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Abstract: Landslide prediction is one of the complicated topics recognized by the global scientific 

community. The research on landslide susceptibility prediction is vitally important to mitigate and 

prevent landslide disasters. The instability and complexity of the landslide system can cause uncer-

tainty in the prediction process and results. Although there are many types of models for landslide 

susceptibility prediction, they still do not have a unified theoretical basis or accuracy test standard. 

In the past, models were mainly subjectively selected and determined by researchers, but the selec-

tion of models based on subjective experience often led to more significant uncertainty in the pre-

diction process and results. To improve the universality of the model and the reliability of the pre-

diction accuracy, it is urgent to systematically summarize and analyze the performance of different 

models to reduce the impact of uncertain factors on the prediction results. For this purpose, this 

paper made extensive use of document analysis and data mining tools for the bibliometric and 

knowledge mapping analysis of 600 documents collected by two data platforms, Web of Science 

and Scopus, in the past 40 years. This study focused on the uncertainty analysis of four key research 

subfields (namely disaster-causing factors, prediction units, model space data sets, and prediction 

models), systematically summarized the difficulties and hotspots in the development of various 

landslide prediction models, discussed the main problems encountered in these four subfields, and 

put forward some suggestions to provide references for further improving the prediction accuracy 

of landslide disaster susceptibility. 

Keywords: landslide; susceptibility prediction; uncertainty analysis; VOSviewer; Ctiespace; biblio-

metric analysis; knowledge graph 

 

1. Introduction 

A landslide is a phenomenon in which the rock and soil mass on a slope slides down 

as a whole or dispersedly along a particular weak surface (belt) under the action of gravity 
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due to the influence of an earthquake [1], rainfall [2], hurricane [3], snow melt [4], human 

activities [5], tsunami, and other factors [6]. As one of the main types of geological disas-

ters [7], a landslide is the second largest natural disaster after earthquakes [8] and can pose 

a significant threat to human life and property, infrastructure, and the natural environ-

ment because of its substantial destructive capacity [9]. Landslides cause billions of dollars 

of property losses and thousands of deaths yearly [10]. Statistics show that the number of 

deaths caused by landslides accounts for at least 17% of that caused by natural disasters 

worldwide [11]. Of these, earthquake-induced landslides have killed more people than 

any other type of landslide [1]. For example, the Wenchuan Earthquake (a magnitude-8.0 

earthquake) in May 2008 triggered 197,481 landslides in many regions [12]. Its total af-

fected area was about 1160 km2, and the number of deaths was more than 25,000 [12,13], 

accounting for a quarter of the total casualties in this accident [14]. In addition, according 

to Froude, M, J. et al. [15], the spatiotemporal analysis of the global non-seismic fatal land-

slide data set from 2004 to 2016 showed that there were 55,997 deaths in 4862 different 

landslide events. Typical non-seismic landslide hazard events include events such as, in 

October 1998, hurricane Mitch caused catastrophic landslides in the Caribbean and Cen-

tral America, leaving 6600 people dead and 8052 others injured [16]. In February 2006 [17], 

after several days of heavy rainfall, a large-scale landslide almost buried the Jinsuogong 

Village on Leyte Island in the Philippines, causing at least 1800 people to die, 3264 people 

to move far away from their homes, and 18,862 to be affected in some way. 

The question of how to reduce the loss caused by landslide disasters through predic-

tion has become a hot issue concern of researchers [18–21]. As the first step of landslide 

risk analysis, the prediction of landslide susceptibility is to make a qualitative or quanti-

tative analysis of landslide disasters in a particular area to find out the combination of 

factors most conducive to the occurrence of landslides [22]. Then, these combinations of 

factors are used to predict the possibility of the occurrence of landslide disasters in areas 

of the same type to determine the scope in which the landslides may occur. The successful 

landslide prediction can significantly reduce the disaster-affected degree, can avoid the 

occurrence of landslide disasters [23], and can provide time and conditions for human 

beings to take early action before the event of landslide disasters to hinder the occurrence 

of risks and prevent such danger from becoming a disaster to human beings [24]. Some 

typical cases of successful prediction are listed below. In 1985, a large-scale landslide oc-

curred in Xintan town of the Three Gorges Reservoir Region, but due to the early moni-

toring and forecast of the landslide and the well-organized evacuation, none of the 1,371 

residents were killed or injured [25]. As researchers successfully predicted the Heifangtai 

landslide in advance [26,27], and the local government took active disaster prevention 

measures in time according to the early warning results, no one was killed or injured by 

the landslide in this area. Since Japan developed an early warning system for landslides 

that can protect people from landslide damage and property loss through landslide pre-

diction in 1984, the damage caused by landslides has been significantly less than that in 

the past [28]. 

Although the uncertainty of the catastrophic process of the landslide has become the 

scientific community’s consensus, no mature theories or methods have been formed to 

predict landslide susceptibility, and many studies are still in the exploratory stage. There-

fore, the evaluation of uncertainty is of vital importance in the prediction and analysis of 

landslide susceptibility. In the past 40 years, scholars have established landslide disaster 

prediction models for landslide susceptibility prediction by different calculation methods, 

providing important references for landslide prediction and analysis. Regarding the sum-

marization of forecast and analysis of landslide susceptibility, some review papers on 

landslide prediction from different disciplines have appeared one after another [29–32]. 

Through the study of the review papers on landslide prediction, it is not difficult to find 

that the existing research mainly focuses on the evaluation of landslide susceptibility 

models [33–35]. There is less literature reviews on the uncertainty analysis of landslide 

susceptibility prediction [36], and only Reichenbach, P. et al. have conducted research on 
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the document analysis of the uncertainty of landslide susceptibility prediction through 

bibliometric analysis and knowledge mapping analysis [37]. This research mainly sum-

marizes the statistical methods of landslide sensitivity modeling and related topographic 

zoning but rarely involves uncertainty analysis. In addition, there is almost no compre-

hensive research on the spatial and temporal variation law of the uncertainty analysis of 

landslide susceptibility prediction. Based on the summary of previous research, and con-

sidering that the Web of Science (WOS) data platform began to track this field in 1992 and 

the Scopus data platform published papers in this field from 1982, this paper retrieved the 

two data platforms of WOS and Scopus to provide more comprehensive information. 

Therefore, this paper created a bibliometric analysis of 600 selected documents, quantified 

document performance, and analyzed highly cited documents by the data analysis func-

tions of the WOS and Scopus platforms. Meanwhile, it comprehensively used visual soft-

ware of VOSviewer and CiteSpace to draw the knowledge mapping and interpreted it in 

combination with professional knowledge to clarify the knowledge structure and devel-

opment trend in this field, mine and analyze research hotspots, and predict the future 

development direction. Moreover, it systematically summarized the uncertainty of land-

slide susceptibility prediction from four subfields (namely disaster-causing factors, pre-

diction units, model space data sets, and prediction models). It put forward some sugges-

tions to provide some references for further research. 

2. Data Sources and Analysis Methods 

2.1. Retrieval Strategy and Data Collation 

WOS is a comprehensive academic information resource that ranks first globally and 

covers most disciplines, while Scopus is the world’s largest abstract and citation database. 

This paper retrieved data from WOS and Scopus platforms for analysis on 14 June 2022. 

As shown in Figure 1, the retrieval strategy was TS = “landslide” AND “predict*” AND 

“uncertainty”, of which “predict*” contains two subject words: “predict” and “predic-

tion”. First, in the WOS document data platform, the data source was set as “Search in: 

Web of Science Core Collection”. Next, the citation index was selected as ”Editions: All”, 

the document field selected as ”Topic”, and the retrieval time set as “Publication Date: All 

years (1900–2022)”. A total of 459 records were retrieved from WOS. Then, the Scopus 

document data platform was logged into again, the retrieval range was set as “paper title, 

abstract, keyword”, and the retrieval time was selected from “all years” to “till now”, and 

453 records were retrieved. A total of 912 papers were recovered from the two document 

data platforms. In order to ensure the accuracy and relevance of documents and to facili-

tate the bibliometric and knowledge mapping analysis, the original data needed to be 

downloaded in different formats and provided with data preparation work such as format 

unification, collation, de-duplication, and item-by-item screening. The specific process is 

shown in Figure 1. 
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Figure 1. Flowchart of the process of searching and selecting the studies. 

1. Unified format: The text data format (*.ris, *.txt) and table data format (*.xls, *.csv) were 

adopted for download, respectively. Endnote mainly uses the data in *.ris format for 

document browsing and reference management, and it is also convenient for 

VOSviewer software to make bibliometric analyses and visual analyses. The files in 

*.txt format were named download_w459.txt (from WOS) and download_s453.txt 

(from Scopus). The synonyms were merged, and wrong words were corrected for 

knowledge mapping analysis by Citespace. The two data formats of *.xls and *.csv 

were unified as *.xls to prepare for the next step of data collation, de-duplication, and 

screening. 

2. Collation and de-duplication: In these two platforms, all original data were down-

loaded to the Excel spreadsheet in the way of the full record, were de-duplicated 

according to the title and DOI after being combined into a file, were extracted accord-

ing to the year, author, title, publication type, journal source, number of citations, 

keywords, and other information, and then sorted by the publication type as the first 

column. 

3. Item-by-item screening: Manual screening was carried out item by item according to 

the publication type of the documents, and only the documents with peer review and 

editor’s supervision were retained. The types of these documents include articles, 

reviews, letters, and conference papers. The editorial material, book chapter, and 

other documents that were weakly correlated with this paper were removed. After 

identification and iteration, some wrong records were deleted to finally obtain 600 

valid documents. The typical document characteristics are shown in Table 1. 

Table 1. Characteristics of the included studies. 

