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Abstract: Over the past few decades, several high-resolution gridded precipitation products have
been developed using multiple data sources and techniques, including measured precipitation,
numerical modeling, and remote sensing. Each has its own sets of uncertainties and limitations.
Therefore, evaluating these datasets is critical in assessing their applicability in various climatic
regions. We used ten precipitation datasets, including measured (in situ), gauge-based, and satellite-
based products, to assess their relevance for hydrologic modeling at the Bosque River Basin in
North-Central Texas. Evaluated datasets include: (1) in situ station data from the Global Historical
Climate Network (GHCN); (2) gauge-based dataset Daymet and the Parameter-elevation Regression
on Independent Slope Model (PRISM); (3) satellite-based dataset Integrated Multi-Satellite Retrievals
for Global Precipitation Measurement (IMERG), Early and Late, Precipitation Estimation from Re-
motely Sensed Information using Artificial Neural Networks (PERSIANN) and PERSIANN-CCS
(Cloud Classification System); (4) satellite-based gauge-corrected dataset IMERG-Final, PERSIANN-
CDR (Climate Data Record), and CHIRPS (Climate Hazards Group Infrared Precipitation with Station
data). Daily precipitation data (2000–2019) were used in the Soil and Water Assessment Tool (SWAT)
for hydrologic simulations. Each precipitation dataset was used with measured monthly United
States Geological Survey (USGS) streamflow data at three locations in the watershed for model
calibration and validation. The SUFI-2 (Sequential Uncertainty Fitting) method on the SWAT-CUP
(Calibration and Uncertainty Program) was used to quantify and compare the uncertainty in stream-
flow simulations from all precipitation datasets. The study has also analyzed the uncertainties in
SWAT model parameter values under different gridded precipitation datasets. The results showed
similar or better model calibration/validation statistics from gauge-based (Daymet and PRISM)
and satellite-based gauge-corrected products (CHIRPS) compared with the GHCN data. However,
satellite-based precipitation products such as PERSIANN-CCS and PERSIANN-CDR unveil com-
paratively inferior to capture in situ precipitation and simulate streamflow. The results showed that
gauge-based datasets had comparable and even superior performances in some metrics compared
with the GHCN data.

Keywords: gridded precipitation; satellite-based; Bosque watershed; SWAT; hydrologic modeling

1. Introduction

Precipitation data is essential for hydrologic models that are commonly used to assess
the impacts of human activities, climate change, and management practices on water re-
sources for a range of spatial and temporal scales [1–3]. However, precipitation is highly
variable in space and time. It is challenging to get precipitation data at a spatial scale ap-
propriate to the area of interest for hydrological and ecological modeling applications [4,5].
Several hydrologic models (e.g., MIKE SHE/MIKE 11) at the watershed scale are capable of
utilizing spatially distributed high-resolution rainfall data. However, rainfall data are typi-
cally unavailable at such high spatial resolutions (km or tens meter scale) from traditional
weather station networks. The lack of availability of high-resolution precipitation data
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triggers uncertainty and large errors in hydrologic and water resources assessments [6,7].
Therefore, precipitation information at a high spatial resolution from gauges and remote
sensing-based products is pivotal to accurately assessing the effects of management and
policy interventions on water resources available for the agricultural, industrial, and
domestic sectors.

Traditionally, many public, non-profit, and private organizations collect rain gauge
data worldwide to provide reasonably accurate and reliable measurements of point-scale
precipitation. Rain gauge data are nontrivial for the development of global gridded precipi-
tation products such as Global Precipitation Climatology Center (GPCC) data [8], Climate
Research Unit (CRU) [9], and CPC Unified Global daily data [10]. These long-term datasets,
which provide valuable information on spatio-temporal trends or changes in precipitation,
are required to assess and manage regional and global water resources. However, rain
gauge data sources suffer from a plethora of limitations. A spatially sparse network of
rain gauges often results in the poor spatial representation of rainfall distribution [11]. In
addition, in situ gauge data are subject to systematic biases related to their placement, trace
precipitation, wetting and evaporation losses, and wind-induced underestimation [12,13].

Over the last decades, several global gridded precipitation datasets have become avail-
able that provide long-term precipitation estimates. These global datasets are generated
using in situ gauge precipitation, numerical modeling (retrospective analysis), remote
sensing (ground-based radars and satellites), and/or a combination of data sources and
techniques [14]. However, most gridded precipitation datasets have a coarse spatial res-
olution greater than 0.5◦ [14], limiting their use for hydrologic modeling and assessment
studies at the watershed scale. Gauge-based high resolution gridded products, such as the
Multi-Radar-Multi-Sensor (MRMS) system, Daymet, Livneh, and the Parameter-elevation
Regressions on Independent Slopes Model (PRISM), which have spatial resolutions ranging
from 0.25◦ to 0.001◦, address the limitations of coarse gridded precipitation datasets. For
instance, the MRMS radar products provide high spatial and temporal resolutions and
three-dimensional weather products [15]. However, the spatial coverage of these datasets
is limited to the continental United States [16]. The Daymet, Livneh, and PRISM gridded
precipitation estimates are typically generated by interpolation and regression of in situ
gauge data with topographic and environmental variables such as elevation, terrain, and
coastal areas known to affect the precipitation distribution [8,9,17].

Another advancement in remote sensing is using satellite precipitation estimates.
These estimates provide temporally continuous data at a high spatial resolution (1–25 km)
for almost the entire globe [18]. Satellite-based precipitation estimates are typically obtained
from geostationary (GEO) and low-earth orbiting (LEO) satellites. Precipitation estimates
generated from LEO satellites are more accurate than those generated from geostationary
satellites [19]. However, the spatio-temporal coverages of LEO satellites are relatively lim-
ited compared with the GEO satellites [20]. Therefore, many existing current algorithms
combine both microwave and infrared data to generate spatially and temporally continuous
quasi-global precipitation estimates. Examples of such algorithms include the Integrated
Multi-satellitE Retrievals for Global Precipitation Mission (GPM) (IMERG, [21], the Tropical
Rainfall Measurement Mission (TRMM), Multi-satellite Precipitation Analysis (TMPA [22]),
the Climate Prediction Center Morphing Technique (CMORPH) [23], Global Satellite Map-
ping of Precipitation (GSMap) [24], and Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Network (PERSIANN) [25].

Gridded gauge-based, satellite-based, and satellite-based gauge-corrected precipi-
tation products have advantages in providing vital information for several applications,
including drought and flood monitoring and water resources management, especially in
regions where rain-gauge data are scarce [26]. The gridded precipitation datasets have
added value in providing wide area coverage, fine spatial resolution, and better temporal
resolution over the in situ datasets [14]. However, there are limitations in using the gridded
precipitation datasets resulting in a wide range of estimation errors [27]. For instance,
gridded precipitation datasets such as TRMM and CMORPH trigger high false alarm ratios
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above the heavy precipitation thresholds. They cannot capture high precipitation values
over the conterminous United States (CONUS) [28]. The gridded precipitation datasets, par-
ticularly the gauged-based ones, are entirely dependent on the in situ data and are hardly
possible to use in regions with no in situ observations [14]. Inadequate parametrization
of cloud processing in satellites datasets results in high precipitation uncertainties in the
mountain regions, another limitation of satellite-based gridded precipitation datasets [29].

