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Abstract: We examine the impact of changes in ozone (O3), particulate matter (PM2.5), temperature,
and humidity on the health of vegetation in dense urban environments, using a very high-resolution,
ground-based Visible and Near-Infrared (VNIR, 0.4–1.0 µm with a spectral resolution of 0.75 nm)
hyperspectral camera deployed by the Urban Observatory (UO) in New York City. Images were
captured at 15 min intervals from 08h00 to 18h00 for 30 days between 3 May and 6 June 2016 with
each image containing a mix of dense built structures, sky, and vegetation. Vegetation pixels were
identified using unsupervised k-means clustering of the pixel spectra and the time dependence of
the reflection spectrum of a patch of vegetation at roughly 1 km from the sensor that was measured
across the study period. To avoid illumination and atmospheric variability, we introduce a method
that measures the ratio of vegetation pixel spectra to the spectrum of a nearby building surface at each
time step relative to that ratio at a fixed time. This “Compound Ratio” exploits the (assumed) static
nature of the building reflectance to isolate the variability of vegetation reflectance. Two approaches
are used to quantify the health of vegetation at each time step: (a) a solar-induced fluorescence
indicator (SIFi) calculated as the simple ratio of the amplitude of the Compound Ratio at 0.75 µm
and 0.9 µm, and (b) Principal Component Analysis (PCA) decomposition designed to capture more
global spectral features. The time dependence of these vegetation health indicators is compared to
that of O3, PM2.5, temperature, and humidity values from a distributed and publicly available in situ
air quality sensor network. Assuming a linear relationship between vegetation health indicators and
air quality indicators, we find that changes in both SIF indicator values and PC amplitudes show a
strong correlation (r2 value of 40% and 47%, respectively) with changes in air quality, especially in
comparison with nearby buildings used as controls (r2 value of 1% and 4%, respectively, and with
all molecular correlations consistent with zero to within 3σ uncertainty). Using the SIF indicator,
O3 and temperature exhibit a positive correlation with changes in photosynthetic rate in vegetation,
while PM2.5 and humidity exhibit a negative correlation. We estimate full covariant uncertainties on
the coefficients using a Markov Chain Monte Carlo (MCMC) approach and demonstrate that these
correlations remain statistically significant even when controlling for the effects of diurnal sun-sensor
geometry and temperature variability. This work highlights the importance of quantifying the effects
of various air quality parameters on vegetation health in urban environments in order to uncover the
complexity, covariance, and interdependence of the numerous factors involved.

Keywords: remote sensing; urban science; solar-induced fluorescence; principal component analysis;
ozone; particulate matter; temperature; humidity; MCMC
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1. Introduction

Even though cities cover less than 5% of the US land surface [1] and 0.5% of global
land cover [2], urban air quality has become a universal concern. As of 2018, the urban
population has swelled to 55% of the world’s population and is projected to reach up to 68%
by the year 2050 [3]. This increased rate of urbanization is accompanied by an increased
volume of motorized traffic, industrialization, energy use, and consequently an increase in
air pollution [4–6]. Long-term exposure to air pollution has been shown to be associated
with significant adverse health effects [7–10], and is ranked as one of the top five risk factors
for mortality of the past two decades [11]. The effects of air quality are not only reflected
in human health, but also in plants and vegetation. Plant injury and damage due to air
pollution were discovered as early as the 1870s [12], and have been extensively studied
throughout the past century [13–16].

Increased atmospheric particulate matter with diameter less than 2.5 µm (PM2.5)
has shown a significant negative correlation with biochemical parameters in plants, a re-
duction in stomata and chlorophyll content, as well as increased stress-induced enzyme
activity [17–19]. These effects are reflected in plants’ photosynthetic rates, which have been
detected at rates 50% lower in industrial areas high in PM2.5 relative to those in control
areas [20]. Adverse effects on tree biomass and visible leaf injury have also been shown to
be caused by surface ozone (O3), which results in decreased chlorophyll content and, there-
fore, decreased photosynthesis [21–24]. These harmful effects have been discovered in
agricultural crops [25,26] and forests [27–29].

However, it is important to note that studies assessing ozone damage to vegetation are
traditionally conducted under controlled environmental conditions using plant chambers
to expose plants to known O3 concentrations [30,31]. The numerous variables that compose
the environment in urban areas have complex correlations, covariances, and dependencies
that can significantly change their expected impact on urban vegetation. For example,
studies on the impact of ambient O3 concentrations on urban vegetation suffer from the
inability to separate the effects of O3 from those of other urban pollutants and stressors
using direct observations mainly due to the nature of ozone not accumulating in plant
tissue or causing any unique signatures [32,33], as well as the need for O3 concentrations to
exceed 200–300 ppb for their effects to be measurable in vegetation [28]. Furthermore, strong
correlations between O3 concentrations and surface temperatures have been uncovered
over multiple time-scales [34–36]. These correlations are made more complex with the
existence of PM2.5 and humidity levels, as well as the occurrence of the urban heat island
effect, urban winds, and numerous other natural and anthropogenic factors [37,38].

