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Abstract: Satellite Earth Observation (EO) sensors are becoming a vital source of information for
land surface monitoring. The concept of the Virtual Constellation (VC) is gaining interest within the
science community owing to the increasing number of satellites/sensors in operation with similar
characteristics. The establishment of a VC out of individual missions offers new possibilities for many
application domains, in particular in the fields of land surface monitoring and change detection.
In this context, this paper describes the Copernicus Sen2Like algorithms and software, a solution
for harmonizing and fusing Landsat 8/Landsat 9 data with Sentinel-2 data. Developed under the
European Union Copernicus Program, the Sen2Like software processes a large collection of Level
1/Level 2A products and generates high quality Level 2 Analysis Ready Data (ARD) as part of
harmonized (Level 2H) and/or fused (Level 2F) products providing high temporal resolutions. For
this purpose, we have re-used and developed a broad spectrum of data processing and analysis
methodologies, including geometric and spectral co-registration, atmospheric and Bi-Directional
Reflectance Distribution Function (BRDF) corrections and upscaling to 10 m for relevant Landsat
bands. The Sen2Like software and the algorithms have been developed within a VC establishment
framework, and the tool can conveniently be used to compare processing algorithms in combinations.
It also has the potential to integrate new missions from spaceborne and airborne platforms including
unmanned aerial vehicles. The validation activities show that the proposed approach improves the
temporal consistency of the multi temporal data stack, and output products are interoperable with
the subsequent thematic analysis processes.

Keywords: Sentinel-2; Landsat; surface reflectance; Virtual Constellation; Analysis Ready Data;
harmonization; data fusion; Copernicus

1. Introduction

The Sentinel-2 (S2) mission managed by the European Space Agency (ESA) has been
fully operational since June 2017 with a constellation of two polar orbiting satellite units.
Both the Sentinel-2A (S2A) and Sentinel-2B (S2B) satellites are equipped with an optical
imaging sensor, namely the Multi-Spectral Instrument (MSI), which acquires high spatial
resolution images with ground sampling distances (GSDs) of 10 to 60 m depending on the
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wavelength [1]. The S2 constellation is dedicated to land monitoring, emergency response
and management and security applications. It is used for the monitoring of land cover
change and biophysical variables related to agriculture and forestry, monitors coastal and
inland waters and is useful for disaster risk assessment and management [2]. The S2
mission offers a 5 day revisit frequency, with the same viewing geometry, of any location
on Earth.

Currently, the understanding and characterization of time-varying land changes at
fine spatial scale is becoming a real concern. The challenge is to maximize revisit frequency
irrespective of the Earth location, such as over equatorial and high latitude regions, and thus
reduce the effect of limiting factors such as persistent cloud coverage. The combination of
the Sentinel-2A/2B (S2A/B) and Landsat-8/9 (LS8/LS9) sensors together already provides
a global median average revisit of 2.3 days [3]. Furthermore, since the 1970s, the average
number of satellites launched per year/per decade has increased from 2 to 12, and the
spatial resolution has increased from around 80 m to better than 1 m multispectral (MS)
and better than 0.5 m for panchromatic bands [4], providing the opportunity to decrease
the global median average revisit time.

The notion of a multi-mission spatiotemporal dataset is now widely democratized in
the Earth Observation (EO) community. Data providers have been delivering dedicated
products, called Analysis Ready Data (ARD, [5]), following the Committee on Earth Ob-
servation Satellites (CEOS) Analysis Ready Data for Land (CARD4L) guidance for some
of them [6]. These products are ready to be employed within EO Data Cubes (EODC)
implementations such as Digital Earth Australia, the Swiss Data Cube, the EarthServer, the
E-sensing platform or the Google Earth Engine [7].

The handling of multi-mission MS data has several challenges due to the differences
between sensor characteristics, product definitions and observation geometries that have
a direct impact on the consistency and accuracy of spatiotemporal datasets. To overcome
these issues, it is common to use cosmetic methods (post-processing) in order to improve
the temporal data consistency and reduce the noise. This kind of approach has major
drawbacks as it increases the uncertainties and might finally prevent the detection or
full characterization of observed features, in particular in the context of land surface
change analysis.

An alternative approach discussed herein is to apply processing steps dedicated to
data harmonization (equivalent to radiometry) and data fusion (equivalent to pixel spac-
ing) based on physical parameters and calibration data. Several academic and industrial
actors such as NASA-HLS, FORCE, CESBIO-MAJA and the Planet Fusion Product [8–11]
have been promoting this approach. In addition, they acknowledge that the geometric,
atmospheric, spectral and directional effect corrections are fundamental processing stages
to be performed prior to the thematic exploitation of multi-satellite information.

The main aim of this study is to propose a new algorithm for the harmonization and
fusion of Landsat 8/9 and S2 MS products to increase the temporal resolution and provide
a solution for continuous Earth surface monitoring. A software tool, namely Sen2Like
(S2L), has been developed to implement the algorithm and to aid the VC establishment
activities within EU Copernicus Program and funded by ESA/EU. The baseline principle
of Sen2Like ([12]) was to consider S2 as a reference mission in terms of the instrument,
product accuracy specification ([13]) and product format and to combine the S2 data stream
with any other data sources delivered by MS missions with spectral characteristics similar
to S2 sensors. The final objective is thus to create a Virtual Constellation (VC) as previously
discussed by Wulder et al. [14]. The S2L is open source and developed in the Python
programming language.

The S2L methodology analyzes the user products that are stored locally or available
at the Copernicus Data and Information Access Service (DIAS) cloud environment and
generates the output ARD dataset based on various user configurations such as temporal
period, geographical footprint and cloud cover. The final S2L ARD format complies
with the CARD4L guidelines [6] in terms of general and per pixel metadata information.
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The S2L implementation involves a data harmonization protocol, and for this purpose, a
processing framework is proposed. For any input mission, the processing sequence remains
unchanged, including various methods dedicated to geometric and atmospheric issues,
normalization of reflectance values, spectral band pass correction and downscaling.

The data harmonization and data fusion processing method proposed here is novel
and modifies the original physical Top of Atmosphere (TOA) values substantially. Even
if a full traceability chain does not exist in the current implementation, per pixel quality
assurance information is provided. This article presents the S2L processing algorithms and
describes the software characteristics. The ongoing data validation activities are briefly
introduced, and the results are discussed as well. The S2L methods are adaptable to
new sensors and platforms when calibration data are available, as addressed in Section 4.
The final section of the article provides the conclusions of the study and major items of
future work.

2. Materials and Methods

In this section, the processing methods and the S2L software design drivers are
explained in detail. The main processing steps of the S2L algorithm are presented in
Figure 1. The S2L software is plugged into a data archive (local or DIAS) and, depending on
the user configuration, a catalog access module queries the expected set of Level-1 (L1) and
Level-2 (L2) product samples. The set of S2L processes are then triggered over this sample.
The L2H or L2F products are generated as a result of the spectral adjustment and data fusion.
The processing workflows contain the following configurable steps depending on the input
product type (i.e., S2 L1C, S2 L2A, S2 L2A MAIA, LS8/LS9 Collection 1/Collection 2), as
can be seen in Figure 1:

i. Image stitching of the different tiles;
ii. Geometric corrections including the co-registration to a reference image;
iii. Inter-calibration (for S2 L1C);
iv. Atmospheric corrections;
v. Transformation to Nadir Bidirectional Reflectance Distribution Function (BRDF) Ad-

justed Reflectance (NBAR);
vi. Application of Spectral Band Adjustment Factor (SBAF) (for LS8/9);
vii. Production of LS8/LS9 high resolution 10 m pixel spacing data (data fusion).
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As a result, an L2 Harmonized (L2H) or L2 Fused (L2F) ARD dataset matching the
Region of Interest (ROI) selected is generated. Regarding tiling, the S2L data are framed in
tiles with a size of 110 km × 110 km in the Universal Transverse Mercator (UTM)-based
Military Grid Reference System (MGRS, [15]). If the ROI extent covers several MGRS tiles,
all of them are processed.