Researchers also investigated differences in performance between gauge-based, satellite-
based, and satellite-based gauge-corrected precipitation products in simulating hydro-climatic
variables in different parts of the world. Better accuracy was identified in the streamflow
simulation using the satellite-based gauge-corrected precipitation products than the satellite
precipitation products in the Nagavali River Basin (NRB) of India [30]. Over the Arid Regions
of Pakistan, the gauge-based gridded precipitation product (the Global Precipitation Clima-
tology Centre (GPCC)) was found to be better than other products under different statistical
metrics [31]. Very good agreements were observed between the daily and monthly rainfall
of gauged-based gridded precipitation (Global Precipitation Climatology Project (GPCP))
and the observed rainfall. In contrast, satellite rainfall estimates struggle to reproduce the
daily and monthly observed rainfall in the Upper Blue Nile Basin [32]. Similarly, the satellite-
based precipitation products could not simulate the elevation-dependent variation of rainfall,
whereas GPCP datasets effectively simulate rainfall over varied elevation classes in different
river basins [33]. Therefore, a region-specific assessment of the gridded precipitation datasets
is non-trivial to discern their applicability for climate change studies and hydrologic modeling.

The hydrological modeling can also be an important source of uncertainties. Thus, an
appropriate strategy is needed in the selection of hydrological models for the evaluation
of gridded precipitation datasets. The lumped and distributed hydrological models may
perform differently in simulating hydrological parameters using gridded precipitation
datasets [34,35]. In Newfoundland, Canada, the lumped models, i.e., the Sacramento Soil
Moisture Accounting (SAC-SMA) model and the modèle du Génie Rural à 4 paramètres
Journalier (GR4J), were better than semi-distributed and fully distributed hydrological
models in simulating streamflow [34]. On the other hand, the semi-distributed and lumped
models revealed reasonable performances in simulating surface runoff and evapotranspi-
ration in tropical ecosystems [35]. However, high spatial and temporal data requirements
for the semi-distributed models could limit their application in data-scarce regions. In
data-scarce regions, the gridded satellite products can be used as forcing for distributed
hydrological models. For instance, the Coupled Routing and Excess STorage (CREST) hy-
drological model simulated by the IMERG dataset showed a satisfactory performance in the
Ganjiang River basin, China [36]. The Soil and Water Assessment Tool (SWAT) hydrological
model was successfully used to simulate high and low flows using gridded precipitation
datasets in the agricultural watershed of Kansas.

This study aimed to assess the performance of gridded precipitation products in
reproducing the in situ precipitation data and simulating the observed streamflow in the
Bosque watershed, North-Central Texas, USA. The Bosque watershed is selected because it
is the primary source of water for the Waco reservoir (Figure 1), which has a storage capacity
of 104,100 acre feet [37,38] and supplies domestic water to about 150,000 people [39]. The
Bosque watershed and the Waco reservoir are frequently affected by drought, flooding [40],
and water quality [41] issues that trigger multifarious effects on the agriculture and water
supply resources of the watershed. Thus, identifying precipitation datasets that better
reproduce the observed precipitation and hydrology of the Bosque watershed is essential to
develop optimal drought, and flood mitigation strategies. Better precipitation datasets that
simulate the hydrology of the watershed with low uncertainty are also essential to identify
water quality management strategies for the Waco reservoir and the Bosque watershed at
large. We used in situ gauge data from the Global Historical Climate Network (GHCN)
along with gauge-based, satellite-based, and satellite-based gauge-corrected precipitation
estimates in SWAT to determine their suitability in the Bosque River basin, Texas.
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Figure 1. Bosque watershed and location of climatic and hydrologic stations. The NCDC climatic
stations (16) located in and around the Bosque watershed were used in this study. The streamflow
gauges (blue triangle) were used to calibrate and validate the SWAT model.

The objectives of the study were to (1) evaluate the ability of gridded datasets in
reproducing in situ precipitation data, (2) determine the suitability of gridded precipitation
datasets for streamflow prediction using SWAT, and (3) assess the uncertainties related
to gridded precipitation datasets in the prediction of streamflow using SWAT. The study
also estimates the uncertainties in SWAT parameters when the model is forced by different
gridded precipitation datasets. This study is essential to increase precipitation data quality
by identifying gridded precipitation datasets that can better capture the region’s climate
and hydrology. The study is also important to identify gridded precipitation datasets that
can be used for climate service systems and evaluation and bias-adjusting climate model
simulations over the study region.

2. Materials and Methods
2.1. Study Area

The Bosque watershed is located in the Brazos River Basin, which covers seven out
of ten climate zones of Texas. The watershed has an area of 4300 km2. The elevation in
the watershed ranges from 111 m to 596 m (Figure 1). The Bosque River drains into Lake
Waco and supplies drinking water for a large population of the Waco area. The Bosque
watershed is covered by rangeland, woodland, forage fields, and dairy waste application
fields. Dairy production and other agricultural enterprises include peanut, range-fed cattle,
pecan, peach, and forage hay production as the dominant agricultural activities [42].

The Bosque watershed, located in the North-Central Texas climate division of Texas, is
characterized by a warm temperate sub-humid climate. The average annual precipitation
ranges from 737 to 838 mm, and the daily mean temperature ranges from 36 ◦F in January
to 96 ◦F in July [43]. The environment of the Bosque watershed is characterized by high-
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intensity short-duration precipitation events and other precipitation extreme events that can
cause large surface runoff [43,44]. Winter and fall precipitation are induced by continental
polar fronts that produce low-intensity long-duration storms. In the spring and summer,
most precipitation events produce high-intensity short-duration storms that can result in
flooding in small watersheds.

Several rivers and streams, such as Hico, Valley Mills, and Clifton, contribute to the
Bosque River. Storm-driven runoff is a primary hydrologic event and a source of water
quality impairment in the North Bosque River [45]. Water pollution is the major water-
related problem in the Bosque watershed. In 2000, this watershed was identified as an
elevated concern for increased levels of nutrients entering the watershed from tributary
watersheds; high levels of sediments, N, and P were identified [41].

2.2. Description of Gridded Precipitation Datasets

This study used in situ, gauge-based, satellite-based, and satellite-based gauge-
corrected precipitation datasets: Global Historical Climatology Network (GHCN), Daymet,
Parameter-elevation Regressions on Independent Slopes Model (PRISM), Integrated Multi-
satellitE Retrievals for GPM (IMERG), Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN), and Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS). Station-based daily and monthly GHCN
data are archived at the NOAA National Climate Data Center (NCDC). Thus, the NCDC
refers to the GHCN data of the gauged stations. The descriptions of these datasets are
included in Table 1.

Table 1. Gridded precipitation datasets used in the SWAT hydrological model.