Publication 

Type 
Year Authors Title 

Publication 

/Source Titles 

Cited 

Reference 

Count 

Keywords 

Article 2017 
Park, H.J.  

et al. [38] 

Physically based susceptibility 

assessment of rainfall-induced 

shallow landslides using a fuzzy 

point estimate method 

Remote sensing 141 (WOS) 

Monte-carlo-simulation; 

differential sar interferometry; 

rock slope stability; li-shan 

landslide; modeling uncertainty; 

reliability-analysis; hazard 

assessment; satellite; risk; failure 
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Review 1996 
Johnston, 

A.C. [39] 

Seismic moment assessment of 

earthquakes in stable continental 

regions—III. New Madrid 1811-

1812, Charleston 1886, and 

Lisbon 1755. 

Geophysical 

Journal 

International 

352 (Scopus) 

Earthquake intensity; earthquake-

source mechanism; seismic 

moment 

Letter 2022 
Ho, J.Y.  

et al. [40] 

Using ensemble quantitative 

precipitation forecast for rainfall-

induced shallow landslide 

predictions 

Geoscience 

letters 
23 (WOS) Physically-based model 

Conference 

Paper 
2021 

Nuryanto, 

D.E. et al. 

[41] 

Prediction of soil moisture and 

rainfall induced landslides; a 

comparison of several PBL 

parameters in the WRF model 

IOP Conference 

Series: Earth and 

Environmental 

Science 

1 (Scopus) 
landslide; rainfall; soil moisture; 

WRF model 

2.2. Analysis Method 

This paper mainly carried out research using two methods: bibliometric analysis and 

knowledge mapping analysis. The concept of bibliometric analysis can be traced back to 

1969 and was proposed by Alan Pritchard [42], a famous British information scientist. It 

describes and evaluates published research by a quantitative method, which can help re-

searchers to find the most influential works and objectively present the scientific structure 

relationship of a specific research field [43]. This paper extensively used the advantages 

of various bibliometric analysis tools (WOS, Scopus, VOSviewer, and SCImago Graphica) 

in processing data. It summarized and reviewed the research status of uncertainty analy-

sis of landslide susceptibility by quantifying the performance of documents. VOSviewer, 

a tool developed by Van Eck N and Waltman L of the Centre for Science and Technology 

Studies of Leiden University in the Netherlands to build a bibliometric network [44], has 

been widely used in all kinds of “co-occurrence” analyses. As a free chart-making soft-

ware, SCImago Graphica can generate various charts only by dragging, rather than using 

any formula and complex data processing and modeling, which is suitable for lightweight 

data applications [45]. In this paper, the three aspects of statistics of documents publica-

tion time, contribution analysis, and analysis of highly cited documents were mainly an-

alyzed by the bibliometric function of WOS and Scopus data platforms. Taking the num-

ber of regional papers published as one of the contribution analysis units, the data was 

imported into Scimago software for analysis after the format conversion by the collinear 

analysis function of the VOSviewer (version 1.6.16) software. 

Knowledge mapping analysis is a method of describing knowledge resources and 

their carriers with visualization technology [46], and it can show the development process 

and structural relationship of complex knowledge [47]. To improve the accuracy and reli-

ability of the results by knowledge mapping analysis, this paper mainly adopted two 

kinds of knowledge mapping analysis software, VOSviewer (version 1.6.16) and 

Citespace (versions 5.8.R3 and 6.1.R2, which have different effects when displaying dif-

ferent mappings) to solve the following three problems: (1) know the scientific research 

cooperation status of authors, countries and regions, and institutions; (2) identify potential 

key keyword nodes and mine and analyze hot research issues; (3) analyze the develop-

ment process and predict the frontier trend of research. Considering that the two kinds of 

software of VOSviewer and Citespace can draw maps with a large amount of information 

and good visual effect, they can provide scientific research perspectives from different 

aspects. The primary motivation for using CiteSpace in this research was to simplify the 

search for essential papers in the knowledge domain documents so that visually signifi-

cant characteristics can be searched in the optical network, and visual aids can be pro-

vided to identify the changes between adjacent nodes [48–50]. CiteSpace is a Java applica-

tion developed by Professor Chen Chaomei of Drexel University in the United States for 

the visual analysis of the co-occurrence networks [51], which can effectively reveal the hot 

spots, trends, and development evolution of specific research fields [3]. Based on the 
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above advantages, CiteSpace can be used for scientific research cooperation analysis, re-

search hotspots analysis, and frontier trend analysis. However, as CiteSpace has the prob-

lems of overlapped keyword node names and poor visual effect when performing key-

word clustering of research hotspot analysis [52], VOSviewer with a better visual effect of 

“collinear clustering “was selected. Moreover, the data used for keyword clustering anal-

ysis in this paper were from the two data platforms of WOS and Scopus and formed a self-

built data text after collation and de-duplication. Therefore, importing a VOSviewer that 

can support self-built text data to extract subject words and carry out co-occurrence clus-

tering in a single line text based on subject words is necessary. A series of knowledge 

mapping analyses can be achieved by comprehensively using the two kinds of software 

and giving full play to their respective advantages in processing data. 

3. Results 

3.1. Bibliometric Analysis 

3.1.1. Statistics of Documents Publication Time 

During data collation and de-duplication, this paper retained the documents down-

loaded from the WOS data platform and deleted the duplicated data downloaded from 

the Scopus data platform but sourced from the WOS. When the statistics of record publi-

cation time is made, the original data downloaded from the WOS and Scopus and the data 

after de-duplication are displayed on a chart, as shown in Figure 2. Orange represents the 

number of documents published on the WOS platform, purple represents the number of 

papers published on the Scopus platform, and green represents the number of documents 

published after the merger and de-duplication of the two platforms. Through comparison, 

it was found that the results of the original documents retrieved from the two databases 

were different, which was mainly manifested in: 

(1) Different start times of tracking: Scopus collected the probability assessment pub-

lished by Atkinson, G.M. et al. on modeling and predicting landslides due to the pos-

sibility of liquefaction and overstress caused by earthquakes from 1982 [53], while 

WOS collected the investigation of BUISSON, L. et al. on the application of artificial 

intelligence (AI) technology to environmental protection in France from 1992 [54]. 

This investigation first showed that landslide prevention data could be embedded 

into artificial intelligence systems. 

(2) Different distribution of the number of annual documents published: The years when 

the data on the WOS platform were more than those on the Scopus platform include 

1997, 2002, 2008–2010, and 2017–2022. The years when the data on the Scopus platform 

were more than those on the WOS platform include 1982, 1985, 1986, 1992, 2003–2006, 

and 2011–2016. The two platforms have the same number of documents published in 

other years. 

(3) Different collection processes: The collection time of the Scopus platform is earlier 

than that of the WOS platform, and the number of documents published in most of 

the early years on the Scopus platform is more than that on the WOS platform. How-

ever, in recent years, WOS has focused more on this field and will continue to 

strengthen its tracking in this field in the future (seen from the trend of documents 

published). Therefore, the statistics of document publication time show that the re-

search data in this field shall be downloaded from the two document platforms to 

make the data more comprehensive. The document sample database established 

based on this is more reasonable and effective. 

According to the number of documents published after merging and de-duplicating 

in Figure 2, the research in this field over the past 40 years can be roughly divided into 

three stages. The first stage is the rise stage (1982–2005): the total number of documents 

published in this 24-year period was only 22, and the research in this field was intermittent 

from 1982 to 1998. Although there were only a few published documents, the most en-

lightening document published by Carrara, A. et al. in 1992 on attempts to evaluate 



Remote Sens. 2022, 14, 3879 7 of 36 
 

 

landslide hazards and risks by landslide identification and mapping appeared during this 

period [55], which not only compared the inherent uncertainty of landslide maps drawn 

by different researchers or through different technologies but also proposed that the im-

pact of uncertainty on landslide spatio-temporal prediction is an issue that requires inter-

disciplinary efforts. The publication time of this document coincided with the time when 

the WOS initially began to track the research in this field, and the number of this document 

cited was as high as 156, indicating that it has high academic authority and a great influ-

ence on subsequent research. Since 2000, papers have been published yearly, and the re-

search in this field has been continuous. People began to realize that it is difficult to predict 

whether landslides will occur in the future, and management decisions are often made 

under uncertain conditions. Therefore, landslide disaster prediction and mapping are nec-

essary conditions for decision-making [56]. The second stage is the apparent growth stage 

(2006–2016): 235 documents were published during these 11 years, which is 10 times that 

in the past 23 years. The research theories and methods in this stage were further devel-

oped, the research perspective was gradually expanded to hot research topics such as ge-

ographic information system (GIS) [57] and susceptibility assessment [58], and analytic 

hierarchy process [59], multi-criteria decision analysis [60], and artificial neural network 

[61] began to be widely used in the field of landslide susceptibility prediction. The number 

of documents published in this stage had increased significantly compared with that in 

the rise stage of research, but the number of documents published every year was less 

than 40, indicating that the research in this stage is still relatively slow. The third stage is 

the vigorous development stage (2017–2022): the total number of published documents 

reached 326 in less than six years, accounting for 54.33% of the total samples. The number 

of papers published every year was more than 40, and the surge in the number of papers 

was closely related to the innovation and development of this field during this stage to a 

certain extent. In 2021, the number of documents published reached a peak of 83. In 2022, 

due to the limited retrieval time, only the number of documents published in less than 

half a year was counted, but it can be predicted that the number of documents published 

in 2022 will remain stubbornly high, indicating that the research in this field has broad 

prospects in the future. 

 

Figure 2. Publication time statistics. 
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3.1.2. Contribution Analysis 

In this paper, the contribution analysis was mainly carried out by bibliometric anal-

ysis from three aspects: high productivity authors, high productivity countries or regions, 

and high productivity journals. In terms of the author’s contribution to this field, as shown 

in Table 2, Guzzetti, F. et al. had the highest number of documents published [62]. In 2002, 

they published documents on the evaluation of the impact of landslide inventory errors 

on landslide disaster prediction models, showing that the error of input data is still the 

main bottleneck of landslide disaster prediction reliability, but statistical modeling greatly 

reduces the impact caused by input data errors. Another contribution of this team was to 

propose a framework for the reliability and prediction ability of regional landslide sensi-

tivity and individual assessment models [63]. This achievement has been cited as high as 

526 times, so they are also an author group with the highest index. The top five authors 

and their representative works are listed in Table 2. 

