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Abstract: Phosphorus is the most important nutrient associated with lake eutrophication and changes
in cyanobacterial blooms, and particulate phosphorus (PP) is the main form of phosphorus found
in highly turbid inland waters. Therefore, it is urgent to monitor PP concentrations in inland water
bodies. In this study, we take Hongze Lake as the research area and establish a semianalytical
model to estimate PP concentrations based on the total particle absorption coefficient (ap); the mean
absolute percentage error (MAPE) and root-mean-square error (RMSE) values, which indicate the
model accuracy, were 14.90% and 0.009 mg/L, respectively. In addition, the construction process and
parameter selection criteria of the remote sensing-based PP concentration estimation model were
derived using remote sensing data obtained at different spectral resolutions. Sentinel 3 Ocean and
Land Color Instrument (OLCI) and Landsat 9 Operational Land Imager version 2 (OLI-2) data were
selected as representatives to verify the accuracy of the model; compared to these two datasets, the
MAPE values of the models were 16.32% and 26.84%, respectively, while the RMSE values were
0.010 mg/L and 0.014 mg/L, respectively. Finally, the models were applied to Sentinel 3 OLCI and
Landsat 9 OLI-2 images obtained on 16 January 2022. The results show that the spatiotemporal
distributions of PP concentrations in Hongze Lake estimated from these two images were relatively
consistent, but the OLI data reflected overestimations and underestimations in some areas. These
research results provide a new methodology for estimating PP concentrations through remote sensing
methods and help to further improve the accuracy of remotely sensed PP concentration estimations
in inland water bodies.

Keywords: Hongze Lake; particulate phosphorus; remote sensing; a semianalytical model

1. Introduction

The 2018 China Ecological Environment Status Bulletin published by the Ministry of
Ecology and Environment of China (http://www.mee.gov.cn/, accessed on 22 May 2019)
shows that among the 107 lakes (reservoirs) monitored across the country, 97 are moderately
eutrophic lakes, accounting for 90.7%. Most of the lakes in the middle and lower reaches
of the Yangtze River have been eutrophicated or are in the process of eutrophication. It is
generally believed that phosphorus plays a key role in the process of lake eutrophication [1].
Phosphorus can be found in lake water in two forms: dissolved and particulate phosphorus,
between which particulate phosphorus (PP) is the main form. Especially in highly turbid
water bodies, the PP proportion can reach 80–90% [2]. PP is an important reservoir of
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bioavailable phosphorus, and the degradation and cyclic transformation of PP are key
processes in the regulation of phosphorus bioavailability and biological growth in water
bodies, factors that eventually lead to the eutrophication of lakes. Therefore, studying
the temporal and spatial variation characteristics of PP concentrations in lakes is of great
scientific and practical significance for revealing information regarding the migration
and transformation of phosphorus as well as for exploring lake eutrophication control
measures. Obtaining rapid, accurate, high-spatial-resolution, and high-temporal-resolution
acquisitions of PP concentrations and variations in water bodies is the key to controlling
cyanobacterial blooms, regulating lake eutrophication, and restoring water ecosystems.