2.1. Sen2Like Software Design Elements

The S2L software is designed for on demand processing purposes with major require-
ments set on near real time production and the provision of harmonized data in a timely
manner. In addition, any existing S2L spatiotemporal dataset can be regularly and quickly
updated along with the new acquisition. Furthermore, the design enables researchers to
configure the software depending on the accuracy and timeliness requirements and the
processing system specification. By using a minimal configuration (e.g., local computer,
basic processing), the generation of a single S2L product takes approximately 4–5 min.

The S2L framework was developed in the Python 3.7 programming environment,
and the implementation utilizes recent data science libraries such as Numpy, Pandas,
Xarray, Scipy, Scikit-Learn, etc. The framework architecture is modular and allows a fast
integration of processing modules. From an operational perspective, the S2L architecture is
process-oriented; i.e., for a single processing step, several methods exist and are optionally
proposed to the user in a configurable way. This architecture has various advantages. From
a functional point of view, it is the best tradeoff to facilitate the integration of new missions
such as MS and hyperspectral missions as well as aerial cameras including those aboard
unmanned aerial vehicles (UAVs). From a scientific point of view, it enables users to perform
different accuracy assessments with the goal of methodological inter-comparisons. Finally,
and more practically, the tool is tailored to run in a cloud environment and optimized for
performance purposes such as per band parallelization functionality. On the other hand,
when configured with simple methods, the tool can run standalone on a personal computer
with low computational resources and low energy consumption.

2.2. Product Description and Auxiliary Data

The Sen2Like software ingests a stack of L1/L2 S2/LS8 and LS9 products (available
from the Copernicus Access Hub [16], ESA LS8 web portal [17]) and provides two categories
of the ARD dataset: i.e., the L2F and the L2H dataset. Both L2H and L2F products are
processed in Standard Archive Format for Europe (SAFE) [18] and embed Cloud Optimized
(COG) GeoTIFF images [19]. Furthermore, product metadata are also described with a
dedicated Spatio-Temporal Asset Catalogs (STAC, [20]) JSON file to expose data.

The major difference between the two L2H and L2F product types resides in the
spatial resolution of the output images; in the L2H products, the native spatial resolutions
of input images are preserved, whilst in the L2F products, the resolutions of the LS8/LS9
image data are upsampled to the pixel spacing of the relevant S2 band. Table 1 depicts the
harmonization and fusion approaches by presenting the relationship between the S2L band,
the input sensor dependent band name and the pixel size of related L2F/L2H images. As
shown in the table, depending on the S2L band, the respective S2 LS8/LS9 band central
wavelength might be slightly different. S2L LS8/LS9 bands for which image fusion is
applied are indicated in bold. The S2L bands that are not processed and therefore kept as
“native” are indicated in italic.
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Table 1. Existing image data embedded within the L2H and L2F Sen2Like SAFE products and spatial
resolution.

S2L
Band

Band
Designation

S2
MSI

Bands
(Center

Wavelength
[µm])

LS8/LS9
OLI/TIRS

Bands
(Center

Wavelength
[µm])

L2H
S2

Resolu-
tion(m)

L2H-
LS8/LS9

Resolution
(m)

L2F
S2

Resolution
(m)

L2F
LS8/LS9

Resolution
(m)

B01 Coastal
Aerosol B01 (443 nm) B01 (442 nm) 60 30 60 30

B02 Blue B02 (490 nm) B02 (482 nm) 10 30 10 10
B03 Green B03 (560nm) B03 (561 nm) 10 30 10 10
B04 Red B04 (665 nm) B04 (654 nm) 10 30 10 10
B08 NIR 1 B08 (842 nm) None 1 10 - 10 -
B8A NIR2 B8A (865 nm) B05 (864 nm) 20 30 20 20
B11 SWIR 1 B11 (1610 nm) B06 (1608 nm) 20 30 20 20
B12 SWIR 2 B12 (2190 nm) B07 (2200 nm) 20 30 20 20
BP1 Panchromatic None 2 B08 (589 nm) - 15 - 15
BT1 TIRS 1 None 2 B10 (11 µm) - 100 - 100
BT2 TIRS 2 None 2 B11 (12.2 µm) - 100 - 100
B05 Red Edge 1 B05 (705 nm) None 1 20 - 20
B06 Red Edge 2 B06 (740 nm) None 1 20 - 20
B07 Red Edge 3 B07 (783 nm) None 1 20 - 20

1 No corresponding band in Landsat 8/Landsat 9 OLI data. 2 No corresponding band in Sentinel-2 MSI data.

The S2L processing uses a set of auxiliary data, with the respective quality influencing
the quality of the final products. Among auxiliary data, the following issues are essential:

• The geometric reference data involved in the co-registration step;
• The Copernicus Atmosphere Monitoring Service (CAMS) data [21], meteorological

data released by the European Centre for Medium-Range Weather Forecasts (ECMWF);
• The spectral adjustment parameter set (SBAF corrections);
• The calibration processing coefficient;
• The directional effects correction factors (NBAR corrections).

Further details on the input/output product formats and descriptions are provided in
Appendix A.

2.3. Image Correction Methodology

In this section, the image processing methods including the geometric and atmospheric
correction, the BRDF correction, SBAF and the data fusion approach are explained in detail.

2.3.1. Geometric Correction

The proposed S2L geometric correction methodology is basically categorized into four
main components, which are (i) image stitching (mosaicking), (ii) MGRS reframing, (iii) ge-
ometric co-registration and (iv) quality control. The stitching and the MGRS reframing
steps are essential to ensure full coverage of MGRS frame depending on L1/L2 product
footprint conventions. A second goal of the S2L is to co-register all input images with
respect to a raster reference. In this way, the geometrical consistency of the spatiotemporal
dataset reaches an accuracy goal of 0.3 pixel (10 m) at 2-sigma depending on the radiometric
quality and similarity of the data. The proposed S2L methodology for co-registration relies
on dense image matching between search and reference images using the KLT (Kanade
Lucas-Tomasi) algorithm [22,23] implemented in the OpenCV [24,25] library in Python.
The feature points extracted with the Good Features algorithm of Shi and Tomasi [26] are
employed in the process to increase the matching success and the reliability. This methodol-
ogy was utilized in earlier projects [27–32] demonstrating that computer vision technics are
beneficial for EO data processing. As shown in Figure 2, the geometric assessment results
are obtained from the matching between near infrared (NIR) band images of both sensors
and then extrapolated to all other bands for correction purposes.
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Depending on the radiometric quality and similarity, approximately 100 ground
control points (GCPs) disseminated over one MGRS scene footprint provide consistent
statistical results. As discussed previously and also illustrated in Appendix A, the S2L
ingests data from different processing centers and delivers products in their own format.
Thus, the processing and accuracy specifications depend on the respective product level,
software version and relative configuration.