Moreover, plant phenology, the seasonally recurring patterns of environment-mediated
growth and development of plants, is heavily dependent on changes in temperature and
moisture. Temperature is often regarded as the primary trigger of the timing of plant
phenological events [39,40]. Leaf spring unfolding, blooming and flowering, and coloring
and falling in autumn are processes mainly controlled by changes in temperature. Low
temperatures activate plant stress response and induce endodormancy, and a certain ac-
cumulated amount of chilling breaks endodormancy and leads to ecodormancy, while
the accumulation of warm temperatures accelerates plant cell growth [41]. Due to cli-
mate change and rising global temperatures, studies have reported significant advances
in spring unfolding [42], a shift to earlier blooming [43], and a delay in autumn leaf col-
oring [44]. These effects are further exacerbated in cities due to the urban heat island
effect [45]. Furthermore, studies have shown that moisture and humidity act as potential
secondary triggers to various phenological events, including the timing of spring and
autumn phenology [46,47], and flowering cycles [48]. Although detailed investigations
are lacking, urbanization has a measurable impact on air humidity, precipitation, runoff,
and groundwater retention, which has been found to influence plant phenology [49,50].

The traditional practice for obtaining data on vegetation health, phenological changes,
and vegetation diversity is through physical sample collection and ground-based in situ
observations [50,51]. These methods remain highly valuable as they provide first-hand
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direct evidence of vegetation health, and record accurate species and site information. How-
ever, in situ observations tend to be uneven in distribution as they often require different
observers and can vary in methodology and rigor. In the past two decades, Hyperspec-
tral Imaging (HSI) has emerged as a non-invasive, near real-time tool for evaluating and
monitoring the condition of vegetation [52–54]. Modern hyperspectral imaging acquires
images in several hundred to thousands of spectral bands, thus allowing for a detailed
spectral curve to be obtained for each spatial pixel in the image [55]. This increase in
spectral resolution has been used in the studies of vegetation for the detection of disease
symptoms and pests [56–58], as well as monitoring plant health, stress conditions, and nu-
trient deficiency [59–61]. Since air quality has a measurable effect on the morphological,
physiological, and phenological properties of vegetation, these effects are reflected in the
spectra of the vegetation, and therefore detectable using vegetation indices such as the
Normalized Difference Vegetation Index (NDVI) [62] or the Photochemical Reflectance
Index (PRI) [63] extracted from hyperspectral imaging. For example, in a 2019 study, [64]
used aerial hyperspectral data (HyMap—126 spectral bands spanning 0.45–2.5 µm, and 5 m
spatial resolution) to derive forest health status, using the Red Edge Position (REP) index
and Structure-Insensitive Pigment Index (SITI), and showed a correlation between plant
health and measured atmospheric dust depositions. Their results showed a statistically
significant relationship between increased levels of elements associated with coal mining
and combustion and decreased forest health.

At present, there have been no studies exploring the effects of air quality on urban
vegetation via simultaneous measurements at high temporal frequency on the order of
minutes for an extended temporal baseline of months. Therefore, in this work, we examine
the temporal correlation between changes in air quality measures—namely, O3, PM2.5,
temperature, and humidity—and the changes in the spectra of vegetation in ground-based,
side-facing HSI images of an urban environment at high spatial, spectral, and temporal
resolutions. In Section 2, we give a brief overview of remote sensing for vegetation health
and then present our high-resolution HSI data and the method used for atmospheric
correction, the air quality measurements used in this work, and the models used to quantify
the correlation between the vegetation spectra and air quality. In Section 3, we present
our results, we provide a discussion of their implications in Section 4, and summarize our
conclusions in Section 5.

