. They are used to quantify the direction of the leaf surface, and combined 

with LAI, they help determine the light interception [26]. In [26], the authors found that 

the red edge band of Sentinel-2 had a strong correlation with MTA. Consequently, they 

applied three different ML techniques for estimating the three canopy structural parame-

ters and found that RF had the best association with findings from the PROSAIL model 

simulations and MLP with actual field data. Filippi et al. [22] suggest a workflow collating 

in a data cube high-density data that varies only in space (e.g., gamma radiometrics), high-

density data that varies in space and time (e.g., in-season imagery), and lower-resolution 

data that varies in space (e.g., soil physical test results) or space and time (rainfall). Within-

season variables proved to be vital in the models, with received rainfall, forecasted rain-

fall, and within-season EVI images amongst the most important covariates. 

In a previous study in Greece [34], we obtained EVI and NDVI from Sentinel-2 and 

proved that the two VIs presented a high correlation with in situ measurements of wheat 

canopy reflectance and were good predictors of LAI. It was also shown that the Normal-

ized Multiband Drought Index (NMDI) corresponded very well to in situ measurements 

of leaf water potential. The same index presented a very good correlation with soil appar-

ent electric conductivity (ECa) when it was retrieved from an image of bare soil (right 

before sowing). The above findings were used to build linear regression models that relied 

strictly on RS data to address explainable wheat yield predictors. The models utilized EVI 

and NDVI as plant vegetation signals, NDMI as plant water signal, and bare soil NDMI 

as a soil signal. Accordingly, the models were evaluated on 31 durum wheat fields for two 

growing periods and for different time intervals as well as single dates, finding that the 

best period for predicting wheat yield was the time window from 20 April to 31 May (R2 
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= 0.629, RMSE = 528 kg ha−1), which is rather late because it is very close to harvest. Nev-

ertheless, the last 10 days of April also provided high prediction accuracy (R2 = 0.587, 

RMSE = 568 kg ha−1) more than 1 month earlier. The proposed model relies on asily acces-

sible Sentinel-2 data of high spatial resolution that are extremely valuable for the small 

farms of Southern Europe, but the optimum period is still rather late for precision farming 

applications. On the other hand, ML approaches have the potential to explore hidden in-

formation on the datasets, providing the opportunity for early season estimations. How-

ever, the relevant research presented above is still rather limited and has some serious 

gaps, mainly on the number of available cloud-free images. 

In the present work, we introduce some ML techniques to a full-season Sentinel-2 

dataset and compare the performance with our previous linear regression models. The 

aim is to increase the accuracy and improve the timeliness of wheat yield prediction by 

retaining a simple database restricted to the high spatial resolution of the Sentinel-2 im-

ages. In this approach, we avoid estimating VIs and use all the available Sentinel-2 bands, 

allowing the ML algorithms to decide what is the more valuable information. We also 

introduce extra yield data from 66 fields across three growing periods and check again for 

different time intervals to find the optimum predicting period. 

2. Materials and Methods 

2.1. Study Sites 

All study sites are located in Thessaly plain, central Greece, and the monitoring in-

volved the 2017–2018, 2018–2019, and 2019–2020 growing periods (Figure 1 and Table 1). 

In sum, 66 fields—21 from the 2017–2018 growing period, 21 from 2018–2019, and 24 from 

2019–2020—were used. The criteria for selecting the fields were i) the availability of yield 

map data and ii) an adequate size, scheme, and orientation capable of providing a suffi-

cient number of Sentinel-2, 10 × 10 m resolution pixels. Fields were cultivated with durum 

wheat of different varieties (Iridae, Meridiano, Normano, Simeto, Svevo) and belonged to 

different farmers who followed their own cultivation practices. That way, the results of 

the study could be evaluated at different conditions, ensuring that they are applicable 

regardless of the cropping practices. For all fields, sowing took place during November 

and harvesting during June. 

Table 1. Details of the studied fields. 

Growing Period No of Fields Area, ha No of Pixels No of Images 

2017–2018 21 53.04 5304 35 

2018–2019 21 50.31 5031 26 

2019–2020 24 85.91 8591 32 

Total 66 189.26 18,926 93 
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Figure 1. Satellite image of the Thessaly plain, Greece (inset), with the studied fields indicated with 

different colors for the three growing periods. 