Table 2. Prolific author (top five). 

Authors 
Post 

Volume 
Masterpiece Representative Contribution 

Index  

(Source, Scopus) 

Guzzetti, F.  

et al. [63] 
16 

Estimating the quality of 

landslide susceptibility models 

A landslide susceptibility model for a region in central 

Italy is presented, and a framework for assessing 

model reliability and forecasting skills is presented. 

64 

Tang, H.  

et al. [64] 
12 

A new framework for 

characterizing landslide 

deformation: a case study of the 

Yu-Kai highway landslide in 

Guizhou, China 

A new framework for characterizing landslide 

deformation is proposed, which can establish the 

evolution of landslide deformation in both the 

geometric and temporal domains, allowing the 

evaluation of the sliding mechanism of landslides. 

37 

Gariano, S.L.  

et al. [65] 
12 

How much does the rainfall 

temporal resolution affect 

rainfall thresholds for landslide 

triggering? 

The impact of the temporal resolution of rainfall 

measurements on a landslide-triggered rainfall 

threshold calculation in a region of northern Italy was 

assessed and discussed. 

19 

Peruccacci, S.  

et al. [66] 
10 

Rainfall thresholds for possible 

landslide occurrence in Italy 

Landslide information obtained from multiple sources 

and rainfall data captured by rain gauges to construct 

a catalog of rainfall events in Italy between 1996 and 

2014. 

24 

Fabbri, A. G.  

et al. [67] 
9 

Favorability modeling of 

landslide hazard with spatial 

uncertainty of clab 

membership: a reapplication in 

central Slovenia 

Shared the spatial database of landslide hazard 

prediction in central Slovenia and carried out spatial 

prediction experiments by verifying the technology, 

emphasizing the importance of the shared database. 

15 

To improve the visual effect of a country or regional distribution, this research first 

saved the merged and de-duplicated data of WOS and Scopus in a unified format of *.txt 

and set the word frequency threshold as 20 after the data were opened in VOSviewer to 

obtain the national or regional calculation results. Then, the data were saved in *.gml for-

mat and imported into Scimago to obtain the geographical visualization map of geograph-

ical document distribution after map decoration. Figure 3 shows the distribution of coun-

tries ranked at the world’s top in this field. A total of 12 countries have published more 

than 20 documents. The top three countries are China (172, accounting for 28.67% of the 

total number of samples), Italy (106, accounting for 17.67% of the total number of sam-

ples), and the United States (88, accounting for 14.67% of the total number of samples), 

which fully shows that the three countries have obvious research advantages in this field. 

In addition, the other 64 countries have a small share, which is not shown in the figure. 

This means that many countries and regions in the world are landslide-prone areas or 

have published papers in this field, but it may be challenging to carry out extensive 
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research in this field due to the limitations of their economic development level and the 

allocation of national scientific research funds. 

 

Figure 3. Geographic visualization map of the geographical distribution of documents. 

After the data information downloaded from WOS and Scopus were synthesized, a 

total of 138 journals were retrieved, of which 32 journals published more than three doc-

uments, indicating that the research on the uncertainty of landslide susceptibility predic-

tion has attracted extensive attention. Figure 4 shows the top ten journals. The journals 

ranking the top three in the number of documents published are ENGINEERING GEOL-

OGY (38), LANDSLIDES (37), and GEOMORPHOLOGY (30), with an h-index of 111, 64, 

and 136, respectively. As highly-ranked journals in the industry, they strongly influence 

engineering geology and natural geography and play an essential role in promoting the 

development of this field. Furthermore, the first published papers in this field in 2002, 

2007, and 1996 show that the research on the uncertainty of landslide susceptibility pre-

diction has been a concern for a long time. In particular, GEOMORPHOLOGY has been 

paying attention to this field for 25 years, with a higher number of documents published. 

 

Figure 4. Contribution to journal publication volume (top 10). 
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3.1.3. Analysis of Highly Cited Documents 

The WOS and Scopus data platforms showed that the most-cited document is a doc-

ument named Estimating the Quality of Landslide Susceptibility Models published by 

Guzzetti F. et al. in the journal of GEOMORPHOLOGY in 2006 [63], with a number of 

citations of 549 on the WOS data platform and 573 on the Scopus data platform. As men-

tioned in Section 3.1.1, the number of documents published in the research of uncertainty 

in landslide susceptibility prediction had increased significantly since 2006, so Guzzetti F. 

et al. published this paper at the right time. This paper expounds in detail on the selection, 

parameter setting, establishment of prediction unit division, and other contents of the 

landslide susceptibility model, providing necessary enlightenment for later scholars to 

carry out relevant research. In addition, the five highly cited documents that rank high on 

both WOS and Scopus data platforms and are sorted out by screening (as shown in Table 

3) showed that articles and reviews are the main types of highly cited documents. The 

types of documents sorted out by the document sample library in this paper are shown in 

Figure 5. It can be found that review, as a commonly used type of cited document, ac-

counts for less than 1% (the number is only 14). Therefore, it is necessary to summarize 

and review the records in this field. 

Table 3. Highly cited literature information table. 

References 
Cite 

Frequency 
Year Title Publication Type Research Contents 

Guzzetti, F.  

et al. [63] 

573 (Scopus) 

549 (WOS) 
2006 

Estimating the Quality 

of Landslide 

Susceptibility Models 

Article 

The error associated with the susceptibility 

assessment for each mapping unit was 

determined by studying the variation in the 

model’s susceptibility estimates. 

Reichenbach, P. 

et al. [37] 

569 (Scopus) 

257 (WOS) 
2018 

A Review of 

Statistically-Based 

Landslide 

Susceptibility Models 

Review 

Provides a critical review of statistical 

approaches to landslide susceptibility modeling 

and associated terrain zoning, provides 

graphical visualizations, and reveals significant 

heterogeneity in subject data, modeling 

approaches, and model evaluation criteria. 

Gariano, S.L.  

et al. [30] 

419 (Scopus) 

270 (WOS) 
2016 

Landslides in a 

Changing Climate 
Review 

An initial global assessment of future landslide 

impacts and a global map of projected impacts 

of climate change on landslide activity and 

abundance are presented. 

Althuwaynee, 

O.F.  

et al. [68] 

247 (Scopus) 

230 (WOS) 
2012 

Application of an 

Evidential Belief 

Function Model in 

Landslide 

Susceptibility Mapping 

Article 

Exploring potential applications of evidence 

belief function models in landslide 

susceptibility mapping using GIS. 

Van Den 

Eeckhaut, M.  

et al. [69] 

294 (Scopus) 

203 (WOS) 
2006 

Prediction of Landslide 

Susceptibility Using 

Rare Events Logistic 

Regression: A Case-

Study in the Flemish 

Ardennes (Belgium) 

Article 

Evaluate the statistical multivariate method of 

rare event logistic regression to create landslide 

susceptibility maps. 
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Figure 5. Post volume by time. 

3.2. Knowledge Mapping Analysis 

3.2.1. Analysis of Scientific Research Cooperation 

In terms of the cooperation among authors, the author cooperation network 

knowledge mapping drawn by CiteSpace (version 5.8.R3) software is shown in Figure 6, 

and the authors who have published more than three documents were extracted, clearly 

showing that the author scientific research cooperation presents the characteristics of 

“scattered on the whole but locally concentrated“. Three core author groups formed a 

locally concentrated map. According to the statistics of the number of documents pub-

lished by high productivity authors in Section 3.1.2, F GUZZETTI published 16 docu-

ments, and it is the author group with the highest number of documents published in this 

field. The core author group is a group that is the most concentrated, has the largest num-

ber of author teams, and takes “F GUZZETTI“ as the core, and its members include 

“STEFANO LUIGI GARIANO (12) “, “MARIA TERESA BRUNETTI (11) “, and “SILVIA 

PERUCCAC (10) “, which are academic teams with a large number of documents pub-

lished. In this core group, the cooperation between teams is more frequent, and the contact 

between scholars is also closer. However, the map distance between the largest core au-

thor group and the other two larger core author groups is large, indicating that this group 

is relatively independent. The map distance between the larger core author group formed 

by the two author teams of “FAMINGHUAGN“ and “THMAS BLASCHKE“ and another 

core group composed of “JUNWEI MA“ and “HUIMING TANG“ is small, indicating that 

these two core groups have more scientific research cooperation. In addition, there are 

some author groups with a small number of authors but a large number of documents 

published. Taking the author groups of “Pradhan (8)“, “CHUNG (6)“, and “AG FABBRI 

(4)“ as examples, they are relatively scattered, focus on small-scale scientific research co-

operation, and they lack collaboration with larger author groups. 
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Figure 6. Author collaboration network knowledge graph. 

To analyze the cooperation among countries, the collinear function of CiteSpace (ver-

sion 5.8.R3) software was used to obtain the cooperation knowledge mapping among 

countries, as shown in Figure 7. The tree-ring-shaped node on the figure represents the 

number of documents published by the country. The larger the tree ring radius, the 

greater the number of published papers. The curve connection between nodes represents 

the scientific research cooperation between the two countries. It is not difficult to find that 

countries with many documents published have more academic exchanges with other 

countries. For example, the countries with the most significant number of papers pub-

lished are China, Italy, and the United States. They have frequent cooperation with each 

other and extensive scientific research cooperation with other countries. A major scientific 

research force group with China, Italy, and the United States as the core has been formed 

in this field. The economic development level of these three countries explains that the 

scientific research ability in this field is positively correlated with the social and economic 

development level to a certain extent. 

 

Figure 7. National cooperation network knowledge graph. 
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In terms of the cooperation among institutions, the cooperation network mapping 

among institutions can be obtained by the co-occurrence function of CiteSpace (version 

5.8.R3) software, as shown in Figure 8. The larger the font size of the institution name on 

the figure, the greater the number of documents published by the institution. The higher 

the number of curves near the institution name, the more frequent the cooperation with 

other institutions. It is obvious that although there are many core institutional groups in 

the network, the collaboration among institutions is more frequent and closely linked. 