2. Materials and Methods

The literature on remote sensing of vegetation is dominated by the use of satellite,
aerial, and, more recently, Unmanned Aerial Vehicle (UAV) imaging platforms. Satellite
remote sensing platforms offer the benefits of enhanced spatial coverage and consistent
data quality, making them cost-effective, particularly due to open access to a wealth
of visible and multispectral data from some satellite platforms (e.g., Landsat 7–8) on
which to base analyses [65]. However, satellite remote sensing also has its limitations,
including the lack of high spatial resolution. For example, two of the most commonly used
satellite datasets are Landsat and MODIS that have spatial resolutions of 30 m × 30 m and
500 m × 500 m per pixel, respectively. The coarse spatial resolution limits the ability to
carry out precision urban agriculture studies, and makes the interpretation of vegetation
health challenging when studying mixed canopies with a variety of species co-occurring
with different phenological stages and health conditions [66]. Another limiting factor
for satellite-based remote sensing is low temporal resolution, with “revisit time” for a
given location typically on the order of days to several weeks (e.g., Landsat has an orbital
period of 16 days). This is further exacerbated by potential obscuration by clouds, snow,
and ice, that can yield revisits that stretch to months in some cases. The implication is
that satellite remote sensing is useful for long-term phenological and land use studies,
but lacks the temporal and spatial granularity to study the relationship between urban
vegetation and environmental factors that can vary significantly over short spatial and
temporal scales, on the order of meters and minutes, respectively, in urban areas. Airborne
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and UAV platforms have the potential to solve some of these problems, however, due to the
requirement of expensive aircraft and trained pilots, airborne platforms can be significantly
cost prohibitive and, due to weather dependency, low data transfer speeds (particularly for
high-resolution images), and legislative barriers for UAV platforms, neither is capable of
collecting persistent data with high temporal granularity.

For the direct measurement of atmospheric and ecological variables at high spatial
and temporal resolutions in forests and agriculture, “proximal sensing” by flux towers
is normally employed. Flux towers are antenna-mounted arrays of multiple sensors that
can observe temperature, humidity, atmospheric gases, atmospheric pollutants, and dust
concentrations [67]. Flux towers have also been installed in urban areas to study issues
such as the urban heat island effect, climate forecasting, air quality, and yardscape water
demands and consumption [68]. However, to correlate these measurements with plant and
vegetation health, studies either rely on indirect measurements such as evapotranspiration
rates, or on using Photosynthetically Active Radiation (PAR) sensors which solely measure
photosynthetic processes. To address these shortcomings, ground-based hyperspectral
remote sensing has been employed over the past decade [69–71]. These near-surface ground-
based hyperspectral cameras further add to vegetation health and phenology studies due
to their ability to continuously retrieve images and spectra at a high temporal frequency,
and on landscape or species spatial levels.

2.1. Hyperspectral Imaging Data

The Hyperspectral Imaging (HSI) data used in this work were obtained by the “Urban
Observatory” (UO) facility in New York City (NYC) [71–74]. The UO has deployed broad-
band visible and infrared imaging cameras, as well as Visible and Near-Infrared (VNIR) and
Long Wave Infrared (LWIR) HSI cameras that continuously image landscapes in NYC with
high persistence and temporal resolution on the order of minutes. For this work, we use the
VNIR instrument described in [73], a Specim Ltd. ImSpector V10E Visible Near-Infrared
(VNIR) hyperspectral imager provided by Middleton Spectral Vision mounted atop a tall
∼120 m (∼400 ft) building in Brooklyn with a south-facing horizontal alignment. This
instrument is a single slit scanning spectrograph with 1600 vertical pixels and is sensitive to
0.4 µm to 1.0 µm in 848 binned wavelength channels with a characteristic spectral resolution
(full width half maximum) of 0.72 nm. The observations covered 30 days between 3 May
and 6 June 2016. Each day, the instrument scanned the same scene every 15 min from
08h00 to 18h00. Scans with more than 5% of their pixels having more than 5% of their
wavelengths saturated were discarded from the sample. A composite RGB image of the
scene that maps the 0.61 µm, 0.54 µm, and 0.48 µm channels of one of the scans to the red,
green, and blue values, respectively, is shown in Figure 1.

The scene shown in Figure 1 contains a variety of materials including sky, clouds,
plant material, water, windows, concrete, bricks, metal structures, cars, and roads, and in
this work we “segment” our HSI images to isolate those pixels corresponding to vegetation
so that we can compare their temporal evolution with time series of air quality measures.
Image segmentation of HSI data of dense urban areas is a difficult task given the complexity
of the scene, particularly for side-facing images. Advanced deep learning algorithms have
been developed and implemented to carry out this segmentation in the literature [75,76],
however, as shown in [74], due to the uniqueness of the spectra of vegetation relative
to all other urban materials, their identification is particularly robust across a variety of
scenes and observational conditions, even with a single training instance when training a
One-Dimensional Convolutional Neural Network (1D-CNN).