The development of satellite remote sensing technologies has provided very effective
alternative PP monitoring methods with high spatial and temporal accuracies. Based on
large amounts of multisource remotely sensed data, long-time-series and high-spatial-
resolution PP concentration changes can be obtained, and these data are helpful for facili-
tating in-depth discussions about the coupling relationships among lake eutrophication,
phosphorus cycle transformations, and cyanobacterial blooms. To date, some studies have
focused on estimating the total phosphorus (TP) content in lakes, though the methods
used to do so are still in their infancy. The optical properties of phosphorus are not obvi-
ous, so few related research results have been obtained in China or elsewhere. Methods
developed for monitoring phosphorus concentrations in water bodies can be mainly di-
vided into indirect and direct methods. Indirect methods refer to approaches in which
water quality parameters are estimated by analyzing the relationships between phospho-
rus concentrations and water quality parameters. In phosphorus concentration inversion
methods, water quality parameters such as the sea surface temperature, suspended solids
concentration, and chlorophyll a (Chl-a) concentration are generally used [3]. There are
also some estimation models that use direct methods. According to the characteristics of
the utilized sensor band, the empirical model construction method can be used to establish
a relationship model between the remotely sensed reflectance characteristics and phospho-
rus concentration to realize remotely sensed TP concentration estimations. The utilized
sensors include the Landsat, IKONOS, Huan Jing charge-coupled device (HJ CCD), and
Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors [4–6]. Junfeng Xiong
(2019) compared and analyzed the empirical algorithms associated with these sensors to
directly and indirectly estimate TP concentrations from remotely sensed data based on
MODIS images, taking Hongze Lake as the study area. The results showed that the direct
algorithms had higher accuracies compared to the indirect algorithms [7]. In addition to
conventional empirical models, some scholars have used machine learning methods to
estimate TP concentrations in water bodies. Commonly used machine learning methods
include artificial neural network estimation models, support vector machine models, and
genetic algorithms [8–10]. Regarding PP concentration inversion models, Zeng (2021)
constructed a semianalytical model to obtain remotely sensed PP estimations based on the
absorption coefficient of nonpigmented particulate matter in lakes in the lower reaches of
the Yangtze River [11]. However, pigmented particulate matter types such as algae also
contain large amounts of phosphorus, so this model results in the loss of some PP infor-
mation. In summary, most of the currently available methods for estimating phosphorus
concentrations in water with remote sensing-based methods have been developed to target
TP estimations. Because dissolved phosphorus does not have optical activity characteristics,
it easily causes large errors when included, so the existence of PP in water is often not
considered. In addition, most of the existing studies used empirical, semiempirical, or
machine learning models, all of which are greatly influenced by the specific research area
considered, and their application potential for highly turbid inland water bodies such as
lakes or other water bodies must be further evaluated.

Hongze Lake is located in the lower reaches of the Huai River; as the fourth-largest
freshwater lake in China, this lake has a unique geographical location and obvious location-
specific advantages. At the same time, Hongze Lake is an important water transportation
hub in the Huai River Basin and has national wetland nature protection status. This lake
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is also a transit platform and an important storage lake for the eastern route of the South-
to-North Water Diversion Project. Thus, the water quality in this lake directly affects the
supply of water to northern China. However, in recent years, the water quality in this lake
has deteriorated. The main reason for this is that due to the development of agriculture
and urbanization, large amounts of nutrients, such as nitrogen and phosphorus, have been
discharged into the lake. At the same time, the sediment resuspension effect caused by
sand-mining activities has also introduced nutrients to the lake. Increased eutrophication
processes eventually lead to increasingly serious water eutrophication conditions [12]. As a
highly turbid inland water body, Hongze Lake contains high concentrations of suspended
sediments, and these pollutants are dominated by PP [13]. However, there is no study on
the spatiotemporal variation of particulate phosphorus concentration in Hongze Lake that
has used remote sensing data, only TP in Hongze Lake has been studied. The results show
that the TP concentration in Lake Hongze is low in spring and summer and high in autumn
and winter. The spatial distribution of TP in the four seasons is similar. The concentration
in the northern region is low, and that in the central region is high [7]. Then, it is critical
to rapidly and accurately monitor the temporal and spatial distributions and variation
characteristics of PP in Hongze Lake to ensure water quality protection and management.

Therefore, in this study, PP, the main nutrient in inland lakes, was taken as the re-
search object, and Hongze Lake was taken as the research area. We comprehensively
considered the phosphorus contents in pigmented and nonpigmented particles and at-
tempted to construct semianalytical PP models to estimate PP concentrations through
remote sensing-based methods. In addition, the applicability of the constructed empirical
models to broadband sensor-derived data was assessed. Finally, according to the sensor
band-setting characteristics, the selection criteria of the remote sensing-based PP concen-
tration estimation models were constructed, and the models were applied to remotely
sensed images to analyze the spatial distribution characteristics of PP concentrations in
Hongze Lake.