Dataset Data Category Spatial Resolution Period Reference

NCDC Gauge observations - 1 January 2000 to
31 December 2019 [46]

Daymet Version 3 Gauge-based 1 km 1 January 2000 to
31 December 2019 [47]

PRISM Gauge-based 4 km 1 January 2000 to
31 December 2019 [48]

IMERG-Late V06 Satellite-based 0.1◦ 1 January 2001 to
31 December 2019 [49]

IMERG-Early V06 Satellite-based 0.1◦ 1 January 2001 to
31 December 2019 [49]

PERSIANN Satellite-based 0.25◦ 3 January 2000 to
31 December 2019 [50]

PERSIANN-CCS Satellite-based 0.04◦ 1 January 2003 to
31 December 2019 [50]

IMERG-Final V06 Satellite-based
gauge-corrected 0.1◦ 1 January 2001 to

31 December 2019 [21]

CHIRPS version 2.0 Satellite-based
gauge-corrected 0.05◦ 1 January 2000 to

31 December 2019 [51]

PERSIANN-CDR Satellite-based
gauge-corrected 0.25◦ 1 January 2000 to

31 December 2019 [52]

For hydrologic modeling, ArcSWAT uses sub-basin level input rainfall data. For a
particular sub-basin, it takes the rainfall data from the rain gauge closest to the centroid
of that sub-basin; our model setup has 86 sub-basins. Rainfall data for these 86 sub-basin
centroids were extracted from all the gridded data sets. Depending on the resolution of
the gridded dataset and the size of the sub-basins, many of these sub-basins had the same
rainfall inputs. Coarse resolution gridded products had a higher number of sub-basins with
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the same rainfall. In other words, finer resolution gridded data provided higher spatial
variability in rainfall input data to drive the sub-basin scale hydrologic process in ArcSWAT.
For rainfall comparison with the reference NCDC data, we used the extracted data for
the grid.

2.2.1. Global Historical Climatology Network

GHCN is an integrated database of daily and monthly climate summaries collected
from over 100,000 ground stations in 218 countries and territories across the globe [53]. The
station’s dataset commonly included meteorological variables are: precipitation, minimum
and maximum temperature, snowfall, and snow depth. Station data collected from numer-
ous sources are merged and subjected to a common suite of quality assurance procedures
to generate GHCN data.

2.2.2. Daymet

The Daymet dataset provides daily estimates of gridded (1 km × 1 km) solar radi-
ation, maximum and minimum temperature, precipitation, snow water equivalent, and
water vapor over the continental United States, Hawaii, and Puerto Rico. The Daymet
dataset is generated using local regression algorithms to interpolate and extrapolate daily
meteorological observations obtained from land surface metrological stations [47]. Daily
observed weather data of maximum and minimum temperature and precipitation used to
generate Daymet data are obtained from GHCN-Daily. Daymet uses the weighted linear
regression-based approach to consider the effect(s) of elevation on climate and to generate
the daily meteorological variables for a particular grid cell. Surrounding weather stations
to each grid cell are selected and distance is weighted using a truncated Gaussian filter that
considers the local station density [17].

2.2.3. Parameter-elevation Regressions on Independent Slopes Model (PRISM)

The PRISM dataset summarizes six essential climate parameters: precipitation, maxi-
mum and minimum temperature, dew point, and maximum and minimum vapor pressure.
Station-level climate data collected from multiple sources are used with various modeling
techniques to generate daily/monthly climate data from 1895 to the present. PRISM pri-
marily combines Climatologically Aided Interpolation (CAI) and Radar Interpolation to
generate daily climate summaries (PRISM Climate Group, 2019). The CAI method uses
long-term average monthly climate as predictor grids to generate daily gridded data. Like
Daymet, PRISM also uses a weighted linear regression approach with in situ station data
and DEM to generate gridded climatic variables. However, in addition to elevation, PRISM
explicitly accounts for environmental variables such as terrain-induced climate transitions,
the effects of terrain as barriers, cold air drainage and inversions, and coastal effects [17].

2.2.4. Integrated Multi-satellitE Retrievals for GPM (IMERG)

The Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm uses information
from GPM satellites to estimate precipitation over most of the earth’s surface. Precipitation
estimates generated using passive microwave sensor data into the Goddard Profiling
Algorithm (2017 version) are gridded and inter-calibrated to the GPM Combined Radar
Radiometer to generate half-hourly precipitation fields at 0.1◦ resolution [54]. The latest
IMERG dataset version 06 combines the early precipitation estimates collected during the
TRMM (2000–2015), with more recent precipitation estimates generated from GPM satellites
(2014–present). Three popular IMERG products were used in this study: Early, Late, and
Final. The IMERG system runs twice to generate near real-time datasets, Early and Late,
after ~4 h and 14 h of the observation time, respectively. The IMERG Final run uses
observed monthly gauge data from the Global Precipitation Climatology Centre (GPCC)
and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data
for final calibration [21].
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2.2.5. Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS)

CHIRPS is a quasi-global (50◦S–50◦N, 180◦E–180◦W) precipitation dataset that pro-
vides daily and monthly precipitation estimates at 0.05◦ resolution from 1981 to near
present [51]. CHIRPS uses thermal infrared data as a primary input along with passive
microwave data and measured monthly gauge data for bias correction to generate the
final product. This dataset combines three types of information—global climatology, satel-
lite estimates, and in situ observations—calculating different time steps from 6-hourly to
3-monthly aggregates to generate several precipitation products [51,55]. Since it is blended
with ground measurements, CHIRPS is perceived to be more efficient in representing the
rainfall field [56].

2.2.6. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural
Networks (PERSIANN)

The Precipitation Estimation from Remotely Sensed Information using Artificial Neu-
ral Networks (PERSIANN) system is used to generate three datasets—PERSIANN (CHRS),
PERSIANN-Cloud Computing System (CCS), and PERSIANN-Climate Data Records
(CDR)—providing a range of spatio-temporal resolutions (Table 1). The PERSIANN sys-
tem primarily uses infrared and visible data obtained from geostationary satellites [25].
PERISANN CHRS and PERSIANN-CCS use the satellite infrared imagery provided by
the NOAA NCEP Climate Prediction Center. PERSIANN (CHRS) uses an Artificial Neu-
ral Network (ANN) model to develop a relationship between infrared (cloud) data and
rainfall rates. PERSIANN-CCS segments the cloud into patches, clustered based on their
temperature, texture, and geometry, to develop a relationship between cloud-top brightness
temperature and rainfall for each cloud type [57].

PERSIANN-CDR uses an algorithm similar to CHRS. The main difference is that
PERSIANN-CDR uses NCEP Stage IV hourly precipitation data instead of microwave data
for ANN model training and bias correction [52]. The PERSIANN-CDR algorithm uses an
additional bias correction step using monthly gridded (2.5◦) precipitation data from the
Global Precipitation Climatology Project (GPCP) [52]. The PERSIANN-CDR system uses
NOAA NCEP GridSat-B1 infrared data to generate historical daily precipitation data.

2.3. Gridded Precipitation Datasets Performance Evaluation

The GHCN data of the gauged stations were acquired from the NCDC. Thus, NCDC
data were used as a reference to evaluate the efficiency of gridded precipitation datasets.
The output of gridded precipitation datasets was compared with the in situ NCDC data.
This study used statistical metrics such as correlation, standard deviation, RMSE (root mean
square error), NSE (Nash–Sutcliffe efficiency), KGE (Kling–Gupta efficiency), and PBIAS
(percent bias) to evaluate the gridded daily, monthly, and annual precipitation datasets.
The NSE [58] is a statistic used to evaluate the relative magnitude of the residual variance
compared with the observed data variance. The KGE is the alternative and improved
metric that combines NSE components (bias, correlation, and ratio of variances) in a more
balanced way. In both NSE and KGE, values near 1 indicate strong model efficiency, while
negative and positive values are viewed as bad and good model efficiency [59]. The PBIAS
is a statistical metric that measures the average tendency of the simulated data whether it
is larger or smaller than the observed data. A negative PBIAS value indicates the model’s
overestimates, while a positive PBIAS value indicates the model’s underestimates of the
observed values [60].