2.3.2. Atmospheric Correction

The objective of atmospheric correction (AC) is to remove the scattering and absorption
effects from the atmosphere in order to obtain a good estimate of the surface reflectance
(SR). The AC might be time consuming and computationally demanding, but for some EO
application use cases, a simplified modelling in support of AC fits the purpose. For this
reason, two distinct AC approaches are proposed in the S2L.

The first AC methodology is based on a Simplified Model for the AC (SMAC) of
satellite measurements in the solar spectrum [33]. It utilizes simple analytical formulas
(based on the 5S model) with a set of 49 coefficients, which were fitted using a large number
of radiative transfer simulations with the 6S model (not 6SV). The SMAC coefficients
(CESBIO, [34]) were computed for each band of every instrument (i.e., OLI, MSI-A and
MSI-B).

The parameters in the observation period, such as the atmospheric sea level pressure,
the total aerosol optical depth at 550 nm, the ozone content and the water vapor content
data, are obtained from the Atmosphere Data Store (ADS) maintained by CAMS [21], which
are provided with a resolution of approximately 40 km. The meteorological conditions
are assumed to be stable over the geographical extent of an S2 MGRS tile footprints. In
addition, the atmospheric parameter set matching the MGRS tile scene center and product
observation date/time is computed. Furthermore, the solar and viewing angle values
are handled differently depending on their availability in the L1/L2 product format. A
fall-back option consists of using FMASK [35] routines to calculate them. Obtained from
their original grids, the viewing and solar viewing angles are upsampled to a finer grid,
depending on the resolution of target image grid. For S2, the original grid is a 23× 23 (5 km
resolution), and for Landsat, the grid is finer with a spatial resolution of 300 m × 300 m.

As shown in Figure 3, the processing workflow uses the SMAC Look Up Table (LUT)
involved in the estimation of a parametric model, subsequently used for TOA to SR
corrections. The TOA to SR second-order polynomial function coefficients are estimated
based on the SMAC unitary results. The SMAC is triggered on any TOA reflectance value
within an interval from 0.01 to 1.0. The method does not account for terrain slope and
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adjacency effects. For similar Landsat-5 TM bands 1 and 4, the maximum relative errors
relative to original 5S code were estimated to be 1.65% and 2.37%, respectively [33]. The
limits of SMAC are the same as for 5S/6S, i.e., solar and viewing angles must be less than
60 and 50 degrees, respectively, and the aerosol optical depth must be less than 0.8 at
550 nm [33].
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The second option offered by the S2L framework for AC is the use of the Sen2Cor
3.0 tool [36]. The Sen2Cor tool’s performance is regularly reported in L2A Data Quality
Reports [13] as well as in independent inter-comparison exercises such as the ACIX [37]
and the ACIX-II. The average accuracy value relative to the average surface reflectance
reference is below or near to 5% except for bands 5 and 12 [36].The Sen2Cor methods have
a domain validity range where the solar zenith angle should be less than 70 degrees.

2.3.3. BRDF Correction

Two different methods for BRDF corrections were implemented based on the literature
survey. Table 2 presents a comparison of the BRDF correction methods based on the main
approach, dynamic, the use of high-resolution (HR) normalized difference vegetation
index (NDVI), use of moderate resolution (MR), inclusion of land cover classification and
the coefficients at HR. The High Resolution Adjusted BRDF Algorithm (HABA) is the
only algorithm that estimates the BRDF parameters at S2 spatial resolution including a
disaggregation of the BRDF parameters estimated from the MODIS surface reflectance
product (M{O,Y}D09) at 0.01◦ spatial resolution and using the Vermote Justice Bréon (VJB)
method [38]. A global method based on a static set of coefficients issued in Roy et al. [39,40]
and a scene dependent set based on BRDF dynamic characterization [41], namely HABA,
was implemented here.
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Table 2. A summary of the high-resolution BRDF-adjustment algorithms.

Algorithm BRDF
Approach

BRDF
Dynamic

Use of HR
NDVI

Use of MR
BRDF Land Cover BRDF Coefficients

at HR

C-factor 1

[39,40]
MCD43 No BRDF

dynamic No No No No

LUM [42] MCD43
spatial and
temporal
variations

No MCD43 at 500
m Yes (CDL2) Yes (but per crop)

VI-dis [43] VJB
Spatial and
temporal
variation

Yes MODIS VJB at
1250 m No No

HABA [41] VJB
Spatial and
temporal
variation

Yes MODIS VJB at
1000 m Yes Yes

1 Current HLS BRDF normalization. 2 CDL: Cropland Data Layer [44].

The two methods were selected to fulfill the accuracy requirements of users. The first
approach proposed by Roy et al. [39,40] is widely adopted in the community to correct
S2/LS8 data (observations performed close to nadir) due to its simplicity and relatively
good performance depending on the land cover. The results are in general more accurate
with the HABA, which provides HR characterization, and the correction is performed at
the S2 pixel level. However, the HABA implementation is more complex and requires more
processing resources.

As shown in Figure 4, the two methods were implemented within the same con-
figurable processing. Regarding the normalization step specifically, there are two major
differences between the two methods. On one hand, Roy et al. [39] provides a single set
of coefficients. On the other hand, the HABA provides per pixel values, estimated by
using the NDVI parameter as proxy value. Furthermore, HABA requires as input a MGRS
tile-dependent BRDF characterization.
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In the implementation, the BOA reflectance (R) is normalized at Nadir, RN , by using
the following mathematical relationship (Equation (1)):

RN(θmean,lat, 0, 0, ∆) = R(θ, υ, φ, ∆)×
1 + V(∆)Kvol(θmean,lat, 0, 0) + R(∆)Kgeo(θmean,lat, 0, 0)

1 + V(∆)Kvol(θ, υ, φ) + R(∆)Kgeo(θ, υ, φ)
(1)

where

• Kvol , Kgeo ([45–47]) are derived based on the pixel-based solar and view angles,
• V and R are the volume and the roughness parameters that describe the BRDF shape,
• The θ, υ, φ parameters are the solar/viewing, zenith and the relative azimuth,
• The ∆ parameter is related to the spectral band taken into consideration for this

calculation.

In Equation (1), the BRDF normalization is performed for a fixed solar zenith angle
(SZA) value, θmean,lat. The θmean,lat parameter changes depending on the MGRS tile because
it is a function (sixth degree polynomial fit) of the MGRS tile scene center latitude, as
listed in Equation (2). It is worth noting that this parameter does not vary with time. The
polynomial coefficients used to retrieve the mean solar angle as a function of the MGRS tile
latitude (NASA HLS, [48]) are given in Table 3.

θmean,lat = k6 × lat6 + k5 × lat5 + k4 × lat4 + k3 × lat3 + k2 × lat2 + k1 × lat1 + k0 (2)

where:

• kn are six-degree polynomial coefficients—the parameter values are listed in Table 3,
• lat is the latitude of the MGRS tile scene center.

Table 3. Polynomial coefficient to retrieve the mean solar angle as a function of the MGRS tile latitude
(NASA HLS, [48]).

k0 k1 k2 k3 k4 k5 k6

31.0076 −0.1272 0.01187 2.40 × 10−5 −9.48 × 10−9 −1.95 × 10−9 6.15 × 10−11

Unlike Roy et al. [39], the HABA algorithm is scene/tile dependent and therefore
requires a yearly time series of S2 BOA images as input. The workflow of the BRDF
auxiliary data generation is shown in Figure 5.
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The V and R parameters in the HABA are retrieved based on the VJB method applied
to MODIS daily directional surface reflectance 0.01◦ CMG data during the period 2002–2006,
2019 and 2020, assuming that

fvol
fiso

= V = V0 + V1NDVI (3)

fgeo

fiso
= R = R0 + R1NDVI (4)

Note that the outputs are the global scale BRDF parameters V0, V1, R0 and R1. The
HABA is based on downscaling 0.01◦ BRDF coefficients to S2L resolution, considering as
a reference 20 classes obtained from the unsupervised classification of S2L images and
assuming that the surface reflectance of a 0.01◦ pixel can be written as a weighted sum of n
number of S2L classes [49].