2. Materials and Methods
2.1. Study Area and Sampling Points

Hongze Lake is located between the 33◦06′ and 33◦40′N latitude lines and the 118◦10′

and 118◦52′E longitude lines. This lake is shallow and is located in the lower reaches
of the Huai River in western Jiangsu Province, Huai’an, and Suqian. This area receives
158,000 km2 of water from the upper and middle reaches of the Huai River and accounts
for 83.6% of the Huai River Basin. It represents the junction point of the middle reaches
of the Huai River, connecting the tributaries with the downstream river. Rivers mainly
enter the lake from the west and south directions, and the water input by the Huai River
accounts for more than 70% of the total lake volume. Hongze Lake plays important roles in
flood storage and regulation processes in the lower reaches of the Huai River. According to
the hydrological characteristics of different areas of the lake, Hongze Lake could be divided
into three lake bays. Chengzi Bay is relatively closed and is the main purse seining area
in Hongze Lake. The water exchange process is relatively slow in this region, while the
eutrophication degree is relatively high. Huaihe Bay is the main area through which water
passes in Hongze Lake. This water body is turbid, the lake disturbance is severe, and the
suspended sediment content is high. Lihe Bay in the western area is the main lake region.
In the river distribution area, the water body has a strong self-purification ability and is
mainly distributed with aquatic plants and aquaculture. The eutrophication degree in this
region is lower than that in Chengzi Bay. Data were collected from a total of 77 points in the
lake on 17 (8), 18 (8) September of 2018; 15 (10), 16 (9) April of 2019; 20 (8), 21(6) November
of 2021 and 12 (7), 13 (10), 14 (8) March of 2021. During the sampling period, the weather
was clear and cloudless with light winds. The exact locations of these sampling points are
shown in Figure 1.
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2.2. In Situ Data
2.2.1. Water Quality Tests

Water samples were collected from the lake surface and taken back to the laboratory
to measure the water quality, water component absorption coefficient (total particle ab-
sorption (ap)), absorption coefficient of pigmented particles (aph), absorption coefficient
of nonpigmented particles (anap), and colored dissolved organic matter (CDOM). These
analyses were conducted within 12 h from the sampling times. The water samples were
filtered on Whatman GF/F glass fiber filters. The PP was measured using an ultraviolet–
visible spectrophotometer (Shimadzu, Kyoto, Japan, V-3600) [14]. Chl-a and TSM were
determined spectrophotometrically using the method described by Lorenzen and Chen
et al. [15,16]. The methods used to measure ap, aph, anap, and CDOM corresponded to the
quantitative filter technique (QFT) [17,18].

2.2.2. Spectral Data Collection

The water surface spectral data were acquired using an Analytical Spectral Device
(ASD) Field Spec Pro portable spectrometer with a range of 350 to 1050 nm. The entire
process involved measuring the radiation information of a standard gray board, the water
body, and light from the sky; for each parameter, 10 spectra were measured. The Rrs(sr−1)
value was calculated using the following equation [19]:

Rrs(λ) = (Lt − r ∗ Lsky)/(Lp ∗ π/ρp) (1)

where Lt is the total radiance of the water surface; r is the sky-light reflectance at the
air–water interface (set to 2.2% for calm weather, 2.5% for <5 m·s−1 wind speeds, and
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2.6–2.8% for approximately 10 m·s−1 wind speeds); Lsky is the radiance measured from the
sky; Lp is the measured radiance of the gray reference panel; ρp is the reflectance of the gray
diffuse panel (30%).