The Taylor diagram [61] was used to evaluate the ability of gridded precipitation
datasets to capture in situ precipitation data. Correlation, RMSE, and standard deviation
between in situ and gridded datasets were analyzed using the Taylor diagram. The cumula-
tive distribution function (CDF) was also used to compare the distribution of precipitation
events in the in situ and gridded precipitation datasets. In situ precipitation data during
2000–2019 at the selected GHCN weather stations (Figure 1) were compared (in and around



Remote Sens. 2022, 14, 3860 8 of 26

the study watershed) against the gridded precipitation estimates for the corresponding
grid containing the station.

2.4. Hydrologic Modeling
2.4.1. Description of the SWAT Model

SWAT is a robust hydrological model that was developed to estimate the effects of land
use and management practices on water availability, sediment, and agricultural chemical
yields over long periods in watersheds and river basins [62,63]. SWAT has been used to
efficiently simulate the effect of climate change on water availability in different regions
of the world [63–66]. The model uses the Soil Conservation Service (SCS) Curve Number
method (USDA-SCS, 1972) to estimate surface runoff and the Penman–Monteith method to
estimate potential evapotranspiration (PET).

In this study, SWAT was used to evaluate the effectiveness of gridded precipitation
datasets in simulating the streamflow of the Bosque watershed. SWAT has previously been
used to effectively simulate the streamflow and sediment load in the upper North Bosque
watershed [42].

2.4.2. SWAT Model Calibration and Validation

The SWAT model was calibrated and validated using in situ and gridded precipita-
tion datasets at different gauge locations of the watershed (Figure 1). The SWAT model
has numerous parameters which could affect the streamflow simulation. Thus, the most
sensitive parameters of SWAT (parameters that have smaller p-value and larger t-stat) [67]
were identified through a global sensitivity analysis in SWAT Calibration and Uncertainty
Programs (SWAT-CUP) (Table 2). SWAT-CUP is an interface developed for SWAT and
used to link the input/output, sensitivity analysis, calibration/validation, and uncertainty
analysis of the SWAT model [67]. It intends to integrate calibration and validation with
an uncertainty analysis in one user interface that further helps users compare observed
and simulated results by creating graphs [68]. SWAT-CUP supports different optimization
algorithms such as SUFI2, GLUE, and ParaSol [67]. Subsequently, the hydrological model
was calibrated and validated using Sequential Uncertainty Fitting version 2 (SUFI2) SUFI-2
in SWAT-CUP [68]. SUFI is an optimization algorithm that estimates the uncertainty in
model parameters, driving variables (e.g., precipitation), conceptual model, and observed
data [69]. SUFI-2 measures uncertainties of parameters as ranges and is expressed as the
95% probability distributions calculated as the 2.5% and 97.5% levels of cumulative distri-
bution [67,69]. SUFI-2 mainly involves defining an objective function, setting maximum
and minimum values of parameters being optimized, sensitivity analysis, and assessing
the uncertainties [69].

Calibration and validation were conducted for each gridded precipitation dataset and
observational gauge station (NCDC) data. This means ten sets of precipitation data were
used for calibrations and validations at each streamflow gauge of the Bosque watershed
(Figure 1). The measured streamflow of 2002–2008 was used for model calibration, while
the measured streamflow of 2014–2019 was used for model validation. Hydrological model
efficiency in simulating the observed streamflow for each dataset was evaluated using KGE,
NSE, and PBIAS, which are important goodness-of-fit evaluation criteria [60,67].

Furthermore, the uncertainty in the model simulation of streamflow was evaluated
using the r-factor and the p-factor on the SUFI-2 algorithm. The p-factor is the percentage of
the observed data bracketed within the 95PPU (95 Percent Prediction Uncertainty), whereas
the r-factor measures the thickness of the uncertainty band. A p-factor of 1 and an r-factor
of 0 indicate the exact fit of simulation with measurement [67].
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Table 2. SWAT parameters and their initial ranges were used for model calibration and validation at
gauges of the Bosque watershed. The model was calibrated for the period 2002–2008.

Parameter Minimum Value Maximum Value Parameter Description

r_CN2 −0.2 0.2 Curve number

v_ALPHA_BF 0 1 Base flow alpha factor (days)

a_GWQMN −1000 1000 Threshold depth of water in shallow
aquifer for return flow (mm)

v_ESCO 0.4 0.95 Soil evaporation compensation factor

r_SOL_K −0.3 0.3 Soil saturated hydraulic
conductivity (mm/h)

r_SOL_AWC −0.25 0.25 Soil available water capacity

v_GW_REVAP 0.02 0.2 Groundwater “revap” coefficient

v_REVAPMN 0 500 Threshold depth of water in shallow
aquifer for “revap” (mm)

v_SURLAG 0.05 24 Surface runoff lag time (days)

v_CH_K1 0 300 Effective hydraulic conductivity in the
tributary channel (mm/h)

v_RES_RR −3 3 Average daily principal spillway release
rate (cusec)

The qualifier (a_) refers to the “absolute” operation that adds/subtracts from the default parameter, a value falling
within minimum/maximum value. The qualifier (r_) refers to a relative change in the parameter where the default
values are multiplied by 1 plus a factor in the parameter range. The qualifier (v_) refers to the “replace” operation
that replaces the parameter with a value falling within the given min/max value.

3. Results
3.1. Comparison of Gridded Precipitation with In Situ Precipitation
3.1.1. Daily Analysis

The Taylor diagrams show the evaluation of gridded precipitation datasets through
the correlation, standard deviation, and RMSE between gridded precipitation datasets and
the reference (in situ) precipitation data (Figure 2). The diagrams unfold the non-consistent
ability of the gridded precipitation datasets in reproducing the in situ precipitation. More-
over, there is an apparent dissimilarity among the gridded datasets in a similar category.
In most stations, the gauge-based gridded precipitation datasets (Daymet and PRISM)
unveiled superior efficiency in correlation, RMSE, and standard deviation. For instance,
Daymet and PRISM datasets have a better correlation with in situ precipitation than other
precipitation products (Figure 2). In most stations, PRISM has a correlation of >0.8 with the
in situ precipitation. The gauged-based datasets also disclose lower RMSE and standard
deviation than other datasets in most stations. Remarkably, the PRISM dataset steadily
achieves superior performance in RMSE and standard deviation in all stations (Figure 2).
These high efficiencies are likely because the gauge-based datasets such as Daymet and
PRISM are developed using precipitation observations from in situ stations.
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Figure 2. Taylor diagrams demonstrate the correspondence between daily in situ and gridded pre-
cipitation datasets. Stephenville, Cranfill, Crowford, and Waco dam are among the climatic stations
located at the upper, middle, and lower courses of the Bosque watershed (Figure 1). The green contours
indicate the RMSE values, which measure the difference between the gridded datasets and in situ data
proportional to the distance from the x-axis.

However, satellite-based gridded datasets are weak in reproducing the in situ pre-
cipitation of the Bosque watershed (Figure 2). These gridded datasets have weak corre-
lation, higher standard deviation, and RMSE from the in situ precipitation. Particularly,
PERSIANN-CHRS, IMERG-Early, and IMERG-Late are characterized by weak correlation
and high RMSE and standard deviation, confirming these datasets can provide considerable
low-quality precipitation of the study watershed. PERSIANN-CCS is also under poor abil-
ity in correlation, RMSE, and standard deviation. Such low performance of satellite-based
datasets may be attributed to biases stemming from cloud segmentation algorithms that
classify clouds into patches or precipitation mapping methods for each classified cloud
patch. This source of uncertainty is seldom found in gauge-based datasets.

