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Abstract: Remote sensing soil moisture (SM) has been widely used in various earth science studies 

and applications, but their low resolution limits their usage and downscaling of them is needed. In 

this study, we proposed a spatial downscaling method for SM based on random forest considering 

soil moisture memory and mass conservation to improve downscaling performance. The lagged SM 

was added as a predictor to represent soil moisture memory, in addition to the regular predictors 

in previous downscaling studies. The Soil Moisture Active Passive (SMAP) SM data of the Pearl 

River Basin were used to test our downscaling method. The results show that the downscaling 

model obtained good performance on the test set (R2 = 0.848, ubRMSE = 0.034 m3/m3 and Bias = 0.008 

m3/m3). The spatial and temporal performance of the RF downscaling model can be improved by 

adding lagged SM variables. Downscaled data obtained can retain the information of the original 

SMAP SM data well and show more spatial details, and mass conservation correction is considered 

to be useful to eliminate systematic bias of the downscaling model. Downscaled SM achieved ac-

ceptable performance in in situ validation, though it was inevitably limited by the performance of 

the original SMAP data. The proposed downscaling method can serve as a powerful tool for the 

development of high-resolution SM information. 
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1. Introduction 

Soil moisture (SM) is a key variable in the Earth system, which controls the exchange 

of water and energy fluxes between land surface and atmosphere [1]; it plays an important 

role in the circulation of water and energy of the Earth system [2,3]. SM has a wide range 

of applications in drought monitoring [4], water resources management [5,6], weather 

forecasting [2,7,8], geological disaster detection [9] and other aspects. Therefore, it is of 

great significance to obtain accurate temporal and spatial distribution of SM. 

However, due to the common impact of topography, soil, landcover and meteoro-

logical forcing [10,11], SM has high spatial heterogeneity, and it is still challenging to ob-

tain high precision SM information. The traditional ground-based measurements of SM 

such as gravimetric methods [12,13], neutron scattering [14], time domain reflectometry 

[13,15] can obtain relatively reliable SM at different depths, but it is still not easy to obtain 

spatially continuous distribution of SM at different spatial scales through ground-based 
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measurements due to their poor spatial representativeness, especially for areas with 

sparse sites. 

With the development of remote sensing techniques, SM from regional to global 

scales can be obtained by different satellites, through making use of the connection be-

tween the electromagnetic radiation and SM. Many SM products from different micro-

wave sensors have been widely used, such as Advanced Microwave Scanning Radiome-

ter–EOS (AMSR-E) [16], the Soil Moisture and Ocean Salinity (SMOS) [17,18], and the Soil 

Moisture Active Passive (SMAP) mission [17]. 

However, as most of SM products mentioned above have a relatively coarse spatial 

resolution (around tens of kilometers), which limits their applications in hydrological and 

agricultural studies; it is necessary to downscale SM products to meet resolution require-

ments in the practical applications. In order to obtain SM spatial information with finer 

resolution, several downscaling methods have been proposed to downscale SM, such as 

the regression fitting approach [19–21], disaggregation based on physical and theoretical 

scale change (DISPATCH) [22,23] and machine learning approach [24,25]. 

The statistics-based and physics-based downscaling method mentioned above is 

mainly based on the idea of establishing a statistical correlation or a physical-based model 

between coarse-scale SM and fine-scale auxiliary variables [26]. Among the methods, the 

so-called polynomial-fitting method based on the “universal triangle” space between LST 

and vegetation index was widely applied in many studies [9,19–21,27,28]. This method 

expressed the high-resolution SM as a polynomial function of LST, vegetation index, and 

surface albedo derived from optical/thermal data [26]. However, most existing downscal-

ing methods, especially the polynomial-fitting method, cannot describe the complicated 

relationship between the SM and auxiliary variables due to their linear fitting assumption 

[29,30]. 

Inspired by the great ability to model the nonlinear relationship between the auxil-

iary variables and prediction variables, the machine learning downscaling method has 

been proposed to obtain remote sensing products with finer resolution, not only SM prod-

ucts [24,25,31–37]. Among these machine learning downscaling methods, random forest 

(RF) was a popular and convenient machine learning model to be used to downscale SM 

products. Liu et al. (2020) compared the SM downscaling performance of six machine 

learning models and found that RF is the best model in the comparison [37]. Among the 

previous machine learning downscaling studies, auxiliary variables which are considered 

to be closely related to SM, including LST, vegetation index, albedo derived from opti-

cal/thermal data and topographical parameters are applied in different machine learning 

models. These machine learning methods are data-driven methods, similar to the regres-

sion fitting approach which depends on the relationship between auxiliary variables de-

rived from optical/thermal satellites and passive remote sensing SM, though they have 

better performance. Therefore, the downscaling performance of these machine methods 

may also be influenced by the availability of optical/thermal data, such as other regression 

fitting downscaling approaches [38,39]. In addition, the methods depending on opti-

cal/thermal data rely on a strong atmospheric evaporative demand and are more adapted 

to arid and semiarid areas because LST is linked to SM in the case of nonenergy limited 

conditions [26]. 