2.2.3. Image Acquisition and Preprocessing Steps

Sentinel 3 OLCI and Landsat 9 OLI-2 data were chosen to verify the accuracy of
the models constructed according to different band settings. The atmospheric correction
method was applied to the Sentinel 3 data using a previously published method (Bi et al.,
2018). This method includes two main steps: (1) water turbidity classification performed
with the GRAindex (GRAdient of the spectrum index) and (2) atmospheric correction
performed through the synergistic use of OLCI and Sea and Land Surface Temperature
Radiometer (SLSTR) images. The Fast Line-of-sight Atmospheric Analysis of Hypercubes
(FLAASH) atmospheric correction module was developed using Moderate Resolution
Atmospheric Transmission (MODTRAN5) and has been widely applied to various satellite
sensors (e.g., the Landsat TM, Enhanced Thermal Mapper Plus (ETM+), OLI, and Gaofen-1
sensors) over marine, coastal, and inland water bodies [5,20,21]. Therefore, in this work,
FLAASH was used to perform the atmospheric correction of the Landsat 9 OLI-2 images.
The image data of the same day could be used to analyze the estimation results of Landsat
9 OLI-2 and Sentinel 3 OLCI sensors. But Landsat 9 OLI-2 data will not be available from
NASA until 2022, so the day of 16 January 2022, which was cloudless and has data from
both sensors, was chosen. The specific collection times of the utilized images are listed
in Table 1.

Table 1. Remotely sensed image acquisition dates.

Name Date Spatial Resolution (m)

Sentinel 3 OLCI 16 January 2022 500
Landsat 9 OLI-2 16 January 2022 30

2.3. Performance Evaluation

The accuracy of the inverse model was measured using the mean absolute percentage
error (MAPE) and the root-mean-square error (RMSE). The two parameters were calculated
as follows:

MAPE =
1
n

n

∑
i=1
|
yi − y′i

yi
| × 100% (2)

RMSE =

√
1
n

n

∑
i=1

(
yi − y′i

)2 (3)

where yi and y′i are measured and retrieved PP, respectively.

3. Construction of the PP Model
3.1. Relationship between the PP Concentration and Particulate Matter Absorption Coefficient

The particulate matter types found in water bodies mainly include organic particulate
matter and inorganic particulate matter; organic particulate matter comprises algae parti-
cles and other organic matter types. This particulate matter can become an important PP
source in lakes. Among the optical properties of water bodies, the inherent optical quan-
tity characterizing particulate matter is generally the total particulate matter absorption
coefficient, which includes the absorption coefficients of both pigmented particulate matter
and nonpigmented particulate matter. The absorption coefficient of pigmented particles is
mainly used to characterize colored particles, which mainly include algae. Algae particles
contain phosphorus, though some inorganic particles also adsorb phosphorus. Therefore,
the absorption coefficient of nonpigmented particles can be used to characterize this phos-
phorus content portion. Therefore, to measure the PP content in water as accurately as
possible, one must consider the contents of both colored and colorless particulates. In this
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work, the correlations between PP and the total particulate matter absorption coefficient,
the pigmented particulate matter absorption coefficient, and the nonpigmented particulate
matter absorption coefficient were calculated, and the results are shown in Figure 2a. The
correlation between PP and ap was significantly higher than that between PP and aph and
between PP and anap; the maximum correlation coefficient was 0.84 at 677 nm. Figure 2b
shows the overall particle absorption curve, exhibiting a peak at 677 nm, where each color
represents each sampling point. This figure indicates that the total particulate matter
absorption coefficient can best characterize the PP concentration in the studied lake and
that the most suitable wavelength band is 677 nm.
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3.2. Development of a Semianalytical PP Algorithm

Based on the strong correlation between the total particulate absorption coefficient and
PP, in this work, the particulate absorption coefficient was fitted to the PP concentration,
and the fitting accuracy (R2) reached 0.71. The results are shown in Figure 3a. Therefore,
in the remaining work, it was necessary to accurately estimate only ap to obtain the PP
concentration. For highly turbid inland water bodies, the existing algorithms for estimating
intrinsic optical quantities through remote sensing methods are not yet mature, and there is
no unified or universal algorithm, let alone an algorithm suited for determining the intrinsic
optical quantities of Hongze Lake. However, the three-band aph estimation algorithm is
widely used to estimate the water color parameters of inland lakes; thus, in this study,
we attempted to estimate ap using aph as a medium. As shown in Figure 3b, aph is highly
correlated with ap, with an R2 value of 0.92, indicating that aph can be estimated first, and
then ap can be estimated according to the relationship established between aph and ap.