The satellite-based gauge-corrected precipitation discloses moderate correlation, RMSE,
and standard deviation (Figure 2). All of the gridded precipitation datasets in this group have
correlation > 0.5 with the in situ dataset. IMERG-Late showed higher standard deviation and
RMSE than other satellite-based gauge-corrected datasets. This designates a large difference
between precipitation simulated by IMERG-Late and in situ precipitation. Thus, IMERG-Late
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and other datasets with higher standard deviation and RMSE, such as PERSIANN-CHRS and
IMERG-Early, could overestimate or underestimate the in situ precipitation.

Daily time-series evaluations through KGE, NSE, and percent bias (PBIAS) unveiled
the difference in the efficiency of gridded precipitation datasets (Figure 3). Based on the
KGE, NSE, and PBIAS statistics, the increasing order of efficiency statistics were as follows:
satellite-based, satellite-based gauge-corrected, and gauge-based datasets. However, in
contrast to the other satellite-based gauge-corrected datasets, PERSIANN-CDR showed
lower KGE (mean = 0.39) values than the satellite-based datasets such as IMERG-Late
(mean = 0.47) and IMERG-Early (mean = 0.47). Lower KGE values for PERSIANN-CDR
result from a low coefficient of variation (CV) of PERSIANN-CDR estimates compared with
the CV of in situ station data. All the satellite-based products (IMERG-Late, IMERG-Early,
PERSIANN-CHRS, and PERSIANN-CCS) revealed negative median NSE values, indicating
a weaker performance than the mean predictor [59].
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Figure 3. Point-to-grid daily precipitation comparison statistics (2000–2019) for the Bosque watershed.
In situ daily precipitation at an NCDC weather station (Figure 1) was compared with the estimated
precipitation in the corresponding grid of a gridded precipitation dataset. The boxes’ yellow circle
cross and black vertical lines denote the mean and median, respectively.

Using the Cumulative Distribution Function (CDF), the precipitation frequency and
distribution in each dataset were compared to the observed gauged datasets (Figure S1).
Some precipitation products such as Daymet, PRISM, CHIRPS, and PERSIANN-CHRS
reproduce the CDF of the in situ precipitation. This indicates no strong systematic difference
between groups of gridded precipitation datasets. Among the datasets, Daymet and PRISM
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PERSIANN (gauge-based), CHRS (satellite-based), and CHIRPS (satellite-based gauge-
corrected) datasets well capture the distribution of in situ daily precipitation.

However, IMERG-Late, IMERG-Early, PERSIANN-CDR, and PERSIANN-CCS are
inefficient in capturing the distribution of in situ precipitation at most of the gauge stations
of the Bosque watershed. Unlike other gridded precipitation datasets, the distribution of
IMERG-Late is characterized by a high proportion of extreme heavy precipitation values
(>100 mm) in most areas of the watershed. In contrast, IMERG-Early, PERSIANN-CCS,
and PERSIANN-CDR datasets show lower frequency distribution of high precipitation
values. Particularly, IMERG-Early seamlessly underestimates the frequency distribution of
high precipitation values. Concurrent to this study, the low performance of precipitation
datasets in capturing the frequency of extreme precipitation was investigated by several
researchers in different regions globally [70,71]. For instance, precipitation products such
as CMORPH, PERSIANN, TMPA-RT, and TMPA-V6 revealed a weak ability to capture
extreme precipitation in the central United States, Blue Nile Basin, and Yellow River Basin,
respectively [70–72].

3.1.2. Monthly Analysis

Mean evaluation statistics of monthly precipitation indicated overall superior ability of
gauge-based gridded datasets, PRISM (KGE = 0.92, NSE = 0.90, PBIAS = −0.9%) and Daymet
(KGE = 0.91, NSE = 0.86, PBIAS = −4.7%) (Figure 4). On the other hand, PERSIANN-CHRS
disclosed poor efficiency in terms of KGE (0.52), NSE (−0.30), and PBIAS (16.3) values.
In general, satellite-based gauge-corrected datasets such as IMERG-Final, CHIRPS, and
PERSIANN-CDR showed superior mean statistics (KGE = 0.75–0.82, NSE = 0.69–0.80, and
PBIAS = 5.26 to 0.21) compared with the satellite-based products, which include IMERG-Late,
IMERG-Early, PERSIANN-CCS, and PERSIANN-CHRS (KGE = 0.47 to 0.67, NSE = −0.30
to 0.32, and PBIAS = −27.69 to −3.37). Satellite-based products (IMERG-Early, IMERG-
Late, and PERSIANN-CHRS) also overestimated annual and monthly precipitation ranging
from 7 to 34%, depending on the station location. However, the satellite-based product
(PERSIANN-CCS) showed a relatively low (mean PBIAS = −3.4%) overestimation bias that
was comparable to the gauge-based (−0.9 to −4.7%) and satellite-based gauge-corrected
(0.2 to 5.3%) datasets.

Gauge-based datasets (PRISM and Daymet) show low deviation in prediction ac-
curacies between seasons (Figure 4). Satellite-based gauge-corrected datasets (IMERG-
Final, CHIRPS and PERSIANN-CDR) showed slightly better mean statistics in the winter
(November-May) season (KGE = 0.77 to 0.84, NSE = 0.70 to 0.82, PBAIS = −3.4 to 5.1%)
compared with the growing (June-October) season (KGE = 0.73 to 0.80, NSE = 0.66 to
0.78, PBAIS=1.6 to 5.4%) (Figure 4). On the other hand, satellite-based products such
as IMERG-Early, IMERG-Late, and PERSIANN-CHRS divulged better efficiency in the
growing season in terms of NSE, KGE, and PBIAS values. PERSIANN-CHRS revealed low
statistics, particularly in the winter season (KGE = 0.45, NSE = −0.65, and PBIAS = −23.6%).
However, PERSIANN-CHRS has a better PBIAS value than IMERG-Late and IMERG-Early
in the June-October season. In contrast to other satellite-based datasets, PERSIANN-CCS
has better NSE and KGE values in the November-May season than the June-October season.
We found that the PBIAS, PERSIANN-CCS overestimated (PBIAS = −19.3%) precipitation
in the winter season, while it underestimated (PBIAS = 16%) during the growing season
(Figure 4).
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Figure 4. Point-to-grid monthly precipitation comparison statistics (2000–2019) for the Bosque
watershed. These statistics were obtained by comparing observed monthly precipitation at an NCDC
weather station against the estimated precipitation in the corresponding grid for a given gridded
dataset. The yellow circle cross in the box denotes the mean, while the black vertical line in the box
represents the median. Note: growing season June−October and winter season November−May.

3.1.3. Annual and Seasonal Evaluation of Gridded Precipitation Datasets

At annual and seasonal scales, Daymet and PRISM datasets are superior in simulating
the total precipitation, the precipitation days (>1 mm), and the heavy precipitation days
than other precipitation products (Figure 5). However, gridded precipitation datasets from
IMERG and PERSIANN groups struggle to simulate the mean and frequency of precipita-
tion at annual and seasonal scales. For instance, the PERSIANN-CDR simulates a far higher
number of wet days in the annual, growing, and winter seasons than the in situ gauges and
other gridded datasets (Figure 5). However, the PERSIANN-CDR is characterized by fewer
heavy precipitation events. This indicates that the precipitation in the PERSIANN-CDR
is dominated by low-intensity and drizzle precipitation events. Satellite products such as
IMERG-Early, IMERG-Late, and IMERG-CHRS are also characterized by a higher number
of heavy precipitation events and precipitation days. In general, the systematic dissimilarity
between the datasets is observed in simulating the mean and frequency of precipitation.
The satellite-based datasets (IMERG-Late, IMERG-Early, and PERSIANN-CHRS) are char-
acterized by a high frequency of heavy precipitation events during the annual, growing,
and winter seasons.
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Figure 5. Annual and seasonal precipitation, number of rainy days (precipitation > 1 mm), and
number of heavy rain (>50 mm) events for different precipitation datasets. Note: growing season
June-October and winter season November-May.