The selection of the auxiliary variables of the machine learning downscaling methods 

mentioned above mainly focused on the variables with finer resolutions, and few studies 

viewed lagged SM (i.e., SM at previous time steps) as an important spatial downscaling 

feature. As the indicator of SM memory [40], lagged SM is often applied in the study of 

SM time series prediction [41,42], and it is considered as an important predicting variable 

in machine learning prediction models [43,44]. Therefore, adding lagged SM in machine 

learning downscaling methods may improve the representation of SM temporal charac-

teristics and reduce the dependence on the availability of optical/thermal data. At the 

same time, the output data of these machine learning downscaling methods may have 

systematic errors that do not conform to the law of mass conservation, because these 
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machine downscaling methods are statistic-based. Thus, downscaled data may be under-

estimated for high values and overestimated for low values. 

In our study, we intended to downscale SMAP SM in the area of the Pearl River Basin 

(PRB) and improved the machine learning downscaling method by adding lagged SM 

variables as a predictor and introducing the correction of mass conservation to the 

downscaled SM. The objectives of our study were as follows: (1) to downscale SMAP SM 

in Pearl PRB through constructing a nonlinear relationship between SM and various pre-

dictors by random forest; (2) to explore and discuss the influence of the lagged SM values 

and correction of mass conservation on downscaling results; (3) to validate the perfor-

mance of the downscaling model by in-situ data. 

The arrangements of our paper are as follows. In Section 2, we introduce the study 

area, data and method. In Sections 3 and 4, the result of the downscaling methods is shown 

and discussed. In Section 5, conclusions are presented. 

2. Materials and Methodology 

2.1. Study Area 

The Pearl River Basin (PRB) is one of the three major basins in China, with an area of 

about 442,000 km2 [45]. Located in the subtropical monsoon climate zone, the PRB has an 

annual average temperature ranging from 14 °C to 22 °C. The annual average precipita-

tion is between 1200 mm and 2200 mm, with uneven distribution in space and time. The 

precipitation is mainly concentrated from April to September each year, which accounts 

for 72% to 88% of the total annual precipitation [46]. The altitude of the basin becomes 

lower from the northwest to the southeast (Figure 1). The main vegetation cover of the 

basin is evergreen broad-leaved forest (65.3%), and agricultural land accounts for 18.1% 

of the total area (Figure 2). The flat areas in the downstream PRB have shown urban clus-

ters with rapid social and economic development in recent decades. Therefore, high-pre-

cision soil moisture data is of great significance for land surface hydrology research and 

water resources management in the PRB. 

 

Figure 1. Altitude of the study area. 
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Figure 2. Land cover and locations of meteorological stations. 

2.2. Datasets 

In this study, we downscaled the SMAP soil moisture by using multiply covariates 

(auxiliary variables) including MODIS, ERA5-Land, in situ soil moisture, soil properties 

and topographic data (Table 1). This section describes these data sets. 

Table 1. Data sets used in the downscaling model. 

Valuables * Data Source 
Spatial 

Resolution 

Temporal 

Resolution 

SMAP Soil 

Moisture 
SMAP Level3 Soil Moisture 36 km Daily 

in situ Soil 

Moisture 

China Meteorological 

Administration 
Point scale Hourly 

LST 
MODIS MOD11A1 and 

MYD11A1 
1 km Daily 

NDVI MODIS MOD13A2 1 km 16-day 

EVI MODIS MOD13A2 1 km 16-day 

Albedo MODIS MCD43A3 500 m 16-day 

Precipitation ERA5-Land 0.1° Hourly 

Elevation 
Shuttle Radar Topography 

Mission 
90 m Static 

Soil Texture 

China Dataset of Soil 

Properties for Land Surface 

Modeling 

1 km Static 

* SMAP = Soil Moisture Active and Passive; LST = Land surface temperature; NDVI = Normalized 

Difference Vegetation Index; EVI = Enhanced Vegetation Index; MODIS = Moderate-resolution Im-

aging Spectroradiometer. 