y = 0.06x + 0.0006 (4)

where y is PP and x is ap;

y = 1.43x + 0.10 (5)

where y is ap and x is aph.
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According to the above analysis, the aph estimation model should be built first. The
main principle of this method involves separating the contribution of phytoplankton
pigments by using three Rrs bands in order to isolate the aph concentration required in this
study [22,23]. Therefore, aph(677) was first characterized by referring to the three-band
principle. The Rrs value of a water body could be approximated from parameters such as
the absorption coefficient of the water body, the backscattering coefficient, and the light
field distribution. The specific three-band calculation process is expressed as follows:

Rrs(λ) =
f (λ)t2

Q(λ)n2 ×
bb(λ)

a(λ) + bb(λ)
(6)

R−1
rs (677) ∝

Q
f

n2

t2

aw(677) + aph(677) + aCDOM(677) + anap(677) + bb(677)
bb(677)

(7)

R−1
rs (677)− R−1

rs (λ2) ∝
Q
f

n2

t2

aw(677)− aw(λ2) + aph(677)
bb(677)

(8)

(1) aph(λ2) << aph(λ1); (2) acdom(λ2) ≈ acdom(λ1); (3) anap(λ2) ≈ anap(λ1); (4) bb(λ2) ≈ bb(λ1)

Rrs(λ3) ∝
f
Q

t2

n2
bb(λ3)

aw(λ3)
(9)

where (1) aph(λ3), acdom(λ3), and anap(λ3) are all approximately 0, and the absorption
characteristics of water are mainly dominated by water itself; (2) bb(λ3) ≈ bb(λ2) ≈ bb(λ1),
and (3) aw(λ3) >> bb(λ3). In addition, the following equations were employed:

[
R−1

rs (677)− R−1
rs (λ2)

]
Rrs(λ3) ∝

aw(677)− aw(λ2) + aph(677)
aw(λ3)

(10)

[
R−1

rs (677)− R−1
rs (λ2)

]
Rrs(λ3) ∝ aph(677) (11)

where a(λ) is the total absorption of water, bb(λ) is the backscattering coefficient, f is
a parameter related to the light field and ranges from 0.32 to 0.33, Q is the light field
distribution parameter and ranges from 1.7 to 7.0, t is the gas–water interface transmittance,
and n is the water body refractive index, which is set to 1.34.
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According to the assumptions of Band 2 and Band 3, combined with the actual sampled
data, the Band 2 and Band 3 ranges were set to 690–720 nm and 720–800 nm, respectively,
in this work to determine the optimal positions of these two bands through a loop iteration
method. By iterating the calculation process with the modeling data, we found that the best
positions of Band 2 and Band 3 were at 720 nm and 730 nm, respectively. Taking the three-
band factor of these bands as the independent variable, the corresponding aph value (677)
can be taken as the dependent variable to establish the aph (677) inversion model, as shown
in Figure 4a. This constructed model had an R2 value of 0.80, indicating that aph could be
estimated with a high precision with the three-band algorithm. Equations (4), (5), and (12)
were combined to yield the PP inversion model. The verification points were then used
to verify the accuracy of the model; the verification results are shown in Figure 4b. The
verification points are closely distributed near the 1:1 line, showing that the predicted
value of the model is in good agreement with the measured value, and the MAPE and
RMSE values are 14.90% and 0.009 mg/L, respectively, indicating that the model has a high
precision and stability and is suitable for facilitating remote sensing-based PP concentration
estimations in Hongze Lake.

y = 2.29x + 0.89 R2 = 0.80 (12)

where y is aph (677) and x is [1/Rrs(677) − 1/Rrs(720)] × Rrs(730).
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Combining Equations (4), (5) and (12) yields the following expression:

y = 0.2x + 0.161 (13)

where y is the TP concentration and x is [1/Rrs(677) − 1/Rrs(720)] × Rrs(730).
The Sentinel 3 OLCI sensor collects data on 21 bands, and the center wavelength

of Band 9 is 674 nm, which is similar to the 677 nm wavelength. The positions of Band
11 and 12 are similar to those of the hyperspectral data, thus providing the possibility
to estimate TP concentrations using the algorithm established in this paper. Thus, Band
9 was set as λ1, and Bands 11, 12, and 13 were iterated to determine the positions of
λ2 and λ3. The validation results are shown in Figure 5b. The verification points were
closely distributed around the 1:1 line, and the MAPE and RMSE values were 16.32% and
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0.010 mg/L, respectively. Therefore, this model could be applied to assess OLCI data with
a high precision while meeting the application requirements.