Further analysis shows that the research on landslide susceptibility prediction mainly pro-

motes the formation of high-productivity research institutions represented by the China 

University Of Geosciences, Tongji University, and Sejong University. In terms of the na-

ture of research institutions, universities, colleges, and institutes are the main research 

forces in this field. 

 

Figure 8. Institutional cooperation network knowledge graph. 

3.2.2. Analysis of Research Hotspots 

To better display hot keywords, keywords with similar meanings were first merged, 

then high-frequency keywords (with a frequency of more than ten times) were extracted 

in VOSviewer software, and keywords that were less relevant to this research were de-

leted for co-occurrence analysis. As shown in Figure 9, different colors represent different 

research topics. The larger the box area and the keyword name, the hotter the node is. The 

four research topics of uncertainty analysis of landslide susceptibility prediction can be 

summarized in Figure 9. In the green keyword group, “susceptibility” shows its status 

and influence as a central topic in both node location and node size. Other keywords such 

as “support vector machine”, “random forest”, and “map” focus on this central word and 

form a tight co-occurrence network, reflecting the high aggregation of the uncertainty re-

search of landslide susceptibility prediction; the red keyword group takes “event” as the 

core and represents the research conducted focusing on the factors that cause landslides 

such as “earthquake”, “flood” and “extreme rainfall”; the blue keyword group is rela-

tively scattered and does not include obvious core hot keywords. However, the research 

content is mostly associated with the input parameters of the susceptibility prediction al-

gorithm, which is related to the situation that the landslide prediction model has many 

parameters that need to be considered and also has uncertainty. The keyword group 
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represented by yellow is more scattered and can roughly show the correlation with the 

early-warning index for landslide occurrence, indicating that there are many hot research 

directions in the research of the early-warning index of landslides. 

 

Figure 9. High-frequency keyword co-occurrence analysis. 

To further present the relationship among research hotspots and grasp their research 

contents and directions, CiteSpace (version 6.1.R2) was used to draw the keyword cluster 

map based on VOSviewer keyword co-occurrence analysis, as shown in Figure 10. The 

research on the uncertainty of landslide susceptibility prediction can be summarized into 

14 clusters, which are #0 debris flow, #1 lithology, #2 landslide displacement prediction, 

#3 support vector machine, #4 hazard assessment, #5 finite element methods, #6 slope sta-

bility, #7 Monte Carlo simulation, #8 fuzzy sets, #9 sediment, #10 malaysia, #11 catchment, 

#12 climate change, #13 shear strength, #14 prediction pattern. The larger the cluster num-

ber is, the greater the number of documents published of this cluster is, and the more 

influential it is in the research in this field. Therefore, these 14 clusters can be divided into 

four research topics: 

(1) Research on disaster-causing factors. It is composed of clusters #0 debris flow, #1 li-

thology, #6 slope stability, #9 sediment, #12 climate change, and #13 shear strength. 

Many factors cause landslides. The analysis results of the cluster map (Figure 10) 

show that the influencing factors of debris flow, underlying surface structure, and 

rainfall are the research hotspots. 

(2) Research on prediction units. It is composed of clusters #2 landslide displacement pre-

diction, #10 malaysia, and #11 catchment. A representative document in cluster #2 land-

slide displacement prediction was published by Aydin, A. in 2006 [70], which suggests 

that landslide-prone slopes should be investigated on site to reduce the uncertainty of 

delimiting the boundary of the research zone. The three documents involving cluster 

#10 malaysia mainly introduce the slope failure data analysis [71] and modeling frame-

work [72], and they reveal the uncertainty of probability prediction [73]. Although 

there are few documents related to this cluster, these documents were published in the 

past two years, indicating that this cluster’s research content is a current hot research 

topic. Furthermore, by retrieving the abstracts of documents in the document sample 

database, it was found that 43 records are directly related to cluster #11 catchment, 

which shows that catchment is undoubtedly a hot topic of current research. 

(3) Research on data sets. It comprises clusters #4 hazard assessment and #8 fuzzy sets. 

From the number of groups, it can be seen that there are few research contents related 
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to data sets. However, this does not mean scholars do not care about the topic. On 

the contrary, it reflects the lack of landslide data. 

(4) Research on prediction models. It comprises clusters #3 support vector machine, #5 fi-

nite element methods, #7 Monte Carlo simulation, and #14 prediction pattern. In addi-

tion to the cluster #14 prediction pattern, the other three cluster numbers related to the 

prediction models are highly ranked. Figure 10 intuitively shows that the three cluster 

color blocks cover a large area, indicating that the landslide susceptibility prediction 

models have attracted much attention. There are many landslide prediction models 

that can be selected, but it can be found that the three models of support vector ma-

chine, finite element methods, and Monte Carlo simulation are the most popular un-

certainty analysis models for landslide susceptibility prediction at present. 

 

Figure 10. Cluster graph of Citespace. 

3.2.3. Analysis of Frontier Trend 

The mutation keywords refer to keywords with rapidly increased frequency in a cer-

tain period, which can be used to predict emerging trends in a particular field. The data 

were imported into the CiteSpace tool by CiteSpace (version 6.1.R2) for Burst detection, 

and the parameter settings are as follows: Gamma = 0.2, number of states = 2.0, and mini-

mum duration = 1. The 25 mutation keywords and their durations in the uncertainty re-

search field of landslide susceptibility prediction during 1982–2022 were obtained, as 

shown in Figure 11. In Figure 11, Column 1 represents keywords, and Column 2 repre-

sents the earliest years in all documents. Column 3 represents the increased intensity of 

the frequency of the keyword cited or the quantized value of the degree to which the key-

word is concerned. The years in Columns 4 and 5 represent the keyword’s earliest years 

and latest years, respectively. The red strip represents the duration. For example, the in-

creased intensity value of the citation frequency of the node of the keyword flow is 2.44, 

the start time is 1998, and the end time is 2009; this means that the mutation keyword has 

been cited for 12 years and can be used to analyze the keyword mutation index in this 

research field and describe the frontier development trend. In order to more intuitively 

analyze the development process of mutation keywords in terms of time, by sorting 
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mutation keywords in Figure 11 by the start time, it can be intuitively seen that flow ap-

pears first and lasts for the longest time, but it is not the keyword with the most incredible 

intensity. The keyword with the greatest intensity is uncertainty analysis, which is also 

the core issue of this research. Pennant Figure 12 shows that there are many factors that 

affect the prediction results of landslides, and it also shows that it is very difficult to carry 

out uncertainty analysis. In addition, although keywords such as random forest, machine 

learning, and neural network have appeared only in the last three years, they are not only 

the current research hotspot but also the research director for a long time in the future in 

terms of intensity and end time. 

 

Figure 11. Keyword mutation analysis. 

 

Figure 12. Uncertainty analysis pennant plot. 

The timeline chart analysis was made by CiteSpace (version 6.1.R2) for keywords in 

the research field of the uncertainty of landslide susceptibility prediction, and the evolu-

tion routes of all clustering keywords are shown in Figure 13. To observe the evolution 

route of keywords, timeline chart 13 adopted the same LSI algorithm as clustering map 
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11. Therefore, the keyword clustering names in timeline chart 13 are consistent with Fig-

ure 10. In Figure 13, a ring-shaped tree node on the timeline represents a keyword. The 

larger the tree ring diameter is, the more frequently the keyword appears. The solid-line 

part on each timeline represents the duration of this cluster. The #9 sediment is a firstly 

researched cluster, and its research began in 1995 and ended in 2009, lasting only 15 years, 

while #0 debris flow has the most extended duration of 26 years, and its research began in 

1996 and is still being researched. The continued clusters include #2 landslide displace-

ment prediction, #3 support vector machine, #5 finite element methods, #7 Monte Carlo 

simulation, #10 malaysia, #11 catchment, and #12 climate change. Although these clusters 

started a little later, they all represent the frontier research trend in the future. 

 

Figure 13. Timeline diagram based on LSR algorithm. 

4. Main Research Subfields 

There are many uncertain factors in the modeling process of landslide susceptibility 

prediction [74], such as the accuracy of topographic data [75], the selection of environ-

mental factors [76] and their spatial resolution [77], the choice of non-landslide samples 

[78], the proportion of model training test set [79], and the determination of prediction 

models [80]. A landslide geological model is a simple expression that abstracts and gen-

eralizes the main engineering geological elements and deformation and failure of land-

slides through a comprehensive analysis of engineering geology based on landslide char-

acteristics. The main reasons for the uncertainty in this process are as follows: 

(1) Regarding objective factors, the landslide system is influenced by random conditions 

and processes. The internal conditions cause the influence, external factors, and the 

interaction of internal and external factors that constitute the landslide system. When 

the landslide disaster prediction models are built, the data used often come from a 

small number of the known and observable key influencing factors, but a large num-

ber of information that is unknown or difficult to obtain is not taken into account, 
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which makes the landslide prediction model only approximate to the actual situation 

in essence and increases the uncertainty of the models [81]. 

(2) In terms of the influence of subjective factors, the process of building landslide pre-

diction models is easily influenced and interfered with by the subjective factor of the 

human cognitive level and the lack of accurate understanding of the prediction unit, 

data set selection, and model determination of landslide prediction models will in-

evitably greatly increase the uncertainty of the model [82]. 

It is clear that the modeling process of landslide susceptibility prediction is bound to 

be affected by the above factors, resulting in a certain degree of uncertainty in the predic-

tion results of the model. In combination with the results of bibliometric analysis and 

knowledge mapping analysis in Section 3 of this paper, it was found that the research on 

the uncertainty of landslide susceptibility prediction first needs to establish a correct un-

derstanding of the impact of disaster-causing factors on landslides and the nonlinear cor-

relation between disaster-causing factors, then correctly divide the prediction units, select 

the original data set from the massive monitoring data, and decompose the data set into 

the training set and test set in proper proportions, to lay the foundation for the correct 

selection of models and reduce the uncertainty of landslide disaster prediction results. 