2.2.1. SMAP Soil Moisture 

SMAP (Soil Moisture Active and Passive) satellite is one of the earth observation sat-

ellites of the United States, which was launched on 31 January 2015 [47]. Though SMAP 

originally planned to use L-band radar and radiometers to measure surface SM at differ-

ent resolutions at global scale, only passive radiometers work after 31 January 2015 when 
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radar sensors failed to work on. SMAP satellite is in near-polar orbit and passes over the 

observation area at 06:00 (descend) and 18:00 (ascend) local time. Some studies have 

shown that SMAP passive remote sensing products have reached the accuracy require-

ments of the satellite launch mission [48,49]. Therefore, SMAP passive remote sensing 

products play an important role in global soil moisture detection. 

In our work, we used SMAP Level-3 (L3) passive SM product with a spatial resolu-

tion of 36 km as our downscaling target. Zhao et al. (2018) have found that data from 

ascending and descending half-orbits have little influence to the downscaling process [50]. 

Therefore, in order to obtain as much training samples for RF model as possible and im-

prove the representativeness of the data, we used the average of the SMAP L3 SM (after 

quality control) of ascending and descending half-orbits to obtain the daily SMAP L3 SM 

for downscaling. 

2.2.2. CMA In Situ Soil Moisture 

The in situ SM data is obtained from the China Meteorological Administration 

(CMA), which provides SM measurement data from 10-cm depth to 100-cm depth. We 

selected the SM data at the 10-cm depth from the 120 stations located in our study region 

to validate our downscaled SM. Due to some measurement sensor may occur to break 

down, we deleted some constant values, abnormally high and low values in in situ data 

for quality control following the method of Dorigo et al. (2013) [51]. 

2.2.3. MODIS Data 

As mentioned in Section 1, surface variables such as land surface temperature (LST), 

vegetation index and albedo have been widely used to build the relationship between 

auxiliary variables and SM. Therefore, we used the MODIS (moderate-resolution imaging 

spectroradiometer) products for these variables. The MODIS products used in our paper 

include 1-km resolution daily LST (MOD11A1 from Terra satellites and MYD11A1 from 

Aqua satellite) [52], 1-km resolution 16-day Normalized Difference Vegetation Index 

(NDVI) and Enhanced Vegetation Index (EVI) (MOD13A2 from Terra satellite and 

MYD12A2 from Aqua satellite) [53], 500-m resolution 16-day albedo (MCD43A3) [54]. 

Similar to SMAP L3 SM, the mean values of MODIS datasets were calculated to ob-

tain as many training samples as possible. The temporal resolution of 16-day was interpo-

lated to 1-day by the linear interpolation method. The actual albedo was calculated by 

empirical equations proposed by [55]. The equations are as follows: 

a = absa × (1 − r) + awsa × r (1)

r = 0.122 + 0.85 × exp (−4.8 × cosθ) (2)

absa and awsa are Black-Sky Albedo and White-Sky Albedo from MODIS respectively, 

and θ is the solar zenith angle at noon. We found that the near-infrared band albedo of 

the study area has too many missing values, so we abandoned this variable in our model. 

2.2.4. ERA5-Land Data 

The precipitation data in our work come from ERA5-Land datasets. ERA5 datasets is 

the fifth-generation reanalysis dataset of global climate from the European Centre for Me-

dium-Range Weather Forecasts (ECMWF). ERA5-Land is an enhanced version of ERA5 

land component, forced by meteorological fields from ERA5 [56,57]. This dataset provides 

hourly data of land surface variables, such as precipitation, soil moisture, and radiation, 

with a spatial resolution of 0.1°, and plays an important role in flood or drought monitor-

ing. 
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2.2.5. Chinese Soil Properties Dataset 

The soil properties variables used in our work are the proportion of sand, silt and 

clay. These data come from the Chinese soil properties dataset used in The Common Land 

Model (CoLM) [58]. This dataset was developed from the Soil Map of China (1:1000,000) 

and 8979 soil profiles, and it provides physical and chemical attributes with a spatial res-

olution of 30 arc-second (about 1 km), which has higher quality than the HWSD (Harmo-

nized World Soil Database) because it used more soil profiles, a soil map with higher res-

olution, and more reasonable study method and quality control [59]. 

2.2.6. Topographic Data 

Topographic variables can influence the spatial distribution of SM at different scale 

[60] and have been applied in many downscaling studies [61–64]. We used the altitude 

variable as the topographic variable of the downscaling model. The altitude data come 

from the Shuttle Radar Topography Mission (SRTM) [65]. The topographic data can be 

download from http://earthexplorer.usgs.gov/ (accessed on 6 April 2022) 

2.3. Methods 

2.3.1. Random Forest 

Random forest (RF) is a popular machine learning method widely used in many stud-

ies [66]. This method has great fitting ability for classification and regression problems. 