y = −0.091x + 0.165 (14)

where y is PP and x is Rrs(1/B9 − 1/B11) × B12.
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3.3. Development of an Empirical PP Algorithm for Use with Broadband Imagery

At present, the band settings of medium- and high-spatial-resolution sensors are
wide, while the data bands are small. For example, the Thermal Mapper (TM) data, OLI
data, and HJ1A data obtained from the Landsat satellite at a moderate spatial resolution
have only four, five, and four bands corresponding to the visible-light-to-near-infrared
wavelength range, respectively. Remotely sensed data such as those recorded by Gaofen-1,
QuickBird, and IKONOS at high spatial resolutions also contain only four bands: blue
light, green light, red light, and near-infrared bands. Figure 6 shows the technical route
used to build a TP concentration estimation model for such broadband remotely sensed
data. First, it is necessary to use the spectral response function to simulate the response
of the measured spectral data to the band corresponding to the satellite data according
to the band setting of the specific sensor. The simulated bands are then transformed and
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combined (through Ln transformation, difference, ratio, normalized difference vegetation
index (NDVI) form combination processes, etc.), a correlation analysis is conducted between
the PP concentration and the band, and a band combination transformation is carried out;
then, the factor with the highest correlation is selected to establish the TP model (band
combination transformation methods include the linear, exponential, power function, and
binary linear function methods). Finally, multiple regression analyses are performed on all
factors and the TP concentration to construct a multiple regression model, the verification
accuracies of all models are compared, and the model with the highest accuracy is selected
to estimate the PP concentrations.
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For example, Landsat satellite data span the longest time scale, and these data are thus
convenient for analyzing the laws of long-term water quality changes. The OLI-1/2 and
TM data have the highest spatial resolutions, reaching 30 m. At the same time, the spectral
resolutions of these datasets are relatively low, with five and four bands, respectively, failing
to meet the band requirements for the PP concentration estimation model constructed for
hyperspectral remotely sensed data in Section 3.2. Therefore, the traditional empirical
model was used herein to construct the remote sensing-based PP concentration estimation
model. In this study, the Landsat 9 OLI-2 sensor was selected for further research and
analysis. First, according to the OLI-2 band-setting characteristics, the band combination
comprising the remotely sensed reflectance data collected at Band 3 (the green band)
and Band 4 (the near-infrared band) had the best correlation with the PP concentration.
The constructed estimation model is shown in Figure 7. The R2 value reached 0.60; the
verification results are shown in the right panel of the figure, with MAPE and RMSE values
of 26.84% and 0.014 mg/L, respectively.

y = −0.091x + 0.165. R2 = 0.60 (15)
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where y is PP and x is Rrs(B3/B4).
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4. Results and Discussion
4.1. Feasibility Analysis of Estimating the PP Concentration through Remote Sensing Methods

The forms of phosphorus found in lakes can be mainly divided into granular phospho-
rus and dissolved phosphorus. PP accounts for more than 50% of TP in coastal waters and
shallow lakes in China [1]. In areas with severe algal blooms, phosphorus is adsorbed and
absorbed by algal particles and converted into granular phosphorus, so good correlations
can be found between the granular phosphorus concentration and Chl-a concentration.
In estuary areas dominated by nonalgal particulate matter, phosphorus is more easily
adsorbed on suspended matter due to the input of water from rivers into lakes. At the same
time, due to the vigorous agitation associated with water flows in such areas, the phospho-
rus contents in the water also increase. Therefore, there is a good correlation between the
PP concentration and the concentration of inorganic suspended solids. These characteristics
provide the potential for estimating PP concentrations using remotely sensed data.