In this work, we use a simple k-means clustering of pixel spectra to segment an
image that had optimal uniform lighting and minimal shadowing into 10 clusters (we
show below that the distinct nature of vegetation spectra results in performance that is
comparable to more complex machine learning algorithms [77]). The resulting label map
of the k-means clustering is shown in Figure 2 together with the mean spectra of pixels in
the 10 clusters. The spectra of clusters 2 and 5 show the uniquely identifying features of
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vegetation; namely, the enhanced chlorophyll and leaf pigment reflectivity in the visible
green peak range of ∼0.5–0.6 µm, absorption in the red range of ∼0.6–0.7 µm, the red
edge at ∼0.7 µm, and high reflectance in near-IR due to spongy mesophyll in the plants’
cellular structure. The green box in Figure 1 has an overlay of the pixels labeled as 2 and
5 by k-means in green to qualitatively show the accuracy of the unsupervised labeling.
To demonstrate the robustness of this simple method for selection of vegetation pixels,
we compare its performance with that of the 1D-CNN described in [74] for the scene in
Figure 2. The performance of supervised machine learning models is often evaluated
using “precision” and “recall”. For a set of objects with known classifications, precision
represents the fraction of classification predictions for which the model was correct, while
recall represents the fraction of all instances of a given class that were correctly predicted by
the model. Overall, while the CNN was far superior in identifying the various human-built
and natural materials in the urban scene, both the CNN and k-means showed identical
performance metrics for labeling vegetation pixels (precision = 1.00, recall = 0.98), with the
mean vegetation spectra from both methods differing by <4% overall.

Figure 1. Full-resolution RGB (0.61 µm, 0.54 µm, and 0.48 µm) representation of the scene of
Downtown and North Brooklyn imaged by the Urban Observatory’s hyperspectral imaging system.
The blue box shows the buildings used as controls, which were randomly split into two equal sets,
represented by the red and yellow pixels in the expanded view. The green box shows the vegetation
pixels (identified using k-means clustering and highlighted in the expanded view in green) whose
spectra are used in this study.

We note that the selection of vegetation pixels is not carried out for each HSI scan
separately, but rather the pixels selected in Figure 2 are used in all scans in the observational
campaign. This is justified by the fact that our HSI instrument is immobile and constantly
observing the same scene, with pixel-level accuracy in the instrument pointing over the
period of this study. Therefore, the pixels containing vegetation remain constant over all
obtained images. Thus, the classification task need only be implemented once to label the
pixels as either vegetation or non-vegetation before applying that labeling to all. Further-
more, as shown in [74], the same scene under less optimal lighting and cloud conditions
can result in a measurable difference in classification accuracy. Repeating the k-means
clustering for two other scans, one in the morning (08h31) and one in the afternoon (18h01)
where both exhibit significant shadowing, the precision of the clustering of vegetation
pixels remained at 1.00, however, the recall dropped to 0.70 and 0.68, respectively. Since the
accuracy of identification is variable while the pixels containing vegetation are constant
across images, a single image taken at midday with optimal lighting and cloud conditions
was chosen for segmentation.
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Figure 2. (Top): The cluster labels for a k = 10 k-means clustering of pixel spectra from the scene in
Figure 1. An image of only pixels labeled as cluster 2 or cluster 5 is shown in the (bottom left). These
cluster centers have spectra (bottom right) with enhanced green and near-infrared wavelengths,
characteristic of chlorophyll reflectance, and so pixels labeled as belonging to those clusters are
interpreted as vegetation.

2.2. Compound Ratio

In daytime hyperspectral imaging at Visible and Near-Infrared (VNIR) wavelengths of
0.4–1.0 µm, atmospheric interactions with solar radiation result in significant modifications
to the spectrum received by the sensor as the light travels from the top of the atmosphere
to the imaged object, and from the object to the sensor. Assuming emissions and surface
reflectance are Lambertian [78], the geometric series expression for the radiance reaching
the sensor (Lλ,t) at wavelength λ and time t can be expressed as:

Lλ,t = Rλ,t · Eλ,t · Tλ,t (1)

where Rλ,t is the surface reflectance, Tλ,t is the total outward atmospheric transmission
between the target and the sensor, and Eλ,t is the total irradiance incident on the target,
which is the contribution of solar irradiance and downward atmospheric transmission from
the top of the atmosphere to the target. In the particular case of vegetation, due to plant
fluorescence under solar illumination, there is an added weak emission with a magnitude
of 2–5% of the reflected radiation in the near-infrared. This fluorescence (Fλ,t) is added as a
perturbation to Equation (1) such that the radiance reaching the sensor from vegetation
becomes a composition of two coupled contributions, the reflected (Rλ,t · Eλ,t) and the
emitted (Fλ,t) light:

LV
λ,t = (Rλ,t · Eλ,t + Fλ,t) · Tλ,t. (2)

With spectroscopic measurements of vegetation health via remote sensing, it is com-
mon to compute the apparent reflectance (R∗), which is the ratio between upwelling and
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incident fluxes, and accounts for the solar-induced fluorescence emission normalized by
the irradiance incident on the target at surface level [78,79]:

R∗λ,t = Rλ,t +
Fλ,t

Eλ,t
. (3)