RF builds some decision trees in the training process, and it outputs the mean values of 

prediction from these decision trees as the prediction of the whole model. RF splits the 

input feature space into many decision trees; hence, it is called forest. The training samples 

input in each decision tree is generated by the bootstrap sample method, which can ensure 

that the RF model includes different kinds of decision trees generated by different training 

subset. Due to the bootstrap sample method, not all of the training samples are used to 

train the model. Usually, two thirds of the training samples are selected to build trees, and 

the rest of the samples will be used to validate each tree. This concept is known as out-of-

bag samples to estimate the model generalization errors. RF reduces generalization errors 

by assembling the predictions generated from each tree, which makes it stable and diffi-

cult to overfit. The RF model used in our paper was established using sklearn package in 

python. In the aspect of super parameter setting, in order to prevent the model from over-

fitting and ensure the training efficiency, the number of trees (n_estimators) was set to 

1000, and other super parameters were set by grid search method (min_samples_split: 4; 

max_depth parameters: 28), though it cannot improve models significantly compared to 

the default settings. 

2.3.2. Downscaling Process 

The flow chart of our experiment is shown in Figure 3. The upper part of the figure 

is about the establishment of the downscaling model and the rest part of the figure is about 

the application and validation of the downscaling model. The whole process of our exper-

iment is as follows: 

(1) Firstly, we aggregated the variable with finer resolution to 36 km, which is consistent 

with SMAP SM, by the mean of arithmetic average [67], because the training process 

is on the 36-km grids of the SMAP SM. In order to ensure the representativeness of 

the data, if the invalid proportion of some variables was more than 50% of the corre-

sponding 36-km grid in the aggregation, we would view the output of this aggrega-

tion as invalid value. Otherwise, the corresponding grid is not used. This is inevitable 

for the reason of cloud cover to optical/thermal remote sensing data and scanning 

gap. 

(2) Then, in order to explore if the lagged SM can improve the downscaling model, we 

trained a downscaling model with lagged SM and another one without lagged SM 
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for comparison. The three-day and seven-day lagged SM were selected according our 

primary experiments using different days of lagged SM. 

(3) We adopted two strategies to split the train set and test set to explore the temporal 

and spatial performance of the downscaling model. In temporal splitting strategy, 

we randomly selected half of the study date as train set, and the rest as test set. The 

temporal splitting strategy means that all samples of the whole study area on a day 

are either in the train set or in the test set. In spatial splitting strategy, we randomly 

selected half of the 36-km grids of the study area as train set, and the rest as test set. 

The spatial splitting strategy means that all samples of the whole time series on a 36-

km grid are either in the train set or in the test set. Through temporal and spatial 

splitting strategies, we can obtain the performance of downscaling model on tem-

poral test set and spatial test set. 

(4) Auxiliary data processed to the resolution of 1-km were input to the downscaling 

model to obtain the downscaled SMAP SM. Before inputting, we resampled the 36-

km lagged SM to 1 km by means of simple bilinear interpolation. We validated the 

downscaled SM with in situ data and compared the downscaled SM with the original 

SMAP SM. Finally, we made correction of mass conservation to the downscaled SM, 

which makes the mean values of downscaled SM (1296 grids) in an original 36-km 

grid the same as the values of the original SMAP SM. 

 

Figure 3. Flow chart of experiment. RF = random forest. 
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2.3.3. Evaluation Method 

In order to evaluate the performance of the downscaling model, we used five statis-

tical metrics to evaluate the model. The metrics include determination coefficient (R2), 

Pearson correlation coefficient (r), root mean square error (RMSE), unbiased RMSE 

(ubRMSE), and bias. The calculation equations of these metrics are as follows: 

�² =  1 −
∑ ��� − ����

��
���

∑ (�� − ��)��
���

 (3)

Correlation =  
∑ ���� − ����(�� − ��)�

���

�∑ (��� − ����
��� )²�∑ (�� − ��

��� )²

 (4)

���� =  �∑ ��� −  ����
��

���

�
 (5)

ubRMSE =
�∑ ����� − ���� − (�� − ��)�

�
�
���

�
 

(6)

���� =  
∑ ��� − �����

���

�
 (7)

where ��  represents the downscaled SM or the original SMAP SM data to be evaluated, Y 

represents the in situ SM. ��� and �� represent the mean of the corresponding data. 