In lakes with high correlations between the PP and Chl-a concentrations, the spectral
curves reflect typical eutrophication characteristics, indicating that these water bodies
are dominated by planktonic algae [24]. In Dongting Lake, Hongze Lake, and Jiajiang
River, where the inorganic suspended concentrations are well-correlated with the PP
concentrations, although the overall reflectivity value is relatively high, the peak and
trough changes are not obvious, and the change trend is relatively gentle, reflecting the
characteristics of the main water body. These areas are dominated by nonpigmented
suspended solids [1,7]. As can be seen from Figure 8, the PP concentration in Hongze
Lake has a high correlation with total suspended matter (TSM), and the fitting accuracy
R2 reaches 0.61, while the correlation with chlorophyll is weak, and the fitting accuracy
reaches 0.29. The results show that the phosphorus in TSM and algae particles are important
sources of PP in Hongze Lake, and the phosphorus in TSM for the main part. The optical
characteristics of TSM and Chl-a provide the basis for the remote sensing estimation
of PP. Therefore, because the Chl-a and TSM concentrations both greatly influence the
remotely sensed reflectance characteristics of water surfaces, it is possible to estimate the
PP concentration in water particles by analyzing the changes in the water surface spectrum.
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4.2. Advantages and Applicability Analysis of the Constructed Semianalytical Model

Aiming to obtain a semianalytical remote sensing-based PP concentration estimation
model, we selected existing remote sensing-based PP concentration estimation models
for a comparative analysis. Zeng (2021) used the nonpigmented particulate matter ab-
sorption coefficient to build a semianalytical PP estimation model, with (1/Rrs(754)
− 1/Rrs(709))/(1/Rrs(705) − 1) characterizing the absorption coefficient of nonpigmented
particulate matter, thus establishing the relationship between this parameter and the PP
concentration, allowing the subsequent estimation of PP concentrations. The model and
estimation results are shown in Figure 9. The R2 value of the constructed model was 0.09,
the MAPE was 41.55%, and the RMSE was 0.016 mg/L. Therefore, for inland lakes, the
semianalytical model constructed based on the total particulate matter absorption coeffi-
cient is more advantageous compared to this model. The main reason for this difference is
that the phosphorus content in nonpigmented particles cannot be ignored in inland water
bodies. The total particle absorption coefficient was used to build a model that considers
both pigmented and nonpigmented particles in lakes together, thus creating a model with
advantages over other existing models.
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4.3. Models Selected for PP Concentration Estimations Based on Different Remotely Sensed
Data Sources

In inland water quality monitoring research, a variety of remotely sensed images need
to be used, though the band settings and band widths of these sensors differ extensively.
Therefore, to apply the algorithm model constructed in this study to satellite-derived
remotely sensed data, it was necessary to combine specific remotely sensed data sources.
The correspondingly appropriate PP remote sensing-based estimation model was then
selected to match the band characteristics of each data source. The specific selection process
is shown in Figure 10. First, when the sensor band is set to include three bands similar to
those of the semianalytical model, it is recommended that the absorption coefficient-based
model be used, while the PP concentration semianalytical model is used to estimate the PP
concentration. When the three-band requirement of the semianalytical model is not met,
the PP concentration empirical estimation model derived for broadband remotely sensed
data is used to estimate the PP concentration.
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Figure 10. Flow chart of the remote sensing-based model workflow used in this study to estimate
PP concentrations.

At present, the water color sensors commonly used to estimate water quality param-
eters mainly include MODIS, Sentinel 3 OLCI, and MERIS. In addition, data from the
TM, OLI, HJ1A/B sensors and other data are often used in inland water environment
monitoring research. In this study, MODIS, Sentinel 3 OLCI, and Landsat 9 OLI-2 data
were used for the example analyses. Based on the models constructed from these data,
some model-selection suggestions for estimating PP concentrations in inland lakes using
data from different sensors were proposed. The commonly available PP concentration
estimation models are listed in Table 2.
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Table 2. Selection of common sensors for estimating PP concentrations in Hongze Lake.