3.2. Hydrological Model Performance with Gridded Precipitation Datasets

Climate data such as precipitation are an important source of error that ascertain
hydrological model strength [73–75]. This study also investigated the difference in hydro-
logical model statistics for calibration and validation using different gridded precipitation
datasets. The SWAT model simulation using in situ (NCDC), gauge-based (Daymet and
PRISM), and satellite-based gauge-corrected (CHIRPS, IMERG-Final, and PERSIANN-CDR)
precipitation data showed better NSE, KGE, and PBIAS during calibration and validation
at the Bosque watershed (Figure 6). Furthermore, the SWAT model forced by Daymet and
PRISM has better NSE and KGE during calibration and validation in the North Bosque,
Middle Bosque, and Hog Creek sub-basins. This demonstrates that gridded precipitation
datasets that show superior performance in capturing the mean and frequency of in situ
precipitation better simulate the Bosque watershed’s streamflow. However, the SWAT
model run by satellite-based datasets (PERSIANN-CHRS and PERSIANN-CCS) is charac-
terized by the low efficiency of NSE, KGE, and PBIAS during calibration and validation.
Analogously, the satellite-based datasets were far from simulating the mean and frequency
of precipitation.
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Figure 6. SWAT model performance statistics using gridded precipitation datasets for calibration and
validation with monthly streamflow data.

There is some coherence in the performance of gridded precipitation datasets during
calibration and validation at the North Bosque, Middle Bosque, and Hog Creek gauges.
Gridded datasets such as Daymet, PRISM, CHIRPS, and IMERG-Final consistently show
superior efficiency at the North Bosque, Middle Bosque, and Hog Creek gauges. In contrast,
gridded datasets such as PERSIANN-CHRS, PERSIANN-CCS, and PERSIANN-CHRS
trigger low NSE, KGE, and PBIAS efficiency during calibration and validation at the North
Bosque, Middle Bosque, and Hog Creek sub-basins.

Figure 7 representing a scatter plot of monthly streamflow, shows that gridded datasets
can predict the streamflow of the Bosque watershed; however, the efficiency of gridded
datasets in simulating streamflow is not similar. Concurrent with other metrics, the hydro-
logical model, which uses precipitation data of Daymet, PRISM, CHIRPS, and IMERG-Final,
unfolds a better correlation with observed streamflow. Particularly, model simulation using
Daymet precipitation showed superior efficiency, even higher than the model driven by the
in situ precipitation. However, the model simulation using IMERG-Late, PERSIANN-CHRS,
and PERSIANN-CCS showed weak correlation with the observed streamflow.
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datasets in three sub-basins of the Bosque watershed.

The performance of gridded precipitation datasets in simulating observed streamflow
is different at different sub-basins of the Bosque watershed. The hydrological model,
which uses the precipitation of in situ (NCDC), Daymet, PRISM, CHIRPS, IMERG-Early,
IMERG-Final, and PERSIANN-CDR, has a better correlation with the observed streamflow
in the North Bosque sub-basin (Figure 7). Conversely, the hydrological model driven
by PERSIANN-CDR, PERSIANN-CHRS, PERSIANN-CCS, PRISM, IMERG-Final, and
IMERG-Early disclosed a lower association with the observed streamflow in the Hog Creek
sub-basin than other sub-basins (Figure 7). This may be attributed to the difference in land
use, area, and soil hydraulic characteristics between the sub-basins. In the Hog Creek
sub-basin, the hydrological model forced by the Daymet precipitation has a relatively better
association with observed streamflow than other datasets.

Another difference is the performance of gridded datasets among seasons. The hydro-
logical model calibrated during the growing season and used in situ precipitation, CHIRPS,
Daymet, PERSIANN-CCS, PERSIAN-CHRS, and IMERG-Early had a lower correlation
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with observed streamflow in the Middle Bosque sub-basin. On the other hand, the hydro-
logical model validated during the winter season and used the precipitation of Daymet,
CHIRPS, IMERG-Final, IMERG-Early, IMERG-Late, and PRISM showed a better correlation
with observed streamflow in the Hog Creek sub-basin (Figure 7).

3.3. Uncertainties Due to Precipitation Data

Figure 8 presents the SWAT-CUP suggested optimum model input parameter ranges
and best parameter values under different gridded precipitation datasets. The suggested
range of optimum parameters designates the uncertainty largely stemming from input
data (precipitation). Among the model input parameters, the Curve Number (CN) showed
a large uncertainty band (Figure 8). The relative change in CN values ranges from −0.4
to 0.0 in the IMERG-Early and IMERG-Late datasets, while it ranges from −0.2 to 0.06 in
the Daymet data. The soil hydraulic conductivity (SOL_K) and GWQMN parameters also
show a large range of uncertainty. The relative change in SOL_K values is in the order
of 0.6 to 0.0 in the CHIRPS dataset, while the relative change in SOL_K values is in the
range of 0.0 to 0.6 in the IMERG-Final. The absolute value of GWQMN is between −1500
to 0 in the CHIRPS dataset and 0 to 1500 in the PERSIANN-CHRS dataset. The stream
channel-related parameter, i.e., CH-K (effective channel hydraulic conductivity), illustrates
a low uncertainty band during the calibration and validation of the hydrological model
run by gridded precipitation datasets (Figure 8).

The SWAT model calibrated and validated using PERSIANN-CCS, PERSIANN-CHRS,
CHIRPS, IMERG-Final, and IMERG-Early unveiled a higher increase or higher decrease in
most of the SWAT parameters used for calibration. This demonstrates that such precipi-
tation datasets can produce relatively higher changes in SWAT parameter values and can
cause higher uncertainty in hydrological modeling.

Table 3 presents the uncertainties during calibration and validation of the hydrological
model run by different gridded precipitation products at different sub-basins of the Bosque
watershed. The hydrological model revealed a different level of p-factor and r-factor at
different sub-basins of the watershed. In the North Bosque sub-basin of the watershed,
the hydrological model calibrated using gridded precipitation datasets produces the rec-
ommended p-factor value (>0.7) [67]. The PERSIANN-CHRS dataset could not achieve a
reasonable p-factor during calibration in the North Bosque sub-basin (Table 3). However,
the hydrological model calibrated using most of the gridded datasets could not achieve the
recommended r-factor value (<1.5) [67] in the North Bosque sub-basin. Only PERSIANN-
CDR and CHIRPS datasets provided a reasonable r-factor in this sub-basin (Table 3). The
hydrological model simulated using all gridded precipitation datasets during validation
presented high p-factor values. Similarly, validation of the model under most gridded
precipitation datasets also attained recommended r-factor values in the North Bosque water-
shed. The calibration and validation of the hydrological model run by gridded precipitation
datasets showed lower p-factor and r-factor in the Middle Bosque and Hog creek sub-basins
than in the North Bosque sub-basin. In these sub-basins, no recommended r-factor was
achieved during calibration of the hydrological model driven by any gridded precipitation.