3. Results 

3.1. The Performance of Test Sets of Downscaling Models 

In this section, we first analyze the models’ performance on test sets. Figure 4 shows 

the scatter plot of the original SMAP SM and downscaled SM on test sets of each 

downscaling method. As is shown in the figure, the temporal model (model evaluated by 

the temporal splitting strategy) with lagged SM variables obtained the best performance 

in the test set. Its R2 was 0.848, both its RMSE and ubRMSE were 0.034 m3/m3, and its bias 

was 0.0008 m3/m3. Meanwhile, the R2 of spatial model (model evaluated by the spatial 

splitting strategy) with lagged SM variables reached 0.847, which was slightly lower than 

the temporal model with lagged SM. Both temporal and spatial models with lagged SM 

variables performed better than models without lagged SM variables. That is, the scatter-

plot distributions for models without lagged SM in Figure 4b,d were more divergent than 

those for models with lagged SM in Figure 4a,c, and their metrics were worse. The perfor-

mance of spatial model without lagged SM had the worst performance with a R2 of 0.381 

among all models, which means that the spatial simulation of this model cannot meet the 

satisfying downscaling results in practice. In general, we can conclude that, compared 

with the previous common RF downscaling model, the downscaling model with lagged 

SM variables had improvement and maintained good performance in temporal and spa-

tial evaluations. Because the temporal model with lagged SMs had similar performance 

with the spatial model with lagged SM, we chose to demonstrate the results of the tem-

poral model with lagged SM only in the following discussion. 
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Figure 4. Scatters-plot of the test set of different models. 

3.2. Roles of Variables in Downscaling SM 

Figure 5 presents the feature importance rank of the temporal model with lagged SM 

variables. We can see that SMAP-SM-pre3 and SMAP-SM-pre7 variables that represent 

the three-day and seven-day lagged SM had the highest relative variable importance, 

which indicated that they had the largest contribution to reducing model error in the train-

ing process. This result mainly reflects the importance of lagged SM in reflecting SM tem-

poral changes. Although the spatial resolution of the information provided by lagged SM 

is limited by the original SMAP SM products which cannot provide more spatial details, 

the average quality of the downscaling product in the 36-km grid is maintained by lagged 

SM variables. Thus, the downscaled data will not deviate too far from the original data. 

The lagged SM variables provide the basic simulated SM in the 36 km grids, and the spa-

tial details are provided by other variables, such as LST-day, LST-night, precipitation and 

altitude presented in Figure 5. It is worth noting that the feature importance rank of the 

RF model indicates each variable′s average contribution to the prediction of the time series 

of the target variable in the training process; however, it cannot directly reflect the ability 

of each variable to provide spatial details. 
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Figure 5. Rank of the importance of variables in RF model. SMAP-SM-pre3 = 3-day lagged SM; 

SMAP-SM-pre7 = 7-day lagged SM; LST-day = land surface temperature during day time; LST-night 

= land surface temperature during the night; Albedo_vis = albedo of visible band; Albedo_short = 

albedo of shortwave band. 

Figure 6a shows the mean r between dynamic variables. It should be noted that some 

small r values are still statistically significant (p < 0.001) due to the large sample size 

(13,422 samples in Figure 6a and 1166 samples in Figure 6b). We can see that the rank of r 

between each dynamic variable and SM in the training set is not completely consistent 

with the importance ranking in Figure 5, indicating that the importance rank of RF can 

not be used as the only indicator for variable relationship analysis. In Figure 6a, SMAP-

SM-pre3 and SMAP-SM-pre7 variables correlated better with SM than other variables due 

to SM memory. However, the r of LST-day and precipitation variables with SMAP SM 

were low while these variables were third and fourth variables in the above rank of 

importance of variables.The r between SMAP SM and LST-night was higher than between 

SMAP SM and LST-day, which is consistent with previous findings [51]. In Figure 6b, The 

proportion of silt and clay had a positive r with mean SM, which is related to their good 

water storage capacity. Accordingly, the proportion of sand had negative r with mean SM 

and the standard deviation of SM, which should be caused by the low water-holding 

capacity of sand, similar to the results observed by Karthikeyan, L. et al. (2021) [68]. There 

was a relatively strong negative r between altitude and mean SM, but there was a small r 

between altitude and standard deviation of SM, so the influence of altitude on SM was 

more reflected in the mean climate state of SM. In general, we can know that most 

variables had a significant correlation with SM, and static variables had strong influences 

on the spatial distribution of SM rather than tempral change. Considering the fact that the 

r indicates the linear relationship between two variables, and the feature importance rank 

mainly reflects the nonlinear relationship of auxiliary variables, it is reasonable that there 

were some inconsistences between values′ rank in Figures 5 and 6. The r and feature 

importance rank should be combined to analyze the importance of auxiliary variables. 
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Figure 6. Heatmap of the Pearson correlation coefficient between each variable. (a) indicates r 

heatmap of dynamic variables. (b) indicates r heatmap of static variables, SM-Mean (SM-Std) 

means that the average (standard deviation) of SM in a 36-km cell. 