Sensor Model for Estimating PP Concentrations

MODIS Semianalytical model based on at
Sentinel 3 OLCI Semianalytical model based on at

MERIS Semianalytical model based on at
TM Empirical model

OLI-1/2 Empirical model
HJ1A/B CCD Empirical model

Gaofen 1 Empirical model

4.4. Validation of the Constructed Models Using Image Data of Hongze Lake

The semianalytical model constructed to obtain PP estimations using Sentinel 3 OLCI
data and the empirical model constructed to obtain PP estimation using Landsat 9 OLI-2
data were applied to the corresponding images on 16 January 2022. Figure 11 shows that
the trend changes in the PP concentrations of Hongze Lake estimated by these two data
sources on the same day were relatively consistent. The PP concentrations were lower
in Chengzi Bay and higher in Huaihe Bay and in the southern coastal areas of Lihe Bay.
The volume of incoming water sourced from the upstream Huai River decreases in winter,
and the resuspension of sediments caused by wind leads to increased PP concentrations.
According to historical weather records, on 16 January 2022, level-3 east winds prevailed in
Hongze Lake. Huaihe Lake Bay has a large water surface and experiences strong sediment
resuspension. In addition, due to the prevailing east winds, Lihe Bay and Huaihe Lake
Bay were connected from east to west, and Lihe Bay was thus also easily affected by water
agitation; thus, the PP concentrations in these two areas were relatively high.
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uary 2022.

It is worth mentioning that although the two images were collected on the same day,
we still observed some differences between the PP estimation results obtained from the
imagery. In the places circled in red in Figure 11 below, the OLI-derived estimation results
were significantly higher than those obtained from OLCI data, while in the places circled in
blue, the OLI estimation results were lower than the OLCI-derived estimations. According
to the model verification results of the two datasets shown in Figures 5 and 7, the PP con-
centration estimation model constructed using OLI data is more prone to overestimations
and underestimations than that built using OLCI data, and the verification points were
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more dispersed from the 1:1 line. Although using Sentinel 3 OLCI data to estimate the PP
concentrations in Hongze Lake resulted in more accurate findings, due to the low spatial
resolution of these data, the distribution of PP concentrations could not be displayed in a
more detailed manner than that reflected by the OLI data, especially in the estuary area.
Therefore, according to different research purposes, suitable data sources can be chosen to
analyze the distribution of PP concentrations in inland lakes.

5. Conclusions

In this study, we constructed a new semianalytical algorithm to estimate PP concen-
trations in Hongze Lake. By analyzing the PP estimation mechanism, the relationship
between the PP concentration and Rrs was established through the use of at. The method
by which at was separated using Rrs was then studied, and finally, a semianalytical PP
estimation model was constructed, the MAPE and RMSE values of which were 16.80%
and 0.04 mg/L, respectively. Compared to other existing algorithms, the algorithm con-
structed in this paper had a higher precision and a better fitting accuracy in low-value
regions. Moreover, the constructed model was applied to Sentinel 3 OLCI data, and the
resulting MAPE and RMSE values were 16.32% and 0.010 mg/L, respectively. Additionally,
a PP concentration modeling process was established for use with broadband image data.
Taking a Landsat 9 OLI-2 image as an example, the accuracy of the constructed model was
reflected in the MAPE and RMSE values of 26.84% and 0.014 mg/L, respectively. Then, for
remotely sensed data with different spectral resolutions, selection criteria were established
for the remote sensing-based PP concentration estimation models. Last, the derived method
was applied to Sentinel 3 OLCI and Landsat 9 OLI-2 data, and the results show that the
PP concentrations estimated in Hongze Lake were consistent between the two same-day
images. On 16 January 2022, the PP concentration was lower in Chengzi Bay and higher
in Huaihe Bay and in the southern coastal areas of Lihe Bay, mainly due to wind-induced
sediment resuspension.

In general, the semianalytical algorithm and the standard of building a remote sensing-
based PP concentration monitoring model demonstrated herein could be extended to other
similar environments and ecological locations to document and explore the spatiotemporal
distribution of PP concentrations.
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