In order to obtain this apparent surface reflectance, it is imperative to account for and
remove the effects of the atmosphere from the spectrum. Unlike satellite and aerial imaging,
due to the orientation of ground-based HSI, the amount of atmosphere that light traverses
prior to reaching the sensor varies significantly for each pixel. Therefore, correcting for
atmospheric effects requires knowledge of observing geometries such as zenith and azimuth
angles, sensor field of view, location of the Sun, and distance to each pixel, as well as
atmospheric conditions and compositions, which may vary between the areas closer to the
sensor and those at the horizon. Radiative transfer codes are commonly used in remote
sensing applications to correct for atmospheric effects by modeling attenuation using
assumed atmospheric conditions and concentrations and extracting surface reflectivity
from the measured intensity by the sensor [80–82]. However, due to the oblique geometry
of proximal remote sensing, the determination of the incident spectra is extremely difficult.
In addition, given the varying distances of objects across the image from the sensor and the
associated differences in atmospheric conditions across the image, atmospheric corrections
with simulations of atmospheric effects can vary significantly across the image.

Therefore, in lieu of modeling the atmospheric effects, here we propose the use of a
“Compound Ratio” for the analysis of vegetation spectra in urban environments that uses
time-dependent comparisons of vegetation spectra with a nearby built structure to isolate
the changes in vegetation apparent reflectance. In Figure 1, all the vegetation pixels inside
the green rectangle are at an approximately uniform distance from the sensor. The buildings
in the blue rectangle are at roughly the same location as the vegetation. Therefore, utilizing
Equations (1) and (2), the mean at-sensor signal of the vegetation and building pixels can
be expressed as:

Vλ,t =(RV
λ,t · EV

λ,t + Fλ,t) · TV
λ,t (4)

Bλ,t =RB
λ,t · EB

λ,t · TB
λ,t (5)

where Vλ,t and Bλ,t are the mean measured intensity of the vegetation and buildings
(respectively) at wavelength λ and time t. By considering the following assumptions:

1. buildings have constant reflectivity over time, RB
λ,t = RB

λ,0 = RB
λ ,

2. the total irradiance incident on the target is identical for buildings and vegetation,
EV

λ,t = EB
λ,t = Eλ,t,

3. atmospheric transmission is identical for buildings and vegetation, TV
λ,t = TB

λ,t = Tλ,t.

Normalizing the intensities of each scan at t by the measured value at the start of the
observing campaign t = 0 results in

Vλ,t/Vλ,0 =
(RV

λ,t · Eλ,t + Fλ,t) · Tλ,t

(RV
λ,0 · Eλ,0 + Fλ,0) · Tλ,0

(6)

Bλ,t/Bλ,0 =
RB

λ · Eλ,t · Tλ,t

RB
λ · Eλ,0 · Tλ,0

=
Eλ,t · Tλ,t

Eλ,0 · Tλ,0
, (7)

where the last equality follows from assumption 1 above and we have dropped the V and
B superscripts on Eλ,t and Tλ,t due to assumptions 2 and 3 above. Dividing the normalized
intensities of vegetation in Equation (6) by those of the buildings in Equation (7), we isolate
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the relative change in the apparent reflectance of vegetation over time by defining the
Compound Ratio of vegetation CV

λ,t:

CV
λ,t ≡

Vλ,t/Vλ,0

Bλ,t/Bλ,0
=

RV
λ,t + (Fλ,t/Eλ,t)

RV
λ,0 + (Fλ,0/Eλ,0)

=
R∗,Vλ,t

R∗,Vλ,0

. (8)

It is important to note that vegetation reflectance is affected by the angle of the incom-
ing spectrum due to factors that include leaf orientation and sun-sensor geometry [83,84].
However, the formulation above implicitly assumes that reflectance is independent of the
angle of incoming radiation. While this may result in residuals that can impact the accuracy
of the Compound Ratio, integrating the spectrum of vegetation over the entire canopy
within the green box in Figure 1 minimizes this effect. To provide a control sample demon-
strating the soundness of the Compound Ratio assumptions, the pixels of the buildings in
the blue box in Figure 1 were randomly split into the two sets represented by the red and
yellow labels shown. This allows us to calculate both the Compound Ratio of vegetation-to-
buildings (CV

λ,t) from Equation (8) using one set of building pixels, as well as the Compound
Ratio of buildings-to-buildings (CB