3.3. Spatial Distribution of the Downscaled SM 

In Figure 7, we selected 20 December 2017 and 28 November 2018, in the test set of 

the temporal model to analyze the spatial distribution of downscaled SM. We selected 

these two sunny days to ensure the availability of MODIS data and SMAP data. It can be 

seen from Figure 7c,d that the distribution of downscaled SM was similar to the distribu-

tion of the original SMAP SM (Figure 7a,b), and the location of low and high value centers 

of downscaled SM matched well with the original SMAP SM. Downscaled SM showed 

more spatial details and was smoother than the original SMAP SM. It is worth noting that 

there was still some information loss on downscaled SM compared to the original SMAP 

SM, which appeared as the underestimation of high value and overestimation of low 

value in Figure 7 c,d. This is because the downscaling model was built on the scale of a 

36-km grid, and some extreme values were smoothed in the process of variable averaging 

[51]. To improve the above situation, we corrected downscaled SM by mass conservation. 

Figure 7e,f show the distribution of downscaled SM after correcting. We can see that the 

values of low and high center were more consistent with the original SMAP SM, and the 

original downscaling details were maintained at the same time, which indicates that using 

correction of mass conservation to downscaled SM can improve the information loss in 

downscaling process. 
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Figure 7. Distributions of the downscaled SM and the original SMAP SM on 20 December 2017 and 

28 November 2018 (sunny). 

Meanwhile, two cloudy days, i.e., 20 December 2017 and 28 November 2018, were 

selected to study the effect of MODIS data missing due to cloud cover on downscaling 

model (Figure 8). Figure 8a,b are the original SMAP SM used as reference, Figure 8c–f are 

the distribution of downscaled SM. In Figure 8c,d, we can find there were many missing 

values in the picture because auxiliary variables data-derived from MODIS are missing 

due to cloud cover, and the downscaling model cannot downscale SM at the pixel where 

there was not enough auxiliary variable data. To fill up these missing values, we filled the 

missing MODIS variables data by linear interpolation in temporal dimension. Figure 8e,f 

show the distribution of downscaled SM after variables interpolation. Although linear in-

terpolation cannot reflect the real values of auxiliary variables and will add errors to 

downscaling models, the distribution of downscaled SM after variables interpolation stills 

obtained good performance. 
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Figure 8. Distributions of the downscaled SM and original SMAP SM on 20 December 2017 and 28 

November 2018 (cloudy). 

3.4. Validations by In Situ SM 

The above analyses of results are mainly based on the test set of RF downscaling 

model. To further study the performance of the downscaled SM, we used in situ SM as a 

reference to validate the downscaled SM and the original SM in the following analysis. 

Figure 9 shows the comparison of in situ validations of 105 stations between the 

downscaled SM and the original SMAP SM. The validation results of the downscaled SM 

were basically close to those of SMAP SM. The median (0.52) and mean (0.49) of the r of 

the downscaled SM were slightly lower than those of SMAP SM data (median: 0.54, mean: 

0.51). The RMSE of downscaled SM (median: 0.083 m3/m3, mean: 0.099 m3/m3) and the 

ubRMSE of downscaled SM (median: 0.049 m3/m3, mean: 0.055 m3/m3) were slightly lower 

than those of SMAP SM (median: 0.092 m3/m3, RMSE mean: 0.108 m3/m3; median ubRMSE: 

0.056 m3/m3, ubRMSE mean: 0.06 m3/m3). As for bias comparison, the median and mean 

of downscaled SM were −0.009 m3/m3 and −0.02 m3/m3, both of which were larger than 

SMAP SM (median: −0.001 m3/m3 and mean: −0.013 m3/m3), indicating that downscaling 

data had certain bias amplification. The existence of relatively large bias provides a certain 

basis for the correction of mass conservation mentioned in Section 3.3. 
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Figure 9. Box-plot of the in situ validations of the downscaled SM and the original SMAP SM. The 

red “*” are the outliers. 