2.2. Yield Measurement 

At the end of the growing periods (June) the fields were harvested with a John Deere 

S660i combine harvester equipped with a yield mapping system providing through the 

associated MyJD software [35] (https://myjohndeere.deere.com, accessed on 24 October 

2021), yield maps in a point vector format at a spatial resolution of 1.75 by approximately 

2.5 m (depending on the traveling speed). The initial maps were further processed manu-

ally in QGIS [36] for the removal of outliers (due to start and end point grain flow delays). 

Accordingly, the yield maps were interpolated to rasters by the inverse distance 

weighting (IDW) process of QGIS and finally, resampled at 10 × 10 m pixel size corre-

sponding to the Sentinel-2 image pixels (see also [34]). 

2.3. Satellite Data 

A total of 93 cloud-free Sentinel-2 (A and B) images from October to June across the 

study period (2017–2020, Table 1) were downloaded from ESA’s Copernicus Open Access 

Hub [37] (https://scihub.copernicus.eu/, accessed on 26 October 2021). During the 3-year 

study, there was no period longer that 20 days with no images available due to cloud 

cover. The MultiSpectral Instruments (MSI), onboard the Sentinel-2 satellites, provide in-

formation at 13 spectral bands (443–2190 nm), at a variable spatial resolution of 10, 20 or 

60 m pixel size and with 5-day revisit time. In the present study, Level 2A (radiometrically 

and atmospherically corrected) bottom of atmosphere (BOA) reflectance products pro-

vided by ESA, were used. For all images, all bands were resampled at 10 m pixel size 

using the SNAP—ESA Sentinels Application Platform version 7.0 [38] (http://step.esa.int, 

accessed on 26 October 2021) free open-source software. The images included a total of 

18,926 pixels from 66 fields during a 3-year period, and spectral information comprising 

13 spectral bands per pixel was extracted on a tabular database. 
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2.4. Modeling 

Two modeling approaches were used for the estimation of wheat yield, a previously 

developed multiple linear regression approach using vegetation indices as yield predictor 

(VI-MLR) and a machine learning (ML) approach exploring the performance of three ML 

algorithms on the Sentinel-2 MSI multiband dataset as yield predictors. 

2.4.1. VI-MLR-Based Model 

In the first approach, we adopt the best performing multiple linear regression model 

of our previous study [35]. This model involves the EVI integral from April 20 to May 31 

as plant signal, NMDI before sowing as soil signal and NMDI at the end of April as water 

signal (independent variables). For the scope, the B2 (R490), B4 (R665), B8 (R842), B11 (R1610), 

B12 (R2190) Sentinel-2 spectral bands of the 18,926 pixels were used to estimate correspond-

ing time series of EVI and NMDI as follows: 

Enhanced Vegetation Index, EVI = 2.5
���������

������������.�������
 (1)

Normalized Multiband Drought Index, NMDI =
�����(�����������)

�����(�����������)
 (2)

where Rx, reflectance at wavelength x, with x denoting the center wavelength of the cor-

responding Sentinel-2 band. Accordingly, the time series were linearly interpolated with-

out any smoothing process producing complete daily datasets for the interested period 

(April 20 to May 31 plus one image from October, prior sowing). 

2.4.2. ML-Based Models 

In the second approach, the reflectance data for all Sentinel-2 spectral bands were 

used as independent variables in three commonly used ML algorithms, i.e., random forest 

(RF), k-nearest neighbors (KNN) and boosting regression (BR). 

Random forest was chosen for its suitability in yield prediction by exploring im-

portant underlying information from the whole growing period while reducing the risk 

of overfitting [5,26,29]. RF is a supervised ML technique that establishes decision trees on 

different subsets of a dataset. Each tree is a predictor built by selecting a random sample 

of the original dataset, but all the trees in the forest have the same distribution character-

istics. After generating a large number of individual trees, the algorithm will choose the 

most popular classes based on the majority votes of the predictors [5]. 