Given that the M{O,Y}D09CMG product is limited to MODIS B1–B4, we need to de-
rive the BRDF parameters for B6-B7, which are also needed to normalize S2L. Following
Villaescusa-Nadal et al. [50], we use MODIS CMG data at 0.05◦ (which includes all MODIS
bands) to obtain a physical relationship between the BRDF parameters for B6–B7. To do
this, we first extracted the surface reflectance data for individual pixels in 445 Benchmark
Land Multisite Analysis and Intercomparison of Products (BELMANIP2) sites [51]. The
BELMANIP2 sites are an update of the BELMANIP1 and were selected due to their repre-
sentativeness and variability of vegetation types and climatological conditions around the
world. Second, the surface reflectance data time series (2002–2020) were sorted in ascending
values of the NDVI, which were divided into five groups, using the 20th, 40th, 60th and
80th percentiles as group edge values. Third, we extracted the V and R values of each
group and spectral band. This means that for every pixel and every band, we obtained
five different V and R values. When using all the BELMANIP2 sites, we obtained a total
of 2225 points (445 × 5) for each band. Finally, we applied simple regression between the
obtained parameters for the VNIR bands and with the NDVI itself, which is summarized
in Equation (5).

VB6 = 0.55×VB1 + 0.57×VB2 − 0.26×VB3 − 0.11×VB4
VB7 = 0.95×VB1 − 0.37×VB3
RB6 = 0.47× RB1 + 0.61× RB2
RB7 = 0.91× RB1 + 0.34× RB2

(5)

The method was evaluated by assessing the impact of the approach on the normalized
reflectance. To do so, in Figure 6, we compare the time series of noise (2002–2020) of the
directional reflectance (raw) with the normalized reflectance using the VJB method in
HABA and using the model prediction. The results show that the VJB parameters and the
predicted parameters provide a very similar reduction of noise.

The unmixing of BRDF parameters is inferred individually from each image. However,
this approach may generate noise in the BRDF inversion, mainly due to clouds, as they
reduce the number of cloud-free pixels utilized in the BRDF inversion and thus limit the
number of observations available for inversion. Additionally, the low quality of the cloud
mask may also introduce noise in the BRDF unmixing. Therefore, based on the individual
BRDF unmixing of each image for a given time period, we apply a linear regression for each
pixel of V and R parameters versus the NDVI to derive the V0, V1, R0 and R1 parameters at
S2L, which are stored as BRDF auxiliary data as the final output of this module.
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2.3.4. Spectral Band Adjustment Factor (SBAF)

Even when the spectral band definitions of the optical instruments under consideration
are very similar, the differences in the spectral response can cause significant divergence
between the TOA reflectances sensed by them. In Teillet et al. [52], the definition of SBAF
is given. The SBAF is target specific and requires hyperspectral data to build a spectral
shape over the visible/NIR/SWIR wavelength domain of the electromagnetic spectrum.
The OLI/MSI reflectances are predicted based on the spectral response of the respective
sensor. The OLI/MSI SBAF coefficient set for the data observed over three pseudo invariant
calibration sites (PICS) was computed by South Dakota University [53], which also showed
that the SBAF over the desert is mostly independent of the location and season.

Rather than considering a single land cover, the NASA HLS team addressed the SBAF
issue [8] by analyzing MSI/OLI SBAF variability for different biome types. So far, a total of
160 globally distributed Hyperion hyperspectral scenes have been processed to SR, and 500
spectra were analyzed. The study revealed the importance of discerning the differences
sourced from the spectral calibration from those coming from the radiometric calibration.
Furthermore, it also showed that in the context of S2/LS8, the residual errors associated to
SBAF adjustment make a very small contribution in the overall error budget.

In addition, S2L adjusts LS8, LS9 and S2B reflectances to S2A reflectance by using
univariate linear regression and a single set of coefficients per band. The band-dependent
linear transformation factors (slope, intercept) given in [48] for distinguishing S2A and S2B
data were used here.
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2.4. Validity Mask

The objective of the S2L per pixel validity mask is to support the multi-temporal
analysis of the L2H/L2F dataset by flagging invalid pixels caused by clouds, cloud shadows,
image processing artifacts, etc. In general, it is expected that such quality assurance
information is already available within the L1/L2 products. However, depending on the
product version and the data provider, the reliability and completeness of this information
is varying. For instance, the accuracies of S2 L1C and L2A validity masks are different as
depicted in Figure 7. To mitigate the inconsistencies, a morphological operator (dilation) is
applied to S2 L1C quality masks in order to increase their quality by excluding the cloud
shadow and haze (Figure 7c) from a valid pixel sample size.
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(inverted), (c) L2A cloud and shadow mask and (d) post-processed cloud and shadow mask (cleaned
and dilated).

For Landsat products, the validity mask is constructed from the LS8/LS9 Band Quality
Assessment as described in [54,55], whereas for S2 products, the validity mask is con-
structed from the L1C cloud mask (either in vector or raster format) and from L2A Scene
Classification (SCL) map [56]. Figure 8 illustrates the L2A SCL used to construct the S2L
validity mask. While the vegetated and non-vegetated pixels are considered as valid, the
snow, cirrus, cloud, cloud shadows and topographic shadows are considered as invalid.
The SCL classification performance is regularly reported in L2A Data Quality Reports [13]
as well as in independent intercomparison exercises such as CMIX [57].

In order to report on the impact of the validity mask in the data fusion, an additional
fusion validity mask is embedded within the L2F product, which flags pixels for which the
upscaling algorithm exhibits excessive residual errors (above 20%).
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2.5. Data Fusion

The main objective of the S2L data fusion is to produce data similar to S2 at the
observation date/time of LS8/LS9 observations. The approach is based on improving
the spatial resolution of LS8/LS9 images from 30 m to 10 m in the case of VNIR bands
while preserving radiometric inter-calibration between sensors. Increasing the temporal
frequency of S2 HR data is fundamental for many applications dealing with the mapping
of rapid changes, as discussed in [58]. The study reported a fusion method to generate
Landsat-like images by using MODIS data. Besides this, in the context of monitoring,
developing a fusion method for enabling change detection in a timely manner is of great
importance for a near real time alert system. The near real time approach requires the
improvement of the spatial resolution of a given LS8/LS9 image by exclusively using S2
images observed in the past.

Several spatiotemporal data fusion methods have been developed in the literature
to produce synthesized images with both high spatial and temporal resolutions from two
types of satellite images: frequent coarse-resolution images and sparse fine-resolution
images ([59,60]). The proposed methods are in most cases time consuming and are not
tailored to the needs of our study, as we use sparse medium-resolution images (LS8/LS9
data) and fine-resolution images (S2A/S2B data) with higher temporal resolution.

The current S2L approach is mainly based on conventional fusion methods, which
aim at combining the HR panchromatic band and low-resolution MS bands from the same
sensor and at the same time. However, the S2L methodology slightly differs from the
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conventional methods in terms of (i) its multi source environment, (ii) the requirement
to preserve calibration of temporal information and (iii) the temporal difference between
the data.