λ,t) using the two sets of randomly split building pixels.
If all the assumptions listed above hold true, it is then expected that the Compound Ratio of
buildings-to-buildings should result in a constant value of 1 in both wavelength and time
dimensions. Furthermore, as seen in Figure 2 the building used for the control is composed
of several human-built materials with slightly different spectra. By randomly splitting the
building pixels into two sets, we minimize the allocation of any one single material to each
set and maximize the likelihood that the Compound Ratio of building-to-building would
capture the changes in apparent reflectance of the building rather than the change in one
particular spectrum of one material relative to another. Figure 3 shows a mapping of the
Compound Ratios of vegetation and buildings for all wavelengths and scans in the top row,
while the bottom row shows the Compound Ratios of 10% of scans, randomly selected and
plotted as functions of wavelengths. Noting the difference in scaling of the color-bars in
each mapping as well as the y-axis of the bottom plots, it is evident that the assumption
of lack of reflectivity holds true for buildings as the amplitude of change in Compound
Ratios of buildings is dominated by noise that is varying at the ∼1% level. On the other
hand, the Compound Ratio of vegetation shows variation over time in the green peak of
chlorophyll, the red edge, absorption in red, and emission in near-infrared, all unique
identifiers of the vegetation spectrum. These variations reach the ∼50% level, which is in
line with previous studies [85,86]. Thus, we find that the plant reflectivity itself is changing
on 15 min time scales.

It is worth noting that in the Compound Ratios of vegetation in Figure 3, there is visible
absorption occurring at wavelengths ∼0.76–0.77 µm. The instrument used in this work
does not exhibit sharp wavelength-dependent sensitivity that would cause such a feature.
Therefore, it is likely to result from residual A-band absorption of oxygen in the atmosphere.
The presence of atmospheric absorption following the previously mentioned treatment
to remove atmospheric effects is indicative that the assumptions may not be absolute.
Dirt, moss, and sticking of pollutants to the surfaces of buildings affect assumption 1.
Furthermore, assumptions 2 and 3 require that the vegetation and comparison buildings
are at the exact same location, thus, any deviation can cause the depth of the atmosphere
as well as amount of incident light to differ between the two objects and result in residual
atmospheric effects in the final Compound Ratio. Moreover, the Compound Ratio of
buildings in Figure 3 shows small illumination variations in the visible portion of the
spectrum from ∼0.45–0.7 µm that resemble the residual from the solar spectrum. However,
given the small magnitude of changes in building Compound Ratios we can be confident
that changes seen in the Compound Ratios of vegetation are far more likely to be due to
changes in vegetation reflectivity rather than atmospheric effects, especially considering
that the varying features are all characteristic of vegetation spectra. Further investigation
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into the soundness of using the building as atmospheric irradiance and transmission control
for the vegetation is presented in Appendix B.

Figure 3. (Top): Compound Ratios of all scans for vegetation (left) and building (right) pixels as
functions of wavelength and scan number (i.e., time). (Bottom): Compound Ratio of 10% of scans
from Figure 3 for vegetation pixels (left) and building pixels (right) as a function of wavelength. Note
that vegetation reflectances are varying at ∼50% relative to a set of nearby building pixels, while the
building pixels are only varying at ∼1% relative to each other.

2.3. Air Quality Measurements

For the purpose of this work, we use measurements of O3 and PM2.5 concentra-
tions, temperatures, and humidity (air moisture content). We use temperatures and rela-
tive humidity measurements from available Weather Underground data (https://www.
wunderground.com/, accessed on 6 June 2016) for the location, days, and times of our HSI
scans. Relative humidity was then converted to absolute humidity (mass of water vapor per
unit volume of air, g/cm3) using the general law of perfect gases, the specific gas constant
for water vapor, and assuming 1 atm pressure. For the O3 and PM2.5 concentrations at the
times of our scans, we use the openly available New York State Department of Environmen-
tal Conservation (NYS DEC) data. The locations of the NY DEC’s air quality monitoring
sites, and the approximate locations of the Weather Underground crowdsourced network
of air quality sensors, are shown in Figure 4 together with the location of the vegetation
and buildings used in this study, and a summary of the data obtained from each source is
shown in Table 1. For obtaining the individual air quality measures used in this study for
each scan, we took the average O3, PM2.5, temperature, and humidity at each scan time over
a large area, including outside the near vicinity of our selected vegetation and buildings.
Although the sensor network is distributed over a large area and not directly adjacent to
the vegetation patch under study, we take the average values for several reasons. It is well
known that individual air quality sensors require precise and periodic calibration and tend
to be noisy [87,88], especially in the presence of the urban island heat effect and localized
emissions in urban environments [89,90]. Although calibration of the sensor network is
outside the scope of this paper, averaging multiple measurements from different sensors
can reduce the impact of noise on the individual measurement. Furthermore, as evident in
Figure 4, there are no air quality monitoring sites directly atop or adjacent to our imaged

https://www.wunderground.com/
https://www.wunderground.com/
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vegetation and buildings. Averaging the surrounding measurements allows us to extract a
relatively accurate representation of the air quality values of our given location.

Figure 4. Map of NYC showing the locations of the Urban Observatory’s hyperspectral imaging
system (red triangle), the vegetation and buildings used in this study (green square), the New York
State Department of Environmental Conservation’s air quality monitoring sites (blue circles), and the
Weather Underground network of air quality sensors (black crosses).