Therefore, this paper divided the research on the uncertainty of landslide susceptibility pre-

diction into the following four subfields for discussion: (1) uncertainty analysis of disaster-

causing factors, (2) uncertainty analysis of prediction units, (3) uncertainty analysis of model 

space data sets, and (4) uncertainty analysis of prediction models, as shown in Figure 14. 

 

Figure 14. Subfield composition. 

4.1. Uncertainty Analysis of Disaster-Causing Factors 

The occurrence of a landslide disaster is a complicated nonlinear dynamical system 

process with uncertainty [83], in which there are often many hidden and uncertain factors 

[84]. Its evolution process is affected by many factors, such as structure, rainfall, landform, 

and human activities, and it is also the result of the combined effect of various factors [85]. 

The landslides cannot be comprehensively analyzed and predicted without any of them. 

From a macroscopic point of view, these impact factors can be divided into two categories: 

trigger factors and environmental factors; as shown in Figure 15, a color represents a class 

of influencing factors. Three main factors trigger landslides [7]; the first trigger factor is 

the impact of earthquakes. Massive landslides are often triggered by earthquakes [86], and 

the disasters caused are also huge; the second trigger factor is the actions of water. Con-

tinuous rainfall [87] and snow melting [88] will saturate the soil and reduce the lubrication 

friction coefficient of the sliding surface [89], resulting in landslides. The third trigger fac-

tor is human activities [90]. Unreasonable human excavation will destroy the conditions 

of the underlying surface, especially human activities such as illegal mining tree cutting, 

reducing the earth’s regulation capacity and creating conditions conducive to landslides. 

Many landslide events show that the probability of landslides caused by human factors 
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may be greater than that caused by climatic factors. By summarizing the landslide influ-

encing factors used in the previous literature, the environmental factors that cause land-

slides mainly include geological environment [91], topography environment [4], and hy-

drological environment [92]. Among them, slope is the most considered factor by most 

literature [93]. Obviously, the slope is the initial factor that needs to be considered in the 

uncertainty analysis of landslide susceptibility prediction. 

 

Figure 15. Landslide influencing factors commonly considered in the literature. 

The basic work of landslide disaster prediction is to analyze the impact of various 

disaster-causing factors on the occurrence of landslides and the potential combined influ-

ence of various disaster-causing factors [94]. As there is a specific correlation between the 

various index factors that affect the formation of landslides, these index factors were ana-

lyzed to reduce the superimposed impacts between them [95]. The landslide disaster-

causing factors often have the characteristics of uncertainty and complexity, and it is gen-

erally difficult to quantitatively analyze the effect of these factors and predict the proba-

bility of occurrence of landslide disasters. According to the nonlinear correlation analysis 

of disaster-causing impact conditions and characteristics based on statistical analysis the-

ory, landslide prediction can be connected with disaster-causing factors for qualitative 

analysis. The commonly used connection methods include the weight of evidence, infor-

mation entropy, frequency ratio, probability statistics, etc. [96]. As a geo-statistical 

method, the weight of evidence makes a superimposed compound analysis of some geo-

graphic information related to the formation of landslide disaster through Bayesian sta-

tistical analysis mode to predict dangerous areas. It is an organic combination of mathe-

matical statistics, image analysis, and artificial intelligence and also provides an effective 

way for landslide disaster prediction based on the GIS platform. Information entropy is 

the basic concept of information theory, which mainly describes the uncertainty of various 

possible disaster events in landslide information sources. The frequency-ratio method is 

simple in structure and can effectively reflect the effect of environmental factors on the 

probability of occurrence of landslides. Under the premise of probability axioms, proba-

bility statistics believe that, although a variety of landslide events may occur in a random 

sampling, the landslide disaster event (outcome) that is most likely to occur (encounter) 

is the event with the highest probability. Currently, there is no unified demonstration or 

empirical basis for determining which connection method to use for the nonlinear 
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correlation analysis of landslide disaster-causing factors. Table 4 shows several typical 

cases in the documents. 

Table 4. Typical cases of nonlinear correlation analysis of disaster-causing factors. 

References Purpose Factors Research Idea Conclusion 

Tsai, F.  

et al. [97] 

Verify landslides 

caused by heavy 

rainfall in Taiwan 

Topographic 

and vegetation 

factors 

Used decision tree and Bayesian network data 

mining algorithm to extract landslide factors 

from the provided knowledge and develop a 

statistical-based mechanism to reduce data 

uncertainty. 

Apply the model to landslide 

prediction directly, and the 

prediction results will be 

unreliable due to the spatial 

uncertainty of data. 

Tsai, T.L.  

et al. [98] 

Evaluate shallow 

landslides caused 

by rainfall 

Soil 

parameters, 

slope 

conditions, and 

hydrological 

conditions 

Compared the applicability of Rosenblueth 

point estimation method and Monte Carlo 

simulation method by using various soil 

parameters, slope conditions, and hydrological 

conditions. 

The correlation of soil parameters 

reduces the safety standard 

deviation factor but does not 

affect the safety mean factor. The 

prediction error may occur if the 

correlation of soil parameters is 

ignored. 

Wang, X.  

et al. [99] 

Analyze the 

correlation 

between relevant 

factors and 

landslide 

Lithology, 

relative relief, 

tectonic fault 

density, 

rainfall, and 

road density 

Proposed using the CLSI and CLAI calculated 

based on the frequency ratio to express the 

correlation between various factors and 

landslide occurrences. 

CLSI is helpful to reduce the 

uncertainty of sensitivity 

assessment when the landslide 

inventory with non-uniformity 

problems is used. 

Oguz, E.A.  

et al. [100] 

Quantify the 

impact of 

disaster-causing 

factors on 

prediction 

uncertainty 

Geotechnical 

and 

hydrological 

parameters 

Developed a three-dimensional slope stability 

model combined with random field model and 

Monte Carlo method to capture spatial 

variability and predict landslide susceptibility. 

The new model has higher 

landslide prediction accuracy 

than the traditional model. 

Lian, C.  

et al. [101] 

Affect the 

interaction of 

different inducing 

factors of 

landslide 

evolution 

Structure, 

rainfall, and 

reservoir water 

level 

fluctuation 

Proposed a new neural network technology of 

extreme learning machine integration (E-ELM) 

and used the grey correlation analysis (GRA) 

method to screen out the inducing factors with 

great influence as the input factors in E-ELM. 

The model can predict the trend 

component displacement and 

periodic component 

displacement, and the total 

predicted displacement is 

obtained by adding the predicted 

displacement values of each 

factor. 

Huang, F.  

et al. [102] 

Study the 

influence of 

environmental 

factor attribute 

interval division 

quantity on 

modeling 

Topography 

and landform, 

formation 

lithology, 

hydrological 

environment, 

and surface 

coverage 

Obtained the landslide inventory and its 

environmental factors in the research area and 

carried out frequency ratio analysis on 

continuous environmental factors under the 

condition of dividing quantitative values in 

different attribute intervals. 

When the frequency ratio 

analysis is made, there is a critical 

point in the continuous 

environmental factor of the 

landslide that can effectively 

avoid too complex of a frequency 

ratio calculation, while ensuring 

the prediction accuracy. 

It is difficult to identify the relationship between the factors that can control and af-

fect the preparation and occurrence of landslides and the relationship between factors and 

the occurrence of landslides. The feature extraction and nonlinear correlation analysis of 

disaster-causing factors is complex and challenging research. In addition, due to the lack 

of historical data required to determine the occurrence of landslides, a large number of 

research needs to be conducted to reduce the uncertainty of disaster-causing factors that 

affect landslide prediction. Therefore, scholars rarely use a single method to solve such 

complex problems but mostly analyze the fate of disaster-causing factors by integrating a 

variety of analysis methods. For example, some scholars combine the soil moisture 
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routing (SMR) model and the infinite slope model with probability analysis by grid-based 

tools to analyze the relationship between disaster-causing factors such as climate, digital 

elevation model, soil and land use, and disaster-prone areas [103]; some scholars create 

the optimal landslide sensitivity zoning map by weight of evidence, landslide frequency 

ratio, and fuzzy logic methods [95]. The weight of evidence is used for continuous classi-

fication factor data, the landslide frequency ratio assigns a membership degree to factor 

category, and the fuzzy logic method integrates the membership values; other scholars 

determine the landslide location and disaster-causing factors by the GIS-based frequency 

ratio (FR) statistical method [104] and the multi-criteria decision-making (MCDM) [105] 

and hybrid SMCE integrated method [106]. Each method used for the uncertainty analysis 

of disaster-causing factors has its advantages and disadvantages. Therefore, there is no 

absolute optimal method, only the method most suitable for the landslide prediction effect. 

Although it is difficult for scholars to clearly and reasonably explain the reasons for choos-

ing this analysis method, a large number of practices have proved that the uncertainty of 

landslide disaster prediction calculated by a single method (due to its incomplete function 

and poor adaptability) is often higher than the prediction results calculated by integrating 

multiple methods. In short, complex nonlinear problems should be handled by integrated 

methods. 

4.2. Uncertainty Analysis of Prediction Units 

The prediction of landslide disasters is based on the division of prediction units in 

the research areas. According to the specific geological and topographic conditions in dif-

ferent regions, the corresponding division methods are used for disaster-causing factors 

to divide the shape and size of prediction units and further carry out the uncertainty anal-

ysis of the model space data sets, prediction models, and prediction results in combination 

with the uncertainty analysis of disaster-causing factors. In the research process, the re-

searchers analyze the distribution of disaster-causing factors and landslide disasters in the 

research area, divide the prediction units based on the screened disaster-causing factors, 

and divide the secondary disaster-causing factors by reasonable unit division methods. 

The division methods can be roughly divided into two categories: regular units and irreg-

ular units. Some more representative case studies are shown in Table 5. 