The EO satellites sense different characteristics of a landscape, which can be basically
categorized as large and small-scale features attributed to low and high spatial frequency
content, respectively. From the image processing point of view, the large-scale features are
regular, not necessarily uniform, with no discontinuity, whilst the small-scale features are
associated with contour and texture. The S2L approach relies on this basic decomposition
to improve the spatial resolution of LS8 at a given date. The LS8 large-scale features are
complemented with predicted S2 small-scale features and small-scale features not captured
by LS8, as described with the following equation.

L810m = S30→10
L8 + D10m

S2−L8 (6)

where:

• L810m is the final LS8 image at the S2 spatial resolution, with deconvolution from 30 m
to 10 m,

• S30→10
L8 is the original LS8 image resampled from 30 m to 10 m by using bilinear

interpolation, which is associated to the phase of signal,
• D10m

S2−L8 is the image of differences derived between 30 m and 10 m spatial resolution
predicted by using S2 data and associated with the amplitude of the signal.

The essence of this method is the computation of images of differences. The prediction
is performed based on the historical S2 information assuming a linear relationship between
the observations. A linear regression model with least squares fitting is used to estimate
the transformation parameters. The selection of multi date pixels in the S2 past dataset is
based on validity mask information, which needs to be reliable to obtain high performance.

3. Validation Results

The geometric accuracy performances of the S2 and LS8/9 L1C/L2A products are
well known. The S2 Mission Performance Center (MPC) presents the status of products
monthly in the data quality reports ([13]). The NASA science team releases also regular
reports. However, an example from the geometric accuracy results, before and after the
application of S2L co-registration, is shown in Figure 9. The geometric co-registration
of images with respect to a raster reference is demonstrated with two graphics: circular
error plots (left) and multi-temporal plots (right). A three year period dataset observed
in 31TFJ MGRS tile was used as reference. The upper graphics are related to the initial
geometric accuracy (relative to raster reference) and the lower plots are related to the final
S2L accuracy in the figure. The precision of the S2A/S2B images varies since only the most
recent products were co-registered to the S2 GRI. The LS8/LS9 images were from Collection
1 and Collection 2 products, respectively. Whilst the geometric accuracies expressed in
Circular Error at the 90th percentile (CE90) of LS8/LS9 and S2 input images reached 18.81 m
and 7.29 m (Figure 9 upper graphics), the S2L correction increased the accuracy values
within 2 m (CE90).

Regarding the BRDF processing, comparisons between different observations from
adjacent swath overpasses to cover different observation geometries and illumination
conditions over Belgium during 2019 were carried out (Figure 10). Figure 11 shows the
absolute differences for bands B02, B03, B04, B8A, B11 and B12 regarding the directional
reflectance (DIR) without BRDF correction, the C-factor correction ([39]) and the HABA
correction applied for different view zenith angles (VZAs). The results were obtained from
the comparison of 964 million cloud-free pixels for each date. The number of overlapping
pixels varies between 9% and 36% for VZAs from 0◦ to 2◦ depending on the swath for
each MGRS tile and the acquisition date. For VZAs between 2◦ to 4◦, the percentage of
overlapping data represented between 28% and 45% of the tiles. Additionally, for VZAs
between 4◦ and 6◦, the number of analyzed pixels represented between 13% and 25%.
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Finally, for the largest VZA observations (>6◦), the analyzed pixels represent between 12%
and 42%.
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The separation of intervals of absolute difference in the boxplot (Figure 11) shows that
the metrics in the visible spectrum (B02, B03, B04) yielded the lowest errors with a median
under 0.01 and a low variability for all methods and the observation geometries. Besides, the
impact of the BRDF correction in B8A, B11 and B12 depends on the observation geometry
(VZA) and on the BRDF correction method. For VZA lower than 4◦, the directional
reflectance shows the lowest errors, while C-Factor and HABA show errors up 0.01. For
VZA over 6◦, the C-Factor stills shows an overestimation in B8A reflectances, and HABA
stabilizes the average value but still exhibits a higher variability than the directional
reflectance. In the case of the SWIR bands (B11 and B12), the C-Factor and the HABA
perform a better correction for the larger VZA acquisitions. The comparison shows that
the HABA produced the lowest differences across all bands, while the C-factor correction
showed larger discrepancies than the directional product for all VZA pixels aggregated.
Table 4 summarizes the metrics obtained from the analysis, demonstrating that the HABA
correction decreases the absolute difference up to 13% (in the SWIR bands) compared to
the directional product.
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Table 4. Summary of difference of S2L bands over Belgium MGRS tiles, considering a window of
1 to 5 days. Columns shown are the mean, standard deviation and correction percentage of NBAR
algorithms. Positive and negative values represent increase and decrease of errors, respectively.

Band Method Mean Std % Corr

B02 DIR 0.01297 0.01174
C-FACTOR 0.01482 0.01402 14.24%

HABA 0.01213 0.01139 −6.45%
B03 DIR 0.01179 0.01207

C-FACTOR 0.01397 0.01460 18.56%
HABA 0.01062 0.01185 −9.90%

B04 DIR 0.01144 0.01318
C-FACTOR 0.01357 0.01552 18.58%

HABA 0.01051 0.01279 −8.19%
B8A DIR 0.01994 0.02038

C-FACTOR 0.02431 0.02213 21.96%
HABA 0.01742 0.02002 −12.60%

B11 DIR 0.01424 0.01842
C-FACTOR 0.01753 0.02012 23.03%

HABA 0.01243 0.01791 −12.74%
B12 DIR 0.02621 0.01686

C-FACTOR 0.03134 0.01851 19.58%
HABA 0.02442 0.01614 −6.82%
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As shown in the Table, the BRDF processing with the HABA brings substantial im-
provements regarding time series smoothness. However, as discussed before, this method-
ology is scene dependent. In addition, from the on-demand production perspective, it
is not straightforward to argue that the HABA results systematically reach operational
goals for any newly generated dataset. The Temporal Smoothness Index (TSI) is widely
used in the community in order to assess the consistency of the spatiotemporal dataset,
e.g., in [8]. Experience has revealed that the usefulness of the TSI might be limited to
discriminating algorithm improvements and comparing time series together. For this
reason, it is proposed to complement the TSI with a quality control metric defined as a
correlation measurement between two samples, samples taken for every image pixel and
including temporal information. For a given observation date, the two elements, which
are the viewing/sun azimuth difference values and the difference between pixel value
and predicted value (as a result of linear interpolation by using the two closest dates),
are considered. This approach creates a TSI correlation image reflecting information on
the angular dependency of pixel basis temporal information. Furthermore, the ESA Land
Cover (LC) Climate Change Initiative (CCI) Land Cover map (Version 2.0.7) with a 300 m
resolution [61] is used as supporting data to compute the image statistics over regional LC
classes, keeping a valid pixel sample by using the S2L validity mask. The CCI LC map is
compared with the TSI correlation extracted from the COG L2H overview images (120 m
resolution). The TSI correlation metric results generated for the three methods, i.e., DIR,
C-Factor and the HABA for the 31TFJ multi temporal dataset, which includes 113 LS8/S2
observation (44 S2A, 40 S2B, 28 LS8) dates over the full-year 2019 period, are presented in
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Figure 12. Based on this experimental TSI correlation metric, it becomes evident that the
C-Factor and the HABA methods reduce angular dependencies. Compared to the C-Factor,
the HABA performs better in most cases: the correlation results are below 0.01, except for
Tree Cover (LCCS Value 60; 70, 90) and Bareland Areas (LCCS Value 200), in particular for
S2L bands B03, B04 and B12. In addition, the results for B02 do not show improvements,
even if the same tendency regarding the underperformance of HABA for the LC class
previously mentioned is observed.
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Regarding the data fusion, from a quantitative point of view, we used accuracy
precision uncertainty (APU) defined in [62] to compare datasets, as performed in [37].
Thus, higher values of A, P and U reflect higher discrepancies between datasets, and low
values reflect a better agreement. The LS8 L2H and L2F images for three bands (B02, B03,
B04) were compared with respect to S2 L2H/L2F images. Data acquired at the same date
were selected to eliminate the temporal differences. The results given in Table 5 show that
the fusion algorithm does not modify the inter-calibration between LS8 and S2A (LS8/S2A)
significantly, and the results are in agreement with the cross-calibration results given in [53].
Moreover, this shows that the inter-calibration does not change depending on the S2L
processing level, i.e., L2H and L2F.
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Table 5. Validation of S2L fusion algorithms, image comparison between LS8 L2H, LS8 L2F and S2A
image (as reference) dated 14 July 2019, tile 12SVB).