Table 1. Collected variables from the observation sites shown in Figure 4.

Site Observed Variable Details

New York State Department of
Environmental Conservation (NYS DEC)

Temperature Obtained in F and converted to ◦C

Humidity
Obtained as relative humidity and
converted to absolute humidity
in g/cm3

Weather Underground (WU) Ozone (O3) Concentration in ppm
Particulate matter (PM2.5) Concentration in µg/m3

Urban Observatory (UO) Hyperspectral images

Obtained in data cubes of
1600× 1600 pixels, each pixel
containing a spectrum in 848
binned wavelength channels
between 0.4 µm and 1.0 µm

Figure 5 shows the four air quality parameters for each scan time in a scatter matrix
(scan times with precipitation or 100% relative humidity were removed from the sample to
eliminate any effects of rain drops near the camera). It is worth noting that there is a visible
correlation between ozone and temperature. The figure also shows the four air quality
parameters after standardization (µ = 0, σ = 1) plotted as functions of scan number, where
it is further evident that O3 and temperature exhibit correlated changes with time. Studies
over multiple time scales have shown that there is a strong correlation between surface tem-
perature and O3 concentrations [34–36], with temperatures having a correlation coefficient
up to ∼80% when used to estimate ozone concentrations in urban environments [91]. This
correlation becomes more complex with PM2.5 where studies have shown that a positive
correlation between PM2.5 and O3 exists at high temperatures, and a negative correlation
at lower temperatures [92]. Furthermore, temperature inversion and the mixing of atmo-
spheric layers can have a significant impact on O3 and PM2.5 concentrations as well as
humidity [37,38], which adds further complexity to their correlations and covariances.
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Figure 5. (Top): Air quality scatter matrix showing the distribution of O3 (in ppm) and PM2.5 (in
µg/m3) concentrations, temperature (in ◦C), and absolute humidity (in g/cm3). (Bottom): Normal-
ized and offset O3 and PM2.5 concentrations, temperature, and absolute humidity as a function of
scan number. Vertical lines indicate the change in days.

2.4. Tracers of Vegetation Health

The concept of utilizing the leaf optical responses to study the impact of various
stresses on vegetation health has been used widely in the remote sensing field [59,93,94].
The justification behind using the spectral wavebands from 400–2500 nm as predictors
of plant health is that unfavorable conditions result in morphological and physiological
changes in plants that disturb the processes of transpiration and photosynthesis and, there-
fore, impact the manner with which the plants interact with light. The part of the spectrum
in the visible wavelengths from 400–700 nm is primarily influenced by colored pigments
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such as chlorophyll and carotenoids [95–97], while the 700–1400 nm range reflects leaf
structural characteristics [98], and 1400–2500 nm is mainly affected by the tissue water con-
tent [99]. Due to the central role of chlorophyll in the process of photosynthesis, chlorophyll
content is often used as an indicator for plant physiological health [100,101]. Aside from
chlorophyll, carotenoids, including α- and β-carotenes and xanthophylls, are the other main
pigments of green leaves with particular physiological functions related to photosynthesis.
Visually, reductions in chlorophyll are perceived as yellowing of leaves primarily due to the
relative increase in carotenoid content [102], which are retained during leaf senescence as a
mechanism of photoprotection. Therefore, changes to carotenoid content and their propor-
tion to chlorophyll content are also widely used as indicators of physiological and health
status in plants [96,103]. Other common indicators of physiological and morphological
changes detectable in the spectra of vegetation and used as cues for changes in plant health
include leaf dry matter content, also known as leaf mass [99,104], leaf water equivalent
layer [105,106], and leaf senescence [61,107].

The Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE) model
couples photosynthetic, hydrological, and radiative transfer models to provide simulations
of hyperspectral radiance and net radiation, photosynthesis rates, and various heat fluxes
for soil, leaves, and vegetation canopies [108,109]. Using SCOPE to simulate the apparent re-
flectance of vegetation with varying morphological and physiological properties allows for
the demonstration of the aspects of the proposed Compound Ratio that correspond to trac-
ers of vegetation health. Vegetation with varying chlorophyll AB content (Cab), carotenoid
content (Cca), dry matter content (Cdm), leaf water equivalent layer (Cw), and senescent
material fraction (Cs) has spectra that reflect different health statuses. Figure 6a shows
the SCOPE simulations of the apparent reflectance (R∗)—which includes the fraction of
radiation in the observation direction (R) with the added ratio of emitted fluorescence to
irradiance (F/E)—produced by varying the aforementioned indicators of physiological and
health status in plants. The ability to utilize the spectra of vegetation to extract information
regarding their health is exemplified by the significant changes in the simulated spectra
when varying their physiological and morphological status indicators. The Compound
Ratio as presented in Section 2.2 is essentially the rate of change in apparent reflectance.
Figure 6b shows the Compound Ratio computed for the simulated apparent reflectances by
considering one of the simulations as being Rλ,0 (the apparent reflectance at time t = 0) to
use as the denominator of Equation (8), which demonstrates the ability of the proposed
Compound Ratio to reflect the changes in the health status of vegetation.