K-nearest neighbors is also a supervised ML technique that is used to solve both clas-

sification and regression problems. It is a non-parametric algorithm not making any as-

sumption on underlying information and it is considered noise-tolerant and suitable to 

focus on more specific periods [26,30]. It relies on an instance-based learning concept by 

assuming the similarity between a new predictor variable and a training group. Then it 

classifies the new predictor into the most similar category. The classification depends 

greatly on the distance of the predictor variables to the nearest training group [5,30]. 

Boosting regression is an ML generic algorithm with an enhanced prediction accu-

racy [28,39] that relies on a family of single ML techniques. BR assumes that all the single 

predictions of the ML algorithms are weak and performs parallel computations following 

an iterative process using average and weighted average estimations to vote for the most 

dominant prediction. After many iterations, the boosting algorithm combines these weak 

predictions into a single strong prediction rule. 

From the 93 images spanning across the three growing periods, 33 images between 

the end of October and the end of May were selected. This image selection resulted in a 

dataset with 11 images per growing period (one to three images per month), with dates 

no more than ±5 days between growing periods. For each date, the 13 Sentinel-2 bands 

were used as independent variables in the ML algorithms, resulting in 143 variables in the 

full dataset (13 bands × 11 dates). Initially, all images (dates) were used and gradually—
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one date at a time—starting from the latest one, was excluded, to find the earliest time 

interval with sufficient prediction accuracy. 

In all modeling approaches, data were randomly split into a training set (50% of data) 

and a validation set (50% of data) for assessment of performance efficiency. The same data 

splitting was used for all models. 

2.5. Statistics 

The multiple linear regressions between the independent variables and final yield for 

the first modeling approach and the machine learning for the second, were performed 

with JASP software version 0.16 [40]. Models’ performance was evaluated by the coeffi-

cient of determination (R2), root mean square error (RMSE) and slope of the best-fit line 

between measured and modeled yield values. 

3. Results 

The performance of the first VI-MLR modeling approach was medium with R2 = 0.532 

and RMSE = 847 kg ha−1 (Figure 2a). As shown in Figure 2a, yield for several fields espe-

cially during the 2018–2019 growing period (red points on top left and right) are not well 

predicted by the model, deteriorating its performance. As a result, the slope of the best-fit 

line is 0.536, far from 1 which would indicate a perfect fit. 

 

Figure 2. Relationships between measured and modeled yield based on the vegetation indices ap-

proach through multiple linear regression (VI–MLR, a) and machine learning approaches (ML, b–

f). The type of regression, the number of images per growing period used in ML regressions with 
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the corresponding date span, the coefficient of determination (R2), the root mean square error 

(RMSE) and the slope of the best-fit line are shown in the inserts. Data concern 66 fields during three 

growing periods (indicated by different colors), corresponding to 9463 pixels. The thin black line 

corresponds to the 1:1 line and the thick black line to the best-fit line. 

In the second modeling approach, all three ML algorithms performed better than the 

VI-MLR model, when images from the start of the growing period until the end of April or 

later are used (33 images in the full dataset, 11 images per growing period). However, even 

though BR performs better than VI-MLR (R2 = 0.723) it retains rather high RMSE (668 kg 

ha−1) and low slope (0.622) (Table 2 and Figure 2b). Interestingly, the same fields that are not 

well predicted by the VI-MLR approach are also not well predicted by the BR model. RF 

and KNN, however, show very good and similar performances, with R2 > 0.91, RMSE < 360 

and slopes close to 1 (Figure 2c,d). In both cases, all fields appear very close to the 1:1 line 

without any outliers. Additionally, even though BR loses its superiority to VI-MLR when 

images before the end of April are used, both RF and KNN retain their high performance, 

even when less than five or only three images per growing period, corresponding to dates 

until mid-March or mid-January respectively, are used (Figure 2e,f and Table 2). 

Table 2. Performance comparison of the three machine learning approaches for yield estimation, 

with the use of different number of images per growing period. R2, coefficient of determination and 

RMSE, root mean square error (kg ha−1) between measured and modeled yield. Data concern 66 

fields during three growing periods, corresponding to 9463 pixels. 