Pixel
Number Mean S2A Mean LS8 LS8/S2A Accuracy

(A)
Precision

(P)
Uncertainty

(U)

L2H (30 m)
B02 99,346 0.109 0.103 0.945 0.006 0.008 0.010
B03 99,358 0.149 0.148 0.996 0.001 0.009 0.009
B04 99,321 0.205 0.201 0.980 0.004 0.012 0.013

L2F (10 m)
B02 99,159 0.109 0.103 0.944 0.006 0.007 0.009
B03 99,208 0.149 0.148 0.996 0.001 0.008 0.008
B04 99,380 0.205 0.201 0.980 0.004 0.010 0.011

As the LS8 L2F images are synthetic data, this enables the retrieval of information over
ROIs that are not available in native LS8 images such as nearby crop field parcel limits.
Many pan-sharpening techniques increase the image contrast with the risk of altering pixel
values on both sides of the image edge, causing edge artefacts (“halos”). To quantify this
effect, nine ROIs with different geometric properties and high spatial frequencies have been
selected, as shown in Appendix B Figure A2. The LS8/S2 L2H/L2F mean edge profiles
were computed, and an accuracy analysis and visual check were performed (Appendix B
Figure A3). As shown in Figure 13, the LS8/S2 L2F uncertainties do not exceed 0.02 (BOA)
in the evaluated bands.
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The original LS8 images and the S2-like LS8 30 m images (L2F images) are shown in
Figure 14 for visual comparison. The qualitative assessment shows that the S2L deconvolu-
tion process preserves the radiometry and improves the object delineations for different
land cover types.
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4. Discussions
4.1. The S2L Framework

The S2L algorithm allows the harmonization and fusion of multi-sensor optical data
for the purpose of ARD preparation with the ultimate goal of generating VCs. The S2L
tool developed for this purpose is able to apply geometric processing, spectral inter-
calibration and AC, BRDF and spectral adjustments and data fusion to ensure that the
input products are at the same spatial resolution. The tool framework is flexible, and it is
designed to integrate with the future products of different spaceborne and airborne optical
missions with the condition that the proper calibration information is available. The tool
development principle also involves reusability from the existing qualified tools such as
SMAC, Sen2Cor and qualitied methods.

The major achievements of the study include detailed investigations of the quality of
a spatiotemporal dataset, algorithm comparison and the development of an ARD quality
assurance approach. The validation of a product’s radiometric and geometric qualities is
fundamental to propose this novel processing strategy for the realization of VCs as a further
step in EO data fusion activities. Thanks to S2L processing, data from different sources are
corrected, information is created with the generation of high-quality validity masks, and the
resulting produced L2F images have the ability to reconstruct vegetation dynamics through
NDVI temporal profiles and are robust to temporal change and cloud cover. The S2L is
focused on physical quantities with the potential to progress in uncertainty analysis. In



Remote Sens. 2022, 14, 3855 21 of 31

addition, a major limitation is that the approach depends on the information level disclosed
by the data provider and also on the intrinsic quality of the input mission—the product
format design, calibration monitoring and product processing quality.

4.2. Adaptation to Further Optical Missions

The S2L software offers a generic framework and enables the creation of a multi
mission seamless dataset. The VC of the S2A/B and LS8/9 sensors already provides a
global median average revisit of 2.3 days [3]. The inclusion of further missions increases
the data availability, shortens the temporal revisit interval and maximizes cloud-free
observations. Within this scope, the integration efforts to include further satellites with
similar characteristics as well as hyperspectral missions and data obtained from airborne
platforms including the UAVs are addressed in this section.

It has previously been shown that the integration of Indian Remote Sensing (IRS)-
ResourceSat-2 [63] in S2L requires minor development efforts, and the most critical issues
remain in the knowledge of sensor radiometric and spectral calibration for which docu-
mentation is not disclosed. The lack of calibration information would yield inaccurate
atmospheric correction results and cause difficulties in spectral adjustments.

On the other hand, the studies performed on the Deutsche Zentrum für Luft und
Raumfahrt (DLR) Earth Sensing Imaging Spectrometers (DESIS) [64] yielded promising
results on the integration of hyperspectral data into S2L by aggregating the TOA images.
The aggregation process consists of convoluting the TOA hyperspectral VNIR spectra
from DESIS with response functions of the S2 MSI sensor and adding the SWIR bands
of the original S2 TOA values [65]. The approach allows researchers to avoid changes
in the atmospheric correction baseline while preserving the data quality (Figure 15) and
calibration accuracy. In the approach, the VNIR DESIS bands are resampled from the DESIS
spatial resolution (30 m) to the 20 m resolution of S2. The final aggregated TOA dataset
can be processed with two different methods. The first method relies on the processing of
the dataset in the same way as DESIS data relying only on VNIR bands (DESIS-S2-VNIR).
The second method involves processing like S2 using the SWIR-bands (DESIS-S2) as well.
Both methods provide similar results, showing no significant differences (Figure 15). The
missing SWIR bands of the DESIS sensor do not generate artefacts for this study due to
differences in processing. The aggregation of hyperspectral data to MS data on L1C Level
opens up new perspectives for the integration of current (PRISMA [66], EnMAP [67]) and
future hyperspectral (CHIME, [68]) missions into the MS framework. The main drawback
of this approach is that it may not be possible to utilize the full potential of the hyperspectral
data with the fusion process.

The S2L preliminary study showed no strong differences in the BOA results between
MS and hyperspectral data processing. However, the AC of hyperspectral data is able to
use much more information than for the MS data. One example is the availability of shorter
wavelength bands with more information for all the algorithms involving analysis in the
deep blue wavelengths (e.g., scale path radiance), which is clearly visible in Figure 16. The
availability of bands in other water vapor regions such as 820 nm improves the accuracy of
the water vapor estimation. In addition, the availability of multiple bands in this and the
other water vapor absorption regions such as 945 nm decreases the water vapor uncertainty,
although such uncertainty does not have a large impact on the final BOA reflectance.