Table 5. Typical cases of nonlinear correlation analysis of disaster-causing factors. 

Division 

Method 

Research 

Content 

Object to Be 

Divided 
Method Conclusion 

Regular 

units 

Obtain the 

optimal landslide 

sensitivity 

assessment [107] 

Lithology and soil 

hydrological 

information in 

regional landslide 

inventory 

Divide the research area into grid units and 

topographical units, subdivide the slope 

units according to the topographic gradient 

to obtain hydrological morphological units, 

and determine a single pixel as the 

representative of the landslide depletion 

area for grid units. 

It minimized the inherent limitations 

of regional landslide inventory and 

sensitivity maps. 

Influence of soil 

depth on the 

probability of 

occurrence of 

landslides [108] 

Soil characteristics 

and vegetation 

classification 

Develop a source tracking algorithm (STA), 

and use the spatial variable supplementary 

data from a hydrologic source domain 

(HSD) and the spatial distribution grid data 

of soil characteristics and vegetation 

classification to characterize the parameter 

estimation of the probability distribution of 

the model input uncertainty. 

“Over-representation” areas that 

suffer from shallow landslides may 

be misleading. Locations with high 

landslide probability other than 

landslides can be used as the index 

for the additional investigation of 

missing areas. 

Evaluate the 

spatial variability 

and uncertainty 

Slope, soil strength 

Analyze the grid data, provide the 

estimated value of parameter area with 

relevant error range by the Kriging method 

and display the safety factor calculated at 

This landslide prediction method can 

be improved by using the Kriging 

method. 
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of model 

parameters [109] 

each point of the grid to identify the 

landslide. 

Irregular 

unit 

division 

Number of 

landslide events 

when rainfall 

reaches its 

threshold [110] 

Landslide 

inventory, daily 

rainfall, and 

effective 

cumulative rainfall 

Divide the research area into multiple rain 

gauge control areas by the improved 

Thiessen Polygon method and divide the 

control area into slope units that reflect the 

topographic characteristics to improve the 

spatial resolution of the rain gauge. 

The rainfall of at least one rainfall 

event in the slope unit exceeds the 

threshold. 

Uncertainty of 

different 

landslide 

boundaries on 

modeling [76] 

Slope, lithology, 

and other 

environmental 

factors 

Establish the correlation between the 

landslide boundary and the frequency ratio 

of the landslide boundary and 

environmental factors based on landslide 

points, buffer circles, and polygonal 

surfaces, and then select multilayer 

perceptron and random forest to build the 

model. 

Compare the method using a 

polygon surface with the method 

based on point and circle, and the 

boundary and spatial shape can 

significantly improve the accuracy of 

landslide sensitivity map LSM. 

Predict the scope 

of landslide [111] 

Plane area of 

landslide 

First introduce a statistic-based model, 

establish models on the slope triggered by 

the landslide in response to seismic 

vibration, and simulate the expected failure 

surface on the slope without landslide. 

The model can estimate the plane 

area of the landslide aggregated by 

each slope unit. 

Evaluate the 

influence of 

topographic 

mapping unit on 

data-driven 

landslide 

sensitivity map 

[112] 

Slope angle, aspect, 

slope area ratio, 

lithology, and land 

use / land cover 

Calculate the landslide sensitivity model by 

using the same topographic mapping unit 

(slope topographic unit) and the complete 

landslide inventory represented by polygon 

features. 

The accuracy of landslide spatial 

location is the key criterion for 

selecting the most suitable 

topographical unit for modeling; 

when the spatial accuracy is low, the 

grid topographic units should not be 

used, and the use of irregular units 

can help to reduce the adverse effects 

caused by location errors. 

The reasonable division of prediction units plays a certain role in optimizing the pre-

diction model, reducing the uncertainty of landslide disaster prediction, and improving 

the prediction effect. Although there is no reasonable explanation to determine which di-

vision method is more advantageous at present, the cases in the documents show that the 

regular grid unit division method is less used in the two ways. Although the grid division 

method is simple, it is highly subjective. It often has problems of too many or too few grids 

and artificial destruction of the integrity of landslide prediction, leading to the distortion 

of prediction results. In most cases, the irregular unit division method is used. Although 

this method is more complex and uses polygons with different shapes, it has a clearer 

geological significance and is more in line with the irregularity of landslide boundaries. 

In particular, with the wide application of GIS technology, the analysis, calculation, and 

drawing ability of landslide prediction has been greatly improved, which can not only 

realize the vector superposition of any layer to solve the division problem of the predic-

tion unit but also does not need to take into account the errors and mapping difficulties 

caused by boundary differences. 

4.3. Uncertainty Analysis of Model Space Data Sets 

Landslide prediction needs to be supported by many sample data so that the predic-

tion results can be more reliable. Data sampling/collection processes are crucial for land-

slide susceptibility mapping. By providing more field data, the accuracy and reliability of 

landslide susceptibility mapping can be improved, thereby reducing uncertainty [113]. 

With the development of geographic information technology, information and communi-

cation technology (ICT), it has become possible to use citizen science (CitSci) methods in 

the landslide data collection process [114], which has huge advantages in landslide data 



Remote Sens. 2022, 14, 3879 23 of 36 
 

 

collection, validation, and interpretation potential, thereby contributing to the study of 

landslide prediction uncertainty. Since Goodchild, M.F. et al. coined the term Volunteer 

Geographic Information (VGI) in 2007 [115], public awareness of landslides has continued 

to improve, and people are not only consumers but also collectors of landslide data [116], 

even willing to actively participate in the process of risk and disaster management [117]. 

A single data set is usually divided into the training and test sets for landslide prediction 

and accuracy verification [118]. Given the diversity of data sets and processing methods, 

it is important to determine the optimal combination by comparing the results of data sets 

obtained by different methods [119]. Although there is no consensus between the optimal 

data set and the evaluation method, some data sets (such as slope angle, lithology, land 

use/coverage, etc.) have been widely accepted as the basis of landslide prediction. Data 

sets usually correspond to specific landslide events and historical lists (such as slope an-

gle, aspect, height, plane curvature, profile curvature, dynamic river index, sediment 

transport index, topographic wetness index, distance to the river, distance to road, dis-

tance to fault, NDVI, land use, lithology, rainfall, and other data) [118]. Thanks to the de-

velopment of various landslide disaster prediction technologies, more and more landslide 

prediction data are available worldwide with different accuracies. These monitoring data 

are various characteristic variables related to the landslide state and inevitably contain 

some errors. The main reasons for the uncertainty of the accuracy of landslide prediction 

data sets include imperfect measuring systems or instruments, restricted technical means, 

disturbed environmental conditions, etc. The common landslide disaster prediction data 

and application cases are shown in Table 6. 

Table 6. Landslide disaster prediction data and application cases. 

Location Data Application Conclusion 

Countries of the 

European 

Community [120] 

Remote sensing 

landslide data 

Emphasize the image types required for different 

analysis scales; monitor the activities of existing 

landslides by GPS, photogrammetric technology, 

and radar interferometry; spatio-temporal 

analysis and prediction of slope failure 

Integrate remote sensing technology into 

the overall framework of landslide 

prediction uncertainty analysis technology. 

The Cascade Range 

in western Oregon, 

USA [121] 

DEM and 

geological data 

Process the DEM to generate a series of slope 

stability maps and evaluate the uncertain impact 

of elevation error on landslide sensitivity 

The evaluation of the ability of uncertainty 

may help to understand the advantages 

and disadvantages of digital data and 

spatial information system applications. 

Kaikoura, New 

Zealand [122] 

Multi-temporal 

airborne laser 

radar data set 

Propose to use a new semi-automatic 3D point 

cloud difference method to detect the landform 

variations, filter the false landslide detection 

caused by laser radar elevation error, obtain a 

robust landslide list with uncertainty 

measurement, and directly measure the volume 

and geometric characteristics of the landslide. 

The size dependence detection of the 

system is insufficient in the 2D list, while 

the 3D derived list can be used to detect 

various hillside movements that cannot be 

captured by 2D landslide surveying and 

mapping. 

Italy [123] 
FraneItalia 

database 

Use thousands of landslide events for the 

reanalysis of uncertain data sets to obtain 

precipitation and volumetric soil moisture data 

Compared with the reanalyzed soil 

moisture data, precipitation information is 

still a better prediction index to trigger 

landslides. 

Switzerland [124] 
Soil moisture and 

rainfall data 

Propose a sequential threshold method, which 

first is divided into dry and wet preconditions 

through antecedent soil saturation threshold, and 

then estimate two threshold curves with different 

total rainfall duration. 

The combination of soil moisture state 

estimation and infinite slope method can 

improve the separation between triggered 

and non-triggered rainfall events of 

landslides. 

Northwestern 

Tunisia [125]  

Data of landslide 

regulating factors 

such as elevation, 

slope, and aspect 

Draw landslide sensitivity maps by two bivariate 

statistical models (evidence belief function (EBF) 

and weight of evidence (woe)), and landslide 

inventory maps by aerial photos, satellite images, 

and field surveys. 

The landslide sensitivity maps of the two 

models are very similar, but the WoE 

model is more effective and can be used for 

the future planning of the research area. 
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Oregon [126] 
Laser radar 

derived data set 

Make use of the laser radar derived data set and 

set up the research area through several widely 

used statistical technologies to realize landslide 

sensitivity analysis 

Only a few factors are needed to produce a 

satisfactory ability sensitivity map with 

high predictability. 

The construction of landslide inventories is also very important for landslide suscep-

tibility mapping. Studies have shown that the error of landslide prediction susceptibility 

mapping mainly comes from landslide inventory, and the lack of detailed landslide in-

ventories often limits the uncertainty analysis in landslide prediction [127]. For example, 

the construction of landslide inventories is challenging due to the lack of access to high-

altitude areas, for which interpretation and heuristics of remote sensing datasets are com-

bined with statistical sensitivity models to overcome the limited spatial coverage [128]. 