 Random Forest (RF) 
K-Nearest  

Neighbors (KNN) 

Boosting  

Regression (BR) 

Dates R2 RMSE R2 RMSE R2 RMSE 

26 Octocer–24 May 

11 images 
0.923 347 0.917 357 0.723 668 

26 October–29 April 

8 images 
0.915 366 0.908 375 0.684 709 

26 October–10 March 

5 images 
0.894 408 0.897 396 0.460 938 

26 October –28 February 

4 images 
0.890 419 0.897 397 0.410 980 

26 October–19 January 

3 images 
0.871 455 0.883 425 0.357 1009 

4. Discussion 

Utilizing satellite RS data to build yield prediction models has become a common 

approach since such data have been made publicly available. The high spatial resolution 

and short revisit time of the ESA Sentinel-2 satellites has provided extra interest in the 

above approach and several attempts have been made recently to estimate or predict 

wheat yield in small fields through RS information. However, relevant literature is still 

rather scarce, mainly due to low availability of spatial yield data produced by combine 

harvesters with yield mapping systems [11,18,32,34]. Large amounts of such data are es-

sential for building and validating the models. 

In this paper, we evaluated two different modeling approaches for the estimation of 

durum wheat yield from Sentinel-2 satellite data. In the first VI-MLR approach, vegetation 

indices are used in multiple linear regressions with yield, while the second approach con-

cerns machine learning with three different algorithms, random forest (RF), k-nearest 

neighbors (KNN) and boosting regressions (BR). 

Clearly, machine learning with RF and KNN showed far superior performance com-

pared to VI-MLR or BR. Our results agree with the findings in [11,29,32], where RF regres-

sion models for predicting wheat yield outperformed multiple linear regression models. RF 
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models have key advantages over traditional regression models for yield estimation, be-

cause they explore relationships between explanatory variables to control for confounding 

factors [11]. They separate a random subset from calibration for performance testing and 

use only the remaining set of data for model training, reserving thus information for as-

sessing model accuracy [29]. In [5] the authors compared the performance of eight ML algo-

rithms in predicting wheat yield from RS data and demonstrated also that RF was the best 

method. The worst performance, however, was found for KNN. KNN presented an R2 of 

about 0.65 between the predicted and the observed wheat yields, and an RMSE over 1000 

kg ha−1, that the authors consider insufficient for wheat yield prediction. These findings are 

in contrast with our findings were KNN performed comparable to RF with an R2 of 0.917 

for the whole growing period and an RMSE of 357 kg ha−1. The authors in [5], however, 

derived RS data from the MODIS satellite instrument, which has a low spatial resolution of 

250 m, and KNN algorithm relies on the distance of the predictor variables to the nearest 

training group known to the model [41], so the low spatial resolution may have provided 

some irrelevant or biased neighbor values. According to [31], the KNN model is very sensi-

tive to the selection of the k value: increasing the k reduces the variance, but may increase 

the bias. In [31], KNN performed very well for predicting wheat yield, but the authors used 

measurements of whole field yields as training and validation datasets. It is also worth men-

tioning that BR presented the worst performance, even though the algorithm is considered 

to derive extra power compared to other ML techniques [39,42]. 

Our modeling approaches suggest a relatively simple workflow, since they are based 

on raw Level 2A reflectance data, i.e., without secondary level estimation of vegetation 

indices and neither use any additional biophysical or meteorological parameters. Adding 

secondary level Vis to the basic Sentinel-2 dataset has not always shown an improvement 

in wheat yield estimation [11]. According to the authors in [11], it is possible to produce 

accurate maps of within-field yield variation at 10 m resolution (RMSE 660 kg ha−1) using 

only Sentinel-2 raw data. In [32] the authors assessed the biophysical parameter of LAI 

with the PROSAIL radiative transfer model, but the improvement in wheat prediction was 

rather small in contrast with Sentinel-2 basic bands and VIs. 