From the total 2000 simulations, the number of simulations with NSE > 0.5 during
calibration and validation also showed a difference among the sub-basin (Table 3). The
calibration and validation in the North Bosque sub-basin revealed a higher number of
such simulations with NSE > 0.5 (Table 3). In the Hog Creek and Middle Bosque sub-
basins of the Bosque watershed, a lower number of simulations achieved NSE > 0.5. In
the Hog Creek sub-basin, the model was calibrated through PRISM’s input; PERSIANN-
CHRS, PERSIANN-CDR, PERSIANN-CCS, CHIRPS, and NCDC did not achieve NSE > 0.5.
In the Middle Bosque sub-basin, the hydrological model calibrated and validated using
PERSIANN-CHRS and PERSIANN-CCS did not achieve NSE > 0.5. The SWAT model
calibrated and validated by most gridded datasets showed low efficiency in achieving
the recommended r-factor. Particularly, SWAT simulations run by PERSIANN-CHRS and
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PERSIANN-CCS steadily revealed low p-factor and r-factor values in the Hog Creek and
Middle Bosque sub-basins.

Remote Sens. 2022, 13, x FOR PEER REVIEW 18 of 25 
 

 

 

Figure 8. SWAT−CUP suggested input parameters range (gray bars) and best parameter estimates 

(red circle) provided after running 2000 model simulations with given initial ranges of parameters. 

  

Figure 8. SWAT−CUP suggested input parameters range (gray bars) and best parameter estimates
(red circle) provided after running 2000 model simulations with given initial ranges of parameters.



Remote Sens. 2022, 14, 3860 19 of 26

Table 3. p-factor, r-factor, and the number of parameter sets with NSE > 0.5 for different precipitation data sets. The values in the parenthesis are NSE values.

Basin Dataset
Calibration Validation

p-Factor r-Factor No. of Simulations
with NSE > 0.5 p-Factor r-Factor No. of Simulations

with NSE > 0.5

North Bosque

PRISM 0.98 (0.85) 1.8 (0.92) 615 0.96 (0.96) 1.16 (0.84) 983

Daymet 0.98 (0.84) 1.92 (0.92) 813 0.96 (0.88) 1.29 (0.83) 1081

IMERG-Final 0.97 (0.87) 1.85 (0.88) 806 0.94 (0.88) 0.88 (0.7) 477

IMERG-Late 0.84 (0.57) 2.72 (0.49) 37 0.71 (n/a) 1.86 (n/a) 0

IMERG-Early 0.82 (0.44) 2.68 (0.39) 13 0.79 (0.58) 1.78 (0.5) 115

PERSIANN-CHRS 0.66 (n/a) 2.34 (n/a) 0 0.81 (n/a) 1.46 (n/a) 0

PERSIANN-CCS 0.74 (n/a) 1.52 (n/a) 0 0.88 (0.15) 1.11 (0.1) 3

PERSIANN-CDR 0.92 (0.69) 1.42 (0.71) 120 0.89 (0.86) 0.76 (0.76) 338

CHIRPS 0.93 (0.83) 1.49 (0.85) 296 0.92 (0.81) 0.88 (0.76) 351

NCDC 0.99 (0.81) 1.81 (0.84) 707 0.9 (0.74) 1.06 (0.59) 254

Hog Creek

PRISM 0.75 (n/a) 2.1 (n/a) 0 0.9 (0.87) 1.71 (1.04) 380

Daymet 0.76 (0.73) 2.54 (0.62) 112 0.9 (0.85) 2.15 (0.97) 729

IMERG-Final 0.75 (n/a) 2.24 (n/a) 0 0.87 (n/a) 1.47 (n/a) 0

IMERG-Late 0.66 (0.64) 2.99 (0.59) 42 0.8 (0.68) 2.62 (0.9) 134

IMERG-Early 0.65 (0.66) 2.82 (0.62) 217 0.78 (0.67) 2.6 (0.93) 133

PERSIANN-CHRS 0.65 (n/a) 2.1 (n/a) 0 0.73 (n/a) 2.22 (n/a) 0

PERSIANN-CCS 0.66 (n/a) 1.76 (n/a) 0 0.85 (n/a) 1.65 (n/a) 0

PERSIANN-CDR 0.75 (n/a) 1.65 (n/a) 0 0.85 (0.45) 1.37 (0.51) 19

CHIRPS 0.77 (n/a) 1.92 (n/a) 0 0.88 (0.65) 1.44 (0.86) 231

NCDC 0.73 (n/a) 2.24 (n/a) 0 0.9 (0.72) 1.53 (0.84) 111
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Table 3. Cont.

Basin Dataset
Calibration Validation

p-Factor r-Factor No. of Simulations
with NSE > 0.5 p-Factor r-Factor No. of Simulations

with NSE > 0.5

Middle Bosque

PRISM 0.86 (0.69) 1.98 (0.62) 181 0.83 (0.85) 1.97 (0.93) 880

Daymet 0.81 (0.69) 2.42 (0.58) 161 0.83 (0.71) 2.35 (0.84) 1163

IMERG-Final 0.8 (0.55) 2.05 (0.4) 51 0.83 (0.6) 1.67 (0.8) 304

IMERG-Late 0.7 (0.41) 2.67 (0.38) 39 0.6 (0.31) 2.83 (0.19) 23

IMERG-Early 0.73 (0.22) 2.59 (0.2) 3 0.6 (0.31) 2.79 (0.32) 138

PERSIANN-CHRS 0.6 (n/a) 1.83 (n/a) 0 0.6 (n/a) 2.42 (n/a) 0

PERSIANN-CCS 0.58 (n/a) 1.71 (n/a) 0 0.67 (n/a) 2.06 (n/a) 0

PERSIANN-CDR 0.77 (0.05) 1.64 (0) 1 0.77 (0.04) 1.68 (0) 1

CHIRPS 0.82 (0.55) 1.85 (0.35) 23 0.79 (0.69) 1.83 (0.81) 461

NCDC 0.82 (0.62) 2.11 (0.54) 77 0.81 (0.67) 2 (0.72) 357



Remote Sens. 2022, 14, 3860 21 of 26

4. Discussion

This study evaluated the performance of gridded precipitation datasets in reproducing
the in situ precipitation and simulating observed streamflow of the Bosque watershed from
2000 to 2019. The results revealed discernable capability among different groups of gridded
precipitation datasets in estimating daily, monthly, seasonal, and annual precipitation. The
gauge-based products such as Daymet and PRISM showed superior performance in most
metrics used for evaluation than other datasets. The Daymet and PRISM showed higher
NSE and KGE (≥0.7 to 0.92) with the in situ precipitation at daily and monthly scales. These
datasets also better captured the frequency of wet days and heavy precipitation events.
This is because Daymet and PRISM use observed station data obtained from GHCN-Daily
to develop spatially continuous gridded precipitation datasets. These datasets apply
regression techniques such as linear regression and weighted linear regression to convert
station-based (point) data into continuous gridded datasets [17]. Thus, the main source
of uncertainty in these datasets could be from the interpolation techniques. In fact, the
reliability of these datasets is highly dependent on the quality of observed data. The
importance of these data sources can also be hindered where the density of observing
gauge stations is sparse on mountainous, desert, and ocean surfaces with no gauge stations.