In Figure 10, eight stations (station number: 59502, 782690, 59017, 59249, 59303, 57922, 

59441, 57947) were randomly selected to compare the downscaled SM and SMAP SM 

through drawing with in situ SM respectively. By comparing the scatters of downscaled 

SM and SMAP SM in corresponding stations, we can discover that the scatter distribution 

of the downscaled SM was basically consistent with that of SMAP SM, indicating that the 

downscaled SM retained most of the information of SMAP SM. Furthermore, the diver-

gence degree of scatter distribution of the downscaled SM was smaller than that of SMAP 

SM, which was mainly reflected in fewer abnormal scatters and more concentrated scat-

ters. This is consistent with Figure 9, which shows that the mean RMSE and ubRMSE of 

downscaled SM was lower than that of SMAP SM. In general, the downscaled SM main-

tained most information of the original SMAP SM and presented a reasonable distribution 

compared to the original SM. 
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Figure 10. Scatters-plot of downscaled SM and in situ SM. The first and third row of scatter plots 

are generated by SMAP SM and in situ SM; the second and fourth row of scatter plots are generated 

by the downscaled SM and in situ SM. 

Figure 11 shows the time series of the downscaled SM, SMAP SM, in situ SM and 

rainfall in four randomly selected stations (57955, 56697, 56985 and 57923). The time cov-

erage of the time series is the date of the temporal model’s test set. It can be seen in Figure 

11 that the temporal variation of downscaled (red points) was almost consistent with 

SMAP SM (blues points), which indicates that downscaled SM basically can capture the 

temporal change of SMAP SM, which is attributed to the addition of lagged SM variables 

into the downscaling model. At the same time, both SMAP SM and downscaled SM had 

a good response to precipitation, and both of them showed an increasing trend after pre-

cipitation occurred.  
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Figure 11. Time series of the original SMAP SM, the downscaled SM and the in situ SM at four 

stations. 

When there was a large bias between SMAP SM and in situ SM, the downscaled SM 

simulated based on SMAP SM also had a large bias compared to in situ SM, such as the 

green circle part in the figure and the whole time series of the second stations (56697). The 

SMAP SM and the downscaled SM in the green circle had relatively large deviations from 

in situ SM. In the whole time series of 56697 site, although the fluctuations of SMAP SM 

and the downscaled SM were consistent with that of in situ data, their values were lower 

than in situ SM, but it seems that the underestimation of the downscaled SM was smaller 

than the SMAP SM, which indicates that there may be some improvement of the 

downscaled SM at this station. In general, the performance of the downscaling SM 
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validated by in situ SM was limited by the original SMAP SM as the downscaled SM 

maintained most information of SMAP SM, but there were still some improvements of the 

downscaled SM at some stations. 

4. Discussion 

From the comparison of downscaling models (Figure 4), we can find that downscal-

ing models with lagged SM variables obtained good performance and basically meet the 

downscaling requirements. The R2 of the temporal model reached 0.848 and the R2 of the 

spatial model reached 0.847. Compared to downscaling models without lagged SM vari-

ables, our models with lagged SM variables had strong stabilities in temporal and spatial 

scales, which indicates that lagged SM variables brought great improvement to downscal-

ing model. It can be seen in Figures 5 and 6 that lagged SM variables plays a vital role in 

the importance rank of RF downscaling model, which can be used to explain the improve-

ment of downscaling model: the lagged SM variables ensured the prediction quality on 

the 36-km grid by their strong temporal autocorrelation. The high temporal autocorrela-

tion caused by SM memory provides a benchmark of prediction, which means that 

downscaled SM on each grid would not deviate too far from the original SMAP SM, while 

the finer spatial distribution was predicted by the information of other finer-resolution 

variables to meet the downscaling requirements. These variables such as LST, NDVI and 

albedo have been proved by previous studies that their temporal and spatial variations 

can strongly influence the distribution of SM [69–71]. 

In addition, from the comparison of the downscaled SM on selected sunny and 

cloudy days (Figures 7 and 8), the downscaled SM under the two weather conditions had 

acceptable performance. It shows that the downscaling model maintained a certain stabil-

ity in the absence of auxiliary variables under the impact of cloud cover. This may be 

explained by the fact that lagged SM variables ensured the quality of the 36-km grid in 

the average state; therefore, even if the MODIS variables had a certain deviation due to 

simple linear interpolation, the output downscaled SM would not have large bias, which 

further confirmed that the lagged SM variables can improve the downscaling model to 

some extent. However, the downscaled SM still had bias in the high and low values, which 

is a common problem of downscaling models because the variables were aggregated to 

36 km by averaging, and the variation range of variables was smoothed [51]. This problem 

affects downscaling models, , which may then output simulations that do not conform to 

the physical law: e.g., conservation of mass. However, this problem can be improved us-

ing simple post-processing of mass conservation correction (Figure 7). Similar correction 

methods were also applied in the studies of downscaling land surface temperature [72]. 