For this work, we rely on two methods for quantifying vegetation health from its
Compound Ratio spectra: a simple ratio of the wavelength where solar-induced fluores-
cence peaks relative to a control wavelength, and the amplitudes of a Principal Component
Analysis (PCA) decomposition that captures variation in the entire spectrum of a given scan.

2.4.1. Solar-Induced Fluorescence (SIF)

Solar-Induced chlorophyll Fluorescence (SIF) has a functional connection with photo-
synthesis and an insensitivity to atmospheric scattering, and has therefore been proven to
be an effective signal for monitoring vegetation physiology with significant advantages
over other remote sensing indicators [110,111]. Photosynthetically active energy absorbed
by vegetation can be used in photochemical reactions, re-emitted as fluorescence, or dissi-
pated as heat, and any efficiency change in one of these processes results in alterations in
the remaining two. Therefore, unlike commonly used indices that rely on reflectance-based
parameters such as the Normalized Difference Vegetation Index (NDVI) or the Photochemi-
cal Reflectance Index (PRI), SIF is a byproduct of photosynthesis and an indicator of Gross
Primary Production (GPP) [112,113]. Since SIF contains information on Photosynthetically
Active Radiation (PAR), it has been used as a strong indicator for photosynthesis, and gives
a measure of plant stress responses to changes in temperature, water availability, nutrients,
and other environmental and health factors [114,115]. Figure 6c shows the SIF spectrum for
the SCOPE simulated vegetation spectra with varying levels of Cab, Cca, Cdm, Cw, and Cs
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which reflect the ability to infer the health of the plants from the changes in the levels of
SIF. Furthermore, by integrating the fluorescence spectra to obtain the area under the SIF
curve, Figure 6d shows the strong correlation between solar-induced fluorescence and
photosynthesis rates in vegetation with a Pearson’s correlation coefficient of 0.84.

Figure 6. SCOPE model simulations with varying chlorophyll AB content (Cab), carotenoid content
(Cca), dry matter content (Cdm), leaf water equivalent layer (Cw), and senescent material fraction
(Cs), showing (a) the apparent reflectance spectrum (R∗), (b) the Compound Ratio (CV

λ,t) computed
using Equation (8), (c) the fluorescence emitted per wavelength in observation direction, and (d)
photosynthesis as a function of the area under the fluorescence curve.

There are two major methods with which SIF is quantified: radiance-based and
reflectance-based methods. Radiance-based methods depend primarily on exploiting the
narrow absorption feature of the Fraunhofer line for telluric oxygen (O2A) at 760.4 nm to
isolate SIF from the reflected spectrum, which allows for the estimation of SIF in physical
radiance units if the data are calibrated. The majority of radiance-based methods in the
literature essentially derive from the Fraunhofer Line Depth (FLD) principle, initially
proposed by [116,117]. The FLD method relies on two measurements of the radiance, one
inside and one outside the O2 Fraunhofer absorption bands, where the magnitude of SIF is
computed by comparing the magnitude of the measured signals. In essence, FLD methods
require knowledge of the incident solar irradiance (E in Equation (2)) and target radiance
(L in Equation (2)) at wavelengths in the bottom and shoulder of the absorption feature in
order to solve for the magnitude of fluorescence under the assumption that Reflectance (R)
and Fluorescence (F) are constant at the two wavelengths. Refinements and enhancements
to this method have been introduced, including the three-channel FLD (3FLD) [118], FLD
with correction factors (cFLD) [119], and improved FLD (iFLD) [120], all of which follow
the same principle with modifications. More sophisticated methods for retrieving the full
SIF spectrum generally rely on either Spectral Fitting Methods (SFMs) which do not rely on
the assumption of constant reflectance and fluorescence such as the Fluorescence Spectrum
Reconstruction (FSR) [121], or model inversion approaches [122].

Reflectance-based methods, on the other hand, rely on the effects of fluorescence on
the apparent reflectance spectrum in the red-edge region rather than the Fraunhofer line.
While radiance-based approaches generally produce measurements of fluorescence with
physical units, reflectance-based methods rely on computing indices that actually reflect
vegetation physiological changes that are strongly correlated with the same processes
responsible for changes in fluorescence (as opposed to tracking the fluorescence emissions
themselves). Since SIF extends over the wavelength range of 640 to 850 nm, with a broad
peak centered at 750 nm and a smaller peak near 690 nm [123], these indices are computed
using the apparent reflectance