Satellite-based datasets such as IMERG (Early and Late) and PERSIANN groups had
relatively low performance in most metrics. These datasets had low correlation, NSE, and
KGE (<0.5 in most cases) with the in situ precipitation at daily, monthly, and annual scales.
However, satellite-based datasets were found effective in simulating precipitation and
hydrology in other regions of the USA [18,25,50,72,76]. The low efficiency of satellite-based
datasets could be attributed to the biases in cloud parametrization and satellite sensors taking
the image of the cloud over the Texas region by TRMM and GPM. The error in the image of
satellite sensors of TRMM and GPM may also trigger a multiplicative error on the estimated
precipitation that further limit such datasets from effectively representing precipitation
of the region. Besides, the biases in satellite-based precipitation may be attributed to the
limitations of satellites to capture the climate of Texas driven by the eastern tropical Pacific
and tropical trade winds and characterized by highly variable moisture conditions [44,77]. It
is worthwhile to disentangle the source of bias and the relative contribution of image taking
and retrieval algorithms in contributing biases of satellite-based datasets in the Bosque
watershed and the Texas region.

The PERSIANN products, particularly PERSIANN-CHRS and PERSIANN- CCS
satellite-based products, were also found less reliable in estimating precipitation. The
PERSIANN-CHRS and PERSIANN- CCS datasets use infrared imagery to measure cloud-
top temperature and precipitation [57]; this means no direct measurement of precipitation-
related events occurring at a lower altitude. Such techniques of image taking can be a source
of uncertainty. The use of satellites and sensors to detect cloud water, water vapor, and
long-wave radiations are improvements for better data collection from the earth’s surface
and the lower atmosphere. Moreover, the PERSIANN system applies the Artificial Neu-
ral Networks (ANNs) technique to develop an association between cloud-top brightness
temperature and rainfall for each cloud type [57]. The retrieval technique, which intends to
associate the pixel brightness temperature rate using histogram matching and exponential
regression, could also be a potential source of biases in the PERSIANN-CCS.

The satellite-based gauged-corrected datasets performed better in capturing in situ
precipitation than the satellite-based products. For instance, CHIRPS showed good accu-
racies in correlation, NSE, and KGE and better captured the cumulative distribution of
in situ precipitation. The gauge observations used by CHIRPS for the bias correction of
satellite precipitation [51] may result in a better simulation of precipitation by CHIRPS.
The IMERG-Final also showed better efficiency of correlation, NSE, and KGE than satellite-
based products. However, IMERG-Final was characterized by overestimating precipitation
and high frequency of heavy precipitation events in the distribution function than other
datasets. Thus, the overestimation of IMERG-Final could emerge from the datasets used
for bias correction or the multiplicative effect from the raw satellite data and the data
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used for bias correction. For instance, in the IMERG-Final, uncertainty may arise from the
Global Precipitation Climatology Centre and European Centre for Medium-Range Weather
Forecasts Reanalysis, which were used for calibration [21], or the multiplicative effect of
errors from IMERG and the data used for calibration.

The hydrological model calibrated and validated through gridded precipitation datasets
revealed a range of effectiveness in reproducing the observed streamflow at the gauge
location of the Bosque watershed. Generally, input data error is not the only source of uncer-
tainty; rather, hydrological model parameters and model conceptualization can also be an
important source of uncertainty that can reduce the hydrological model’s efficiency [73–75].
Corresponding with the ability to capture in situ precipitation, the SWAT model calibrated
and validated with gauged-based datasets such as Daymet and PRISM, and satellite-based
gauge-corrected models such as CHIRPS and IMERG-Final have better accuracy in most
metrics. However, hydrological models run by PERSIANN group datasets revealed poor
efficiency in reproducing observed streamflow during calibration and validation. This
indicates that input data error from gridded precipitation datasets is a significant source of
uncertainty in the hydrological modeling of the Bosque watershed.

5. Conclusions

This study evaluated two gauge-based, four satellite-based, and three satellite-based
gauge-corrected gridded precipitation products using different mean and distribution-
based metrics. The results showed relative differences in the performance of the gridded
precipitation datasets in capturing the in situ gauge precipitation and simulating streamflow
of the Bosque watershed in Texas. Gauge-based precipitation products, Daymet and PRISM,
showed the best performance reproducing the in situ precipitation. The Daymet and PRISM
revealed a NSE of ≥0.7 and ≥0.86 with the in situ precipitation at daily and monthly scales,
respectively. These gauge-based precipitation datasets are also better in capturing the
frequency of wet days and heavy precipitation events than other datasets. The hydrological
model simulated using Daymet and PRISM outputs showed NSE and KGE of ≥0.75 at
most of the gauges used for calibration and validation. Next to gauge-based precipitation
products, satellite-based gauge-corrected products such as CHIRPS and IMERG-Final
unveiled better performances. Corresponding to these results, the hydrological model
(SWAT) calibrated and validated using gauge-based and satellite-based gauge-corrected
products revealed better NSE and KGE efficiency (≥0.7 in most cases) in the Bosque
watershed. Satellite-based datasets such as PERSIANN-CCS and PERSIANN-CCS showed
weak NSE and KGE efficiency (<0.5) in reproducing precipitation and observed streamflow
during SWAT calibration and validation.

Most essentially, this study has estimated the uncertainties in SWAT parameters under
gridded precipitation datasets. The SWAT parameters which were used for calibration and
validation showed different degrees of uncertainty as a response to gridded precipitation
datasets. When the SWAT model was forced by satellite-based precipitation, most cali-
bration and validation parameters showed a large band of uncertainty, while the SWAT
parameters showed a narrow band of uncertainty when the gauged-based precipitation
datasets were used. Parameter uncertainty analysis also showed the variation of parameter
values when using different gridded datasets. For instance, the calibrated Curve Number
(CN) value is −0.2 when using satellite-based datasets, while it is greater than −0.1 when
using gauge-based datasets. Overall, we conclude that most gridded datasets can provide
reliable precipitation information for hydrologic modeling at monthly time-scale analyses,
but the gauge-based datasets showed superior performance in simulating hydrology and
parameter uncertainty analysis.

Even though gridded precipitation datasets such as the gauged-based and satellite-
based gauge-corrected datasets reasonably capture in situ precipitation and streamflow, it
is worthwhile to work to continuously improve the quality of these datasets in the years to
come. This study suggests extensive efforts are needed to develop precipitation datasets
that can effectively capture the mean, frequency, and intensity of the in situ precipitation,
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especially at daily or sub-daily time scales. Therefore, satellite observations, retrieval
algorithms to convert satellite data to precipitation, and better interpolation techniques
are nontrivial for a better understanding of historical climate. Furthermore, continuous
improvement in gridded precipitation datasets may also increase the effectiveness of
hydrological model simulations.

The results of this study could represent other regions of the USA with similar climates
and topography. Particularly, the findings represent North-Central Texas, characterized
by plain topography and climate condition characterized by high variability and driven
by the tropical storms originating from the eastern tropical Pacific [77]. The calibrated and
validated SWAT parameters can be used in other watersheds of North-Central Texas, which
have similar land use, topography, and climate conditions following the parameter transfer
approach [78,79]. However, the findings of the study may not generalize other regions
of the world characterized by scarce in situ observations, diverse physiography, and the
climate condition controlled by local topography and large-scale climate drivers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14163860/s1, Figure S1: Cumulative Distribution Function compares daily in situ precip-
itation with gridded precipitation datasets in the upper, middle, and downstream courses of the
Bosque watershed.
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