The convolution of hyperspectral BOA reflectance data to MS has several ad-vantages
over aggregating hyperspectral data to MS at L1C for processing. The BOA spectra are
smoother than the TOA spectra, which includes absorption features. From the computa-
tional and storage point of view, only one hyperspectral product will be stored, serving
both the S2L and the hyperspectral L2A users, and fewer computation-al resources will be
required to convolve the hyperspectral L2A products to any other MS missions, even when
the SRFs of MS missions change. These results also confirm that new MS sensors with more
spectral bands than S2 can be easily included in the algorithm (e.g., S2 NG [68], L9 [69]).
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cessing (square, green). The spectra correspond to a mean over 2 × 2 pixels (upper) and 3 × 3 pixels 
(lower) to integrate the same geographical area. 

Figure 15. BOA reflectance (%) of a soil (a) and a vegetation (b) pixel for hyperspectral DESIS
processing (line, red), multispectral DESIS-S2-VNIR processing (diamond, blue) and MS DESIS-S2
processing (square, green). The spectra correspond to a mean over 2 × 2 pixels (upper) and 3 × 3
pixels (lower) to integrate the same geographical area.
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Figure 16. Reflectance differences 100 m above ground to surface reflectance on ground for different
combinations of inputs to radiative transfer model: surface reflectance 0.1 and 0.3, solar zenith angle
15◦ and 60◦ and AOT 0.1 and 0.3. (a) overall view, (b) enlarged view over VZA between 0◦–45◦.
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Concerning the airborne data streams, the AC of such data is not recommended. As
shown in Figure 16, the reflectance recorded from a UAV flying at an altitude of 100 m
above ground differs less than 4% from the reflectance at surface for observation angles
≤ 45◦ in the worst case. The atmospheric influence on the UAV data is smaller than the
current uncertainty of SR retrieval in AC. The SR retrieval with Sen2Cor is frequently
outside the uncertainty goal of about 5% [13].

5. Conclusions

In this study, the algorithms and the implementation framework of Sen2Like (S2L),
which is an open-source tool initially developed for the harmonization and fusion of
S2 and LS8 data to produce Analysis Ready Data (ARD), are presented and discussed.
Several issues such as geometric processing, AC, cloud mask, BRDF processing, etc., in S2
and LS8/LS9 data are addressed in the paper. The S2L tool supports several processing
steps dedicated to data harmonization and data fusion with respect to the S2 mission as
a reference. The S2L algorithm is able to work and adapt in different domains, such as
spatial, spectral and temporal. As the airborne and spaceborne remote sensing instruments
have different characteristics, the adaptation of the processing steps per sensor is essential
in order to provide a consistent and accurate multi-temporal data stack and to enable the
generation of dense reflectance time series.

The validation of the ARD shows that the quality of input data is preserved and the
inter-calibration between different sensors is improved. The validation activities provided
the opportunity to characterize the dataset’s consistency and accuracy and demonstrated
that the quality information should be included as part of the delivered products. Improved
quality information facilitates the use of multi-temporal data.

By providing dense time series at fine spatial scale, the S2L tool aims to be helpful for
the fine modeling of change and close monitoring with the integration of new missions.
The study also concludes that AC should be mission-specific. Based on the preliminary
analyses with the hyperspectral data obtained from the DESIS, it was proven that the S2L
framework is able to process the products of any other MS or hyperspectral optical data at
the L2A level.

The S2L is currently entering its pre-operational phase and will be offered to the EO
community as an “on demand” processor. Besides taking the steps for the transition to the
operational phase, the S2L project team is pursuing research and development activities to
densify time series for the characterization and measurement of environmental parameters.
In this context, research questions and issues related to the fusion of current S2L data with
the data from the other sensors and platforms, such as hyperspectral sensors, UAV camera
data, etc., are under investigation.

In the era of artificial intelligence, S2L also has the potential to improve the model
training processes by providing radiometrically consistent spatiotemporal information
and might be helpful for many applications in the field (e.g., for the AI4EO Initiative).
As an example, the deep learning models implemented for the LULC classification and
employing multi-mission datasets can benefit from the increased data quality with high
image radiometric coherence. A newly launched study on the Worldstrat dataset [70]
reported that an increase in revisit times of Sentinel-2 images would be highly beneficial
for this purpose. It can be envisioned that this requirement can be fulfilled with VCs to
some extent.
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Appendix A. S2L Data Description

The Sen2Like products are processed in the SAFE format. Both L2H/L2F product
formats are tailored from the S2 product format specifications defined in [18]. As introduced
in Figure A1, the S2L L2H/L2F physical format includes in particular (1) the product/tile
metadata, (2) preview image, (3) image data and (4) quality indicators described. Besides
image data, this section focuses on S2L-specific contents related to the processing-dependent
metadata and quality indicator data.
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Appendix A.1. Image Data

The L2H/L2F Image Data (IMG_DATA) folders include harmonized and fused surface
reflectance images, respectively. As presented in Table 1, for some S2 bands, there is no
equivalent Landsat8 band, and vice versa. These data are kept and stored in a dedicated
file directory named the “NATIVE” directory. The content of the Sen2Like Image Data
folder depending on the processing level and the mission is listed in Table A1.

Table A1. Content of the Sen2Like Image Data folder (when required, the corresponding LS8
equivalent band is labeled with “L” as prefix instead of “B”).

Level 2H Level 2F

S2
The harmonized surface reflectance tiles at Sentinel-2 spatial resolution

with 7 bands: B01 (60 m), B02 (10 m), B03 (10 m), B04 (10 m),
B8A (20 m), B11 (20 m), B12 (20 m)

LS8
The harmonized surface reflectance tiles with 7

bands at Landsat-8 spatial resolution
(B01, B02, B03, B04, B8A (L05), B11 (L06), B12 (L07)

The fused surface reflectance tiles with 6 bands at
Sentinel-2 resolution

B02, B03, B04, B8A (L05), B11 (L06), B12 (L07) and
with 1 band at Landsat-8 resolution B01 (30 m)

NATIVES2 The surface reflectance tiles at Sentinel-2 spatial resolution with 4 channels B05 (20 m), B06 (20 m), B07 (20 m),
B08 (10 m)

NATIVELS8 The panchromatic surface reflectance tile (15 m) and the 2 emissive bands at 30 m resolution (L10 & L11)

https://github.com/senbox-org/sen2like
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The L2H/L2F products use the same tiling, encoding and filling structure as the S2
L1C product described in the GMES Space Component—Sentinel-2 Payload Data Ground
Segment (PDGS) and Product Definition Document (PDD). In the L2H/L2F raster images,
the pixel values are encoded into 16 useful bits, which are directly proportional to SR
values. While the standard native GeoTIFF and JPEG 2000 image file formats are supported,
it is possible to deliver output image data in the Cloud Optimized GeoTIFF (COG) file
format. The COGs’ internal overviews are defined according to a pyramidal order. The
overview dimensions have been selected to preserve the geometric accuracy and the co-
registration of the harmonized datasets at lower zoom levels. Therefore, the following
overview resolutions are available for each band, independently of the mission: 20 m,
60 m, 120 m and 360 m. With this approach, it is possible to create reduced resolution
spatio-temporal datasets much faster. The COG format, in addition to its internal tiling,
is optimized to support Hyper Text Transfer Protocol (HTTP) range requests (Internet
Engineering Task Force 2014, https://tools.ietf.org/html/rfc7233, accessed on 7 July 2022).
The following configuration options are defined as default: pixel interleaving, internal
tiling: 1024, block size: 1024, compression with LZW or Deflate. The resampling method
used to create overviews is “average”, except for the masks for which the “mode” method
is preferred.

In addition to image data, the product includes preview images and quicklook images
for which high level specifications are detailed in Table A2.