In order to identify the best period for yield prediction and explore opportunities for 

early yield estimations, we split our 11 images per growing period dataset into smaller 

periods down to single dates. The availability of a high number of cloud-free Sentinel-2 

images in Southern Europe allowed us to fine tune the models by investigating very small 

timeframes even down to 5 days which is the Sentinel-2 revisiting period. Our results re-

veal that even when only a few images from the start to the middle of the growing period 

are used, the accuracy of prediction remains very high. The lowest RMSE for the RF 

method was 347 kg ha−1 when the whole growing period was accounted and increased to 

419 kg ha−1 for the period of sowing until end of February, an error that is still acceptable. 

Other studies have also tried to identify optimum period for wheat yield prediction by RS 

data. In [11] for instance, the authors found that the accuracy of the estimation increases 

considerably when additional RS information from December to June is provided, but the 

findings rely only on three cloud-free available images since the study was conducted in 

the UK. In [5] it is shown that ML models based on MODIS RS data can accurately predict 

yield 1~2 months before the harvesting dates at a county level in China. Sentinel data in 

[32] posed that single date images at stem elongation can provide good estimations of 

wheat yield by using an RF model. Nevertheless, this study relied also in a couple of sat-

ellite images per year. Our results explore the whole growing period in detail and demon-

strate clearly that it is feasible to predict durum wheat yield in Southern Europe with a 

high accuracy as early as January. Such information would be extremely important for 

making management decisions for the whole field, as also for precision agriculture appli-

cations. Variable rate application of nitrogen in wheat during the springtime dressings is 

an essential practice for improving fertilizer efficiency, optimizing inputs, reducing risks 

of N leaching, and ensuring N applications according to defined legislation limits [43,44]. 

The concept for deciding the amount of fertilizer to be applied at different management 
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zones is greatly based on spatial predictions of expected yields [44] and satellite available 

data at a high resolution are extremely valuable for that purpose [45]. According to [46] 

Sentinel-2 imagery was successful for delineation of management zones after Zadocks 

growth stage 30, and thus is useful for producing fertilization maps for the upcoming 

season. In [45] it is denoted that satellite data best represented nitrogen uptake in BBCH 

39 and 55 growth stages (BBCH scale is the same as the Zadocks scale). The stages from 

30 to 39 describe the period from plant pseudo stem erection to just visible flag leaf. These 

are the stages when springtime dressings of nitrogen are applied and in Southern Europe 

occur from end of February to the beginning of April. Providing a yield estimation as early 

as February, as depicted in our study, by utilizing primary Level2A data from Sentinel-2 

images may give a new dimension to such precision agriculture applications. 

Even though the results of this study demonstrated that machine learning techniques 

are promising for yield estimation/prediction, they have to be extended in space and time 

(more growing periods) and for different crops to be generally applicable. All fields used 

in the study are located in the same plain in close vicinity, with maximum between-field 

distance approximately 30 km, i.e., meteorological conditions are similar between fields. 

Consequently, an obvious next step would be to examine the performance of our model-

ing approach for fields of different areas and during more growing periods (i.e., under 

different climatic conditions), incorporating meteorological parameters as independent 

variables in the process, as proposed also by [11]. However, as the number of data may 

enormously increase, classical ML techniques like RF and KNN may reach their limits. In 

that case, deep learning (DL) architectures that are capable to process unstructured data 

at maximum capacity and explore more subtle dependencies may be the solution [47,48]. 

DL is a branch of ML that has come to the fore in natural language processing and image 

classification and have taken the lead when it comes to image-based analysis [48]. 

5. Conclusions 

In this study, three machine learning algorithms were used for the estimation of du-

rum wheat yield based on Sentinel-2 satellite data and compared to a previously devel-

oped multiple linear regression model based on vegetation indices (VI-MLR). Modeling 

results were examined against yield data collected by a combine harvester equipped with 

a yield mapping system. All machine learning approaches showed enhanced estimation 

accuracy compared to VI-MLR, when all images during the growing periods were used, 

especially random forest and k-nearest neighbors. Additionally, RF and KNN accuracy 

remained high when images from the start of the growing period until March, i.e., 3 

months before harvest, were used, indicating the high suitability of machine learning on 

Sentinel-2 data for early yield prediction of durum wheat, essential information for preci-

sion agriculture applications. 
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