On the other hand, most landslide inventories are not updated over time and therefore 

may not capture the effects of climate, land-use change, etc. The construction of these 

landslide inventories requires extensive field or remote sensing work, and the construc-

tion of landslide inventories based on citizen reports has the potential to overcome these 

limitations. This landslide inventory is developed through the establishment of a national 

database, and citizens report remote sensing information to online systems so that land-

slide information can be updated and recorded in real time, resulting in improved land-

slide susceptibility predictions at a lower cost and a higher resolution accuracy [129]. Alt-

hough this type of landslide inventory is promising, further development of normative 

data standards is needed due to possible spatial uncertainty and reporting bias in the data. 

High-quality input data can improve landslide susceptibility mapping and improve 

prediction accuracy [130]. In order to improve the quality of input data, spatial data clean-

ing is crucial to remove uncertainty-type information such as ambiguity, noisy data, in-

consistency, etc., hidden in the input spatial dataset. Although data fusion can be used in 

preprocessing to deal with the problem of data ambiguity, band-pass or slot filtering is 

used to eliminate periodic noise, Fourier transform is used for filtering to eliminate spike 

noise, and resampling is used in a certain amount of time to some extent solve the problem 

of inconsistency, but overall there is no general method for spatial data cleaning. Hsu, 

P.H. et al. attempted to use kriging interpolation to calibrate quantitative rainfall data with 

rainfall observations from rain gauge stations to eliminate data inconsistencies [131]. The 

results show that after data cleaning, Kriging interpolation-based methods can effectively 

correct inconsistencies, and artificial neural network analysis algorithms (ANNs) are ap-

plied to integrate large amounts of spatial data collected from historical risk events, dy-

namic real-time such as rainfall and water levels. The uncertainty of observations and the 

results of different risk models can make landslide predictions accurate to 92.3%. Using 

spatial data mining and knowledge discovery (SDMKD) technology, landslides caused by 

rainstorms can be effectively mapped from remote sensing images and geospatial data. 

A model space data set usually decomposes the original data set into the training set 

and test set, with different proportions, and the flow chart is roughly shown in Figure 16. 

The choice of model parameters in landslide susceptibility mapping makes a major deter-

minant of model accuracy [132]. With regard to machine learning models, the determina-

tion of their hyper-parameters are crucial. Usually, hyperparameters need to be opti-

mized, and a set of optimal hyperparameters is selected to improve the performance and 

effect of machine learning. Early research literature on landslide susceptibility mapping 

models was more focused on the comparison of the modeling accuracy of different meth-

ods, rather than the application of hyperparameter optimization in landslide machine 

learning modeling [133]. Later, people gradually realized the importance of hyperparam-

eter optimization and carried out some optimization methods about hyperparameters. For 

example, in 2010, Wan, Z. et al. proposed a simple, practical, and time-efficient method 

for selecting hyperparameters for orthogonal design [134]. In 2014, Wang, X. et al. pro-

posed a Gaussian kernel-based hyperparameter selection method for SVM [135]. In 2020, 

Sun, D. et al. used a Bayesian optimization algorithm to optimize hyperparameters and 
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established some high-precision random forest landslide sensitivity evaluation models 

[133]. 

At present, many kinds of methods and models have been widely used in the predic-

tion of landslide disasters, but one of the difficulties in the application of these methods 

and models is the uncertainty of the model space data set. The spatial variability, meas-

urement error, uneven density distribution, incomplete information, and other character-

istics of data sets will cause the uncertainty of input parameters and the analysis process. 

For this reason, people continue to explore measures that can compensate for the lack of 

data. For example, to deal with uncertainty propagation through physical models, the 

landslide sensitivity is evaluated by combining fuzzy theory with the vertex method and 

point estimation. The results show that the fuzzy method can appropriately respond to 

the landslide sensitivity analysis based on physical uncertainty in watersheds [38,136]. 

Furthermore, the physically-based TRIGRS model has been successfully applied to eval-

uate rainfall-induced shallow landslides in different research worldwide [137]. In partic-

ular, the San Carlos, Colombia application shows that TRIGRS can become a valuable tool 

for landslide disaster prediction in tropical mountainous areas without data. 

 

Figure 16. Computational flowchart for model space datasets. 

4.4. Uncertainty Analysis of Prediction Models 

In terms of the time-space relationship, landslide prediction models can be divided 

into two categories: space and time. To sum up, the space prediction model mainly in-

cludes the information model, statistical model, expert system prediction model, grey sys-

tem model, pattern recognition model, and nonlinear model. In contrast, the time predic-

tion model mainly includes a long-time prediction model (grey catastrophe model) and 

critical sliding time prediction model (Verhulst grey model based on displacement infor-

mation, friction heat information model based on the sliding surface, landslide dynamic 

displacement prediction model based on rainfall process). In the calculation process of 

landslide disaster prediction, careful prediction models are fundamental because the 

wrong selection of prediction models and setting model parameters will lead to strong 

uncertainty in the landslide prediction results. According to the document sample library 
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analysis in Chapter 3 of this paper, statistical and pattern recognition models have been 

widely used in the uncertainty analysis of landslide disaster prediction. In addition, as the 

two leading space models, they are the key contents of this subfield. 

4.4.1. Statistical Model 

The statistical model is used to establish the correlation relationship between land-

slide disasters and various factors or the combination relationship between landslide-in-

duced factors by studying the statistical law between geological and geomorphic environ-

mental factors, in the places where the existing landslide disasters and similar unstable 

phenomena occur, and inducing factors, to build the corresponding prediction model. As 

shown in Figure 17, the landslide disaster prediction models that have been actively re-

searched mainly include the regression prediction model, discriminant analysis model, 

cluster analysis model, etc. Typical cases of statistical models in landslide disaster predic-

tion are shown in Table 7. 

 

Figure 17. Statistical model. 

Table 7. Typical cases of statistical models in landslide disaster prediction. 

References 
Research 

Content 
Model Used Method Conclusion 

Thiery, Y.  

et al. [138] 

Test of the 

performance of 

statistical 

evaluation 

method for 

landslide 

sensitivity 

Weight of 

evidence 

(WOE) 

Identify variables that represent the 

optimal response; test evaluate the 

simulation performance by the optimal 

combination of predictive variables and 

new predictive variables; evaluate the 

statistical model through expert 

judgment 

The bivariate method can effectively 

evaluate the landslide sensitivity at the scale 

of 1:10,000. When RV and PV are complex or 

limited by an insufficient amount of 

information, expert knowledge needs to be 

introduced into the statistical model to 

generate a reliable landslide sensitivity map. 

Schicker R. 

et al. [139] 

Extraction of 

landslide 

inventory data 

from the original 

database 

Logistic 

regression and 

weight of 

evidence 

Use sensitivity maps that are predicted 

successfully and derived and evaluated 

by ROC curves for logistic regression 

and weight of evidence 

The WOE method cannot successfully 

predict landslides other than the original 

data. 

Rossi, M.  

et al. [140] 

Evaluation of 

landslide 

sensitivity 

Support vector 

machine, 

logistic 

regression 

Describe the structure of software for 

landslide sensitivity evaluation, explain 

the input and output, and illustrate the 

specific applications with maps and 

graphics 

Complete and comprehensive landslide 

sensitivity evaluation includes a model 

performance analysis, prediction skill 

evaluation, and error and uncertainty 

estimation. 



Remote Sens. 2022, 14, 3879 27 of 36 
 

 

Shepheard, 

C.J. et al. 

[141] 

Variation of rock 

and soil 

parameters 

Regression 

analysis 

Determine the possible range of slope 

safety factor and the relative influence 

of other rock and soil parameters (such 

as topsoil depth and rainfall) through 

the statistical analysis combined with 

numerical simulation 

A database of particle size distribution, in-

situ moisture content, Atterberg, and direct 

shear box test results was set up. 

4.4.2. Pattern Recognition Model 

A pattern recognition model is a model based on artificial intelligence technology, 

which simulates the function of human beings to perceive the outside world by the mode 

of replacing or helping human beings to perceive with computers. With the continuous 

development of artificial intelligence, machine learning methods have become increas-

ingly popular in recent years [37]. Machine learning models have broad application pro-

spects in predicting landslide disasters due to their advantage of high prediction accuracy 

[142]. At present, the prediction model of machine learning is mainly based on five algo-

rithms, including an ensemble learning algorithm, interpretation algorithm, clustering algo-

rithm, dimension reduction algorithm, and similarity algorithm, as shown in Figure 18. 

 

Figure 18. 5 Algorithms of machine learning. 

(1) The ensemble learning algorithm is mainly used in regression and classification or 

supervised learning problems. Due to its inherent properties, the ensemble learning 

algorithm is superior to all traditional machine learning algorithms, including Naïve 

Bayes, SVM, and decision tree. 

(2) Interpretation algorithm: It can identify and understand variables with statistically 

significant results. Therefore, instead of creating models to predict landslide disas-

ters, it is better to develop interpretative models to understand the relationship be-

tween variables in the landslide disaster prediction models, including the SHAP al-

gorithm and LIME algorithm. 

(3) Clustering algorithm: It is an unsupervised learning task used for clustering analysis, 

which usually groups the data into clusters. Unlike the known target variables of 

supervised learning, there are traditionally no target variables in a clustering analy-

sis. A clustering algorithm can be used to find natural patterns and trends of land-

slide displacement data. It includes K-means clustering and hierarchical clustering. 
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(4) Dimension reduction algorithm: It is a technology used to reduce the number of input 

variables (or characteristic variables) in the data set. With the increase in dimension 

(the number of input variables), the volume of spatial data of the landslide model 

increases exponentially, which eventually leads to the sparse data of main control 

factors for landslide prediction. It includes the principal component analysis (PCA) 

and linear discriminant analysis (LDA). 

(5) Similarity algorithm: It refers to those algorithms used to calculate the similarity of 

records/nodes/data points/text pairs and includes the similarity algorithm for com-

paring the distance between two data points (such as Euclidean distance) and the 

similarity algorithm for calculating text similarity (such as the Levenshtein algo-

rithm). 