Table A2. Sen2Like preview image data.

Image Name Image Format Resolution Description

Preview Image GeoTIFF
(8 bit) 320 m RGB (3 channels: RED = B4; GREEN = B3; BLUE = B2). Preview

dynamic is stretched (min = 0.0, max = 0.250, scale = 255.0)
Quicklook

Image JPEG 30 m RGB (3 channels: RED = B4; GREEN = B3; BLUE = B2). Preview
dynamic is stretched (min = 0.0, max = 0.250, scale = 255.0)

Quicklook
Image JPEG 30m SWIR-NIR (3 channels: RED = B12; GREEN = B11; BLUE = B8A).

Preview dynamic is stretched (min = 0.0, max = 0.40, scale = 255.0)

Appendix A.2. Metadata

For each product and at any processing level, the complete set of metadata is provided
as a machine-readable XML file in accordance with the INSPIRE, ISO 19115-2 (Geographic
Information-Metadata, Part 2: Extension for imagery and gridded data) and ISO 19119
(Geographic information-Services) standards. As listed in Table A3, the S2L product format
contains metadata at two levels: i.e., the product level and the tile level.

Table A3. Sen2Like metadata embedded within the L2F and L2H product formats.

Metadata Name Description

Product Level

Information

• Datatake information:
• Datatake unique identifier;
• Spacecraft name (Sentinel-2A/B/ . . . );
• Datatake type (MSI Operation Mode: Nominal, Dark Signal, etc.);
• Sensing start time;
• Sensing orbit number (relative);
• Sensing orbit direction

• Spacecraft name (Sentinel-2A/B/ . . . )

Processing Level
List of image files L2H/F composing the products

Spectral information (relation between production image channels and on-board spectral bands)
Solar irradiance (per band) and the correction U related to the Earth-Sun distance variation

Reflectance quantification value (for conversion of digital numbers into reflectance);
Special values encoding (e.g., NODATA).

Quality Indicator Cloud coverage assessment

https://tools.ietf.org/html/rfc7233


Remote Sens. 2022, 14, 3855 26 of 31

Table A3. Cont.

Metadata Name Description

Tile Level

Metadata Tile identifier, as referenced by Level-1C data
Tile geocoding:

• Upper-left coordinates (ULX, ULY) of the tile (in m);
• Pixel dimensions (XDIM, YDIM) within the tile (in m and depending on band GSD);
• Tile size in number of lines/columns.

Mean sun angles (zenith and azimuth)
Mean viewing incidence angles per band

(zenith and azimuth)
Quality indicator Cloudy pixel percentage

Pixel level quality indicator: pointer to the QI files
Quicklooks and Preview data information:

pointer to image files

Appendix A.3. Quality Indicator Data

An additional L2H/L2F Quality Information (QI) report (e.g., L2H_QI_Report.xml)
is available within the granule QI_DATA folder (see Table A4). The QI file aggregates
all the quality information available in the L2H/L2F processing step. S2L inherits the QI
from L2A processing (Atmospheric Correction, Scene Classification) when available. In
the QI file, different metrics from the subsequent processing steps (Geometry, BRDF, SBAF,
Fusion) are also available. For example, for the geometric step, the following information is
available: spectral band of reference, co-registration error (in m) before and after correction,
number of points and reference of the method. Furthermore, in the QI file, a place is
reserved for Quality Indicator Metadata from auxiliary data used in Sen2like processing
(CAMS-ECMWF, GRI, BRDF, VJB).

Table A4. Sen2Like QI data and parameters.

Name Description QI Parameters

L2A_SceneClass

L2A scene classification QI
(Sen2Cor version 2.10 ATBD, available at

https://step.esa.int/thirdparties/sen2cor/2.10.0
/docs/S2-PDGS-MPC-L2A-ATBD-V2.10.0.pdf

accessed on 7 July 2022)

Percentage of classified pixels

L2A_AtmCorr

L2A atmospheric correction QI (Sen2Cor version
2.10 ATBD, available at

https://step.esa.int/thirdparties/sen2cor/2.10.0
/docs/S2-PDGS-MPC-L2A-ATBD-V2.10.0.pdf

accessed on 7 July 2022)

Average values of atmospheric
parameters (ozone, water vapor, aerosol)

Average solar zenith angle

Auxiliary Data Digital Elevation Model QI, Meteorological data QI Place reserved, intended for Sen2like 4.2

L2{H,F}_Geometry
Reference of the method (string)

QI derived from the geometric assessment
processing

BAND, COREGISTRATION
BEFORE_CORRECTION,

COREGISTRATION
AFTER_CORRECTION,

NB_OF_POINTS, MEAN, STD, RMSE,
SKEW, KURTOSIS [22–25]

L2{H,F}_BRDF_NBAR Reference of the method (string)
QI derived from the BRDF processing

KERNEL_DEFINITION, CONSTANT
SOLAR_ZENITH_ANGLE, MEAN

DELTA_AZIMUTH [38,39]

L2{H,F}_SBAF Reference of the method (string)
SBAF coefficients and offsets (values) SBAF coefficients and offsets per band [8]

L2F_FUS L2F only Reference of the method (string)
QI derived from the processing Sen2like ATBD (unpublished)

https://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-PDGS-MPC-L2A-ATBD-V2.10.0.pdf
https://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-PDGS-MPC-L2A-ATBD-V2.10.0.pdf
https://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-PDGS-MPC-L2A-ATBD-V2.10.0.pdf
https://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-PDGS-MPC-L2A-ATBD-V2.10.0.pdf
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Appendix B. Validation of Data Fusion Algorithm

As shown in Figure A2, nine ROIs located over the 12SVB MGRS tile are chosen in
order to evaluate the performance of the S2L data fusion method. Statistics are computed
over image rows or image columns, and the direction of the edge profile is indicated with a
blue arrow.

Remote Sens. 2022, 14, x FOR PEER REVIEW 29 of 33 
 

 

 
Figure A2. Landsat 10.0 m Red Green Blue color composition Full resolution L2F images (10.0 m) 
of the Nine ROIs selected over the 12SVB MGRS tile. The ROIs are used for validation of data 
fusion method. The direction of the edge profile is indicated with blue arrows (mean edge profile 
computed over records in the orthogonal direction), and the ROI identifier and the observation 
date are indicated in red. 

B02  

 

Figure A2. Landsat 10.0 m Red Green Blue color composition Full resolution L2F images (10.0 m)
of the Nine ROIs selected over the 12SVB MGRS tile. The ROIs are used for validation of data
fusion method. The direction of the edge profile is indicated with blue arrows (mean edge profile
computed over records in the orthogonal direction), and the ROI identifier and the observation date
are indicated in red.

Remote Sens. 2022, 14, x FOR PEER REVIEW 29 of 33 
 

 

 
Figure A2. Landsat 10.0 m Red Green Blue color composition Full resolution L2F images (10.0 m) 
of the Nine ROIs selected over the 12SVB MGRS tile. The ROIs are used for validation of data 
fusion method. The direction of the edge profile is indicated with blue arrows (mean edge profile 
computed over records in the orthogonal direction), and the ROI identifier and the observation 
date are indicated in red. 

B02  

 
Figure A3. Cont.



Remote Sens. 2022, 14, 3855 28 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 30 of 33 
 

 

B03  

 

B04  

 

Figure A3. B02, B03, B04 images of ROI 9 (right) overplayed with image area (red box) used to 
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BOA) is observed for B02, which might be due to the inter-calibration between the two sensors. 
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