From the in situ validation for the downscaled SM and SMAP SM (Figures 9–11), the 

downscaled SM retained most information of SMAP SM due to the great performance of 

the downscaling model. Therefore, the performance validated by in situ SM was also 

largely limited by the original SMAP SM, though there may be some improvements of the 

downscaled SM at some stations. It is reasonable that the performance of the downscaled 

SM was determined by the quality of the original SMAP SM, because SMAP SM was the 

training target of the RF downscaling model, and the output downscaled SM were pre-

dicted on the basis of the relationship between training target and auxiliary variables 

learned by RF downscaling model [37,73]. Additionally, there were still some experi-

mental errors in in situ validation due to the different scales of the downscaled SM (1 km), 

in situ SM (point scale), and the SMAP SM (36 km), and depth difference between SMAP 

SM (0–5 cm) and in situ SM (10 cm). 

In order to discuss the influence of lagged SM variables, Figure 12 shows the rela-

tionship between the model performance measured by R2 and SM memory representing 

by the three-day lagged autocorrelation at each grid. It can be seen from the figure that 

there is an obvious positive correlation (0.856) between soil moisture memory and 

downscaling model performance. The better the soil moisture memory, the better the 

downscaling performs. This coincides well with previous studies [44]. 
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Figure 12. Time series of the original SMAP SM, the downscaled SM and the in situ SM at four 

stations. 

There are still some shortcomings in this work. First, there is a mismatch problem of 

the spatial scale of different data when the downscaling model is constructed and verified. 

When the model is constructed, the fine resolution variables were averaged to match 

SMAP SM, which leads to errors; uncertainty was introduced by the direct comparison of 

in situ SM (point scale) and grid data in the validation experiment. Second, due to the 

different sensor types and inversion algorithms used in multi-source data, the uncertainty 

of the model increased. At the same time, although the remote sensing data is quality 

controlled, they will still be affected by cloud covers, resulting in errors or even missing 

values. Interpolation of these remote sensing data added errors to the model [50,73]. 

Third, some variables of the downscaling model, such as NDVI and EVI, are nonlinear 

indicators, but they were directly averaged to aggregate to the resolution of 36 km, which 

may produce errors and reduce the performance of the model. Finally, due to the limita-

tion of the study area, the downscaling model did not have sufficient train samples to 

study more extreme cases and spatial patterns. 

5. Conclusions 

The novelty of this paper has two major aspects: the usage of the lagged SM and the 

mass conservation correction. The downscaling model with lagged SM variables was built 

and compared with a typical machine learning downscaling model without lagged SM 

variables. We also studied whether the correction of mass conservation can be applied to 

output downscaled SM and its influence on the outcomes. Finally, we validated the 

downscaled SM by in situ SM and compared its validation with the original SMAP SM. 

The conclusions are as follows:  

(1) Lagged SM variables and the mass conservation correction can improve the perfor-

mance of the downscaling model. From the features importance ranking and 
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correlation coefficient analysis of the model, it can be concluded that the lagged SM 

variables are very important for the downscaling model. 

(2) The lagged SM variables provide the basis of SM in the original grids, and the spatial 

details are provided by high resolution static and time series data, including LST, 

precipitation, topography, NDVI and so on. 

(3) The improved downscaling model can not only output more spatial distribution de-

tails and more accurate SM, but it also has a certain interpolation ability so that the 

model can still reasonably predict the spatial distribution of SM in cloudy weather. 

(4) From the comparison of in situ validation, the downscaled SM retains most of the 

information of the original SMAP SM, though the performance of the downscaling 

SM is largely limited by the original SMAP SM. However, in some areas, the valida-

tion performance of the downscaled SM may be slightly better than that of the origi-

nal SMAP SM. 

In general, the research findings proposed in this work can provide some reference 

values for the improvement of the SM downscaling model, which is significant to the de-

velopment of high-resolution SM information. However, there are still some aspects to be 

improved. First, more samples and larger research areas are needed to optimize the ma-

chine learning model and the proposed model needs to be applied and validated in other 

areas. Second, in situ SM data should be upscaled to match the scale of grid data to reduce 

the uncertainty in validation. Third, the gap filling method should be developed to im-

prove the lack of remote sensing variables, and better related auxiliary variables should 

be explored to improve the downscaling model. Fourth, some nonlinear auxiliary varia-

bles such as NDVI and EVI were directly averaged to aggregate to the resolution of 36 km, 

which may produce errors and reduce the performance of the model. The aggregation 

method of these variables needs to be optimized. Last but not the least, the proposed 

model should be tested and applied with other SM products. 
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