There are many machine learning models for landslide disaster prediction [143], includ-

ing BP neural network, multilayer perceptron, fuzzy mathematics, support vector ma-

chine, decision tree, random forest, various integration models, and recently developed 

deep learning models [144]. Table 8 shows several typical cases of the application of ma-

chine learning in landslide disaster prediction. 

Table 8. Typical cases of machine learning models in landslide disaster prediction. 

References Research Content Model Used Method Conclusion 

Tehrany, M.S. 

et al. [145] 

Evaluation of flood 

sensitivity 

Support vector 

machine (SVM) 

and frequency 

ratio (FR) 

Propose a new integration method, in 

which the spatial modeling is established 

in the flood sensitivity evaluation by 

integrating support vector machine (SVM) 

and frequency ratio (FR) 

The proposed integration method 

has fast, accurate, and reasonable 

effectiveness in the flood 

sensitivity evaluation. 

Huang, L.  

et al. [146]  

Weather early 

warning of 

precipitation-

induced landslides 

Deep learning 

Propose deep belief network (DBN) 

method with Softmax classifier and 

Dropout mechanism, in which the Softmax 

classifier is added to the top of the DBN 

neural network to improve the prediction 

accuracy 

Compared with the existing BP 

neural network algorithm and the 

BP algorithm based on particle 

swarm optimizer (PSO-BP) 

algorithm, the newly proposed 

method has higher accuracy and 

better technical performance. 

Luo, X.  

et al. [147]  

Generation of 

landslide 

sensitivity map 

Random subspace 

(RS) and logistic 

model tree (LMT) 

Propose a hybrid machine learning 

method RSLMT, in which the landslide 

sensitivity map (LSM) is generated by 

coupled random subspace (RS) and 

logistic model tree (LMT) 

The uncertainty introduced by 

the characteristics is input, and 

the over-fitting problem is solved 

by dimension reduction to 

improve the prediction rate of 

landslide occurrence. 

Sahin, E.K.  

et al. [148] 

Landslide 

sensitivity map 

Integration 

method based on 

regression tree 

Draw landslide sensitivity maps by three 

integration methods based on regression 

tree such as gradient boosting machine 

(GBM), extreme gradient boosting 

(XGBoost), and random forest (RF) 

The prediction ability of the 

model created by the optimal 

factor combination is the highest. 

Di Napoli, M. 

et al. [149]  

Statistics of 

landslide 

sensitivity map 

ML algorithm of 

artificial neural 

network, 

generalized lifting 

model, and 

maximum entropy 

A new methodology is proposed and 

tested in the study area, and the eliciting 

factor is selected for evaluation by a 

variance inflation factor 

Integrated modeling based on 

artificial neural network, 

generalized boosting model, and 

maximum entropy ML algorithm, 

showing higher reliability. 

In recent years, remote sensing data classification methods have gradually developed 

in the direction of machine learning, among which deep learning methods for processing 

remote sensing data and pattern classification in landslide susceptibility mapping have 

gradually emerged [150]. A deep learning approach is an automatic model building 

method for analyzing data, making it possible to learn the fundamental relationships and 

hidden observations present in the data to build an analytical model [151]. Trong-An 
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proposed a system that combines deep learning and image transformation algorithms to 

detect the location of landslides in satellite images [152]. In order to accurately identify 

landslides under different lighting conditions, they classified the landslide images by us-

ing a transformation algorithm Hue-Bi-dimensional empirical model decomposition (H-

BEMD) to determine the area and size of landslides. The results showed that the accuracy 

of the method in the classification process was as high as 96%. Guang Xu proposed a 

recognition model of land cover types in field photos based on deep learning technology 

[153], which has good recognition accuracy for land cover classification. 

5. Discussion 

The landslide disaster system is complex with dynamic development, nonlinearity, 

and uncertainty. Furthermore, the disaster formation process involves a multi-hierarchy 

structure, multiple disaster-causing factors, and multiple control parameters. Therefore, 

when analyzing the uncertainty of landslide disaster prediction, this paper made the fol-

lowing discussions and suggestions in four subfields: 

The uncertainty analysis of disaster-causing factors must be made on the basis that 

the main disaster-causing factors are apparent. Otherwise, the nonlinear correlation anal-

ysis between landslide disasters and disaster-causing factors will become a black-box 

problem, and the prediction uncertainty analysis will lose its premise. Although there is 

no unified standard to include main disaster-causing factors into the research scope, the 

general principle is that when all factors and their correlations cannot be fully considered, 

it is essential to grasp the controlling effects of the main disaster-causing factors on land-

slide disaster prediction and ignore the influence of the secondary factors. The selection 

of the main disaster-causing factors should consider the difficulty of data acquisition, rel-

evance to the research content, similar cases, geological conditions, and environmental 

factors, and other aspects. 

Regarding the uncertainty analysis of prediction units, a good state division of the 

secondary factors of disaster-causing conditions plays a certain role in optimizing the pre-

diction models, reducing the prediction uncertainty, and improving the prediction effects. 

When grid division is adopted, it is suggested to rationalize the state of continuous varia-

bles according to the principle of difference rather than divide them in an equally-spaced 

way to optimize the model and avoid the deviation caused by subjective judgment. The 

division by irregular units is usually very complex, but to reduce the impact of the uncer-

tainty of prediction units on the prediction effects, diversified polygon shapes (e.g., irreg-

ular ellipse, dustpan, semicircle, strip, etc.) need to be selected to meet the geological ra-

tionality and statistical randomness. In addition, although the vector superposition 

method based on GIS technology does not need to consider the error caused by boundary 

differences, there is a big gap between the famous version and the commercial GIS tool. 

Therefore, integrated secondary development will be the mainstream direction of the GIS 

system in the uncertainty analysis of prediction units, which can not only improve the 

efficiency of the application of the GIS system but also be convenient for researchers to 

exert their imagination and later maintenance. 

Regarding the uncertainty of model space data sets, the proportion of the training set 

and a test set of the data has a particular impact on the modeling accuracy of uncertainty 

analysis for landslide disaster prediction. However, there is no theoretical research 

demonstration for determining which proportion to choose, so ratios such as 1:9, 2:8, 3:7, 

4:6, and 5:5 have been selected before. When the training set is much less than the test set, 

it will be difficult to fully reflect the correlation law between the research samples and the 

uncertainty analysis content of landslide disasters, while when the training set is greater 

than the test set, it will be difficult for the model accuracy to reflect the accuracy of land-

slide prediction. Moreover, the proportion of the training set is also affected by the size of 

the original sample library, but there is little research in this area. Therefore, it is suggested 

to conduct more tests and repeatedly adjust the proportion when the uncertainty of 
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landslide prediction is analyzed to optimize the ratio of the training set and the test set as 

much as possible under the condition of ensuring the prediction accuracy. 

In terms of the uncertainty analysis of prediction models, even if the prediction ac-

curacy of different prediction models is nearly equal, the distribution characteristics of 

their susceptibility indexes will be very different. Therefore, the existing research is chal-

lenging to give generally accepted conclusions on which model has better performance, 

which model has more reliable accuracy, and which prediction model is more conducive 

to landslide disaster modeling. However, through sorting out the documents in this pa-

per, it was found that various coupling models, integration models, and hybrid models 

have more advantages in model fitting and prediction performance, but these models of-

ten make the model design and calculation complicated. Therefore, it is suggested that 

when multiple models need to be involved in the process of landslide disaster analysis, 

the model shall be simplified as much as possible while ensuring accuracy and reliability 

to promote the application of the model and guide the work and practice of landslide 

disaster prevention and control. 

6. Conclusions 

There are many uncertainties in predicting landslide disaster susceptibility, such as 

randomness, fuzziness, instability, etc. Based on extensive document analysis, this paper 

created a bibliometric analysis from three aspects (statistics of documents publication 

time, contribution analysis, and analysis of highly cited documents) through comprehen-

sively using bibliometric analysis technology and knowledge mapping software tools, 

making a series of maps from three aspects (scientific research cooperation, research 

hotspots, and frontier trend), combined with professional knowledge for knowledge map-

ping analysis, and drew the following conclusions: 

(1) In terms of the number of a document published, the research on the uncertainty of 

landslide susceptibility prediction shows an increasing trend, which can be divided 

into the rise stage of research (1982–2005), the apparent growth stage (2006–2016), 

and the vigorous development stage (2017–2022) (Figure 2). 

(2) From the contribution analysis, it was found that Guzzetti F team has the highest 

number of documents published, and the documents they published are the most 

authoritative (Table 2); the three most influential countries in this field are China, 

Italy, and the United States (Figure 3); documents and journals came from a variety 

of sources, among which ENGINEERING GEOLOGY, LANDSLIDES, and GEO-

MORPHOLOGY have the largest number of publications (Figure 4). 

(3) Through the analysis of research hotspots and development trends, the influencing 

factors of debris flow, underlying surface structure, and rainfall are the research 

hotspots, and random forest, machine learning, and neural networks are the frontier 

research trends in the future. 

On this basis, this paper systematically summarized the research progress and devel-

opment trend in the uncertainty analysis of landslide susceptibility prediction from four 

key research subfields (such as disaster-causing factors, prediction units, model space 

data sets, and prediction models), discussed the main problems encountered in current 

research of several subfields, and put forward some suggestions. In general, the research 

on the uncertainty of landslide susceptibility prediction is still at an early stage of devel-

opment. Due to the complexity of the landslide disaster itself, there are still some prob-

lems for the future, such as selection of the main disaster-causing factors, data set propor-

tion optimization, and model selection. The landslide susceptibility mapping models 

based on integrations of metaheuristic optimization and machine learning should be sum-

marized as a research trend. The fuzzy logic method can comprehensively take into ac-

count the requirements of various landslide disaster-causing factors, while the intelligent 

learning method has low requirements for data accuracy but high calculation efficiency; 
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therefore, these two methods will become some mainstream research directions in this 

field in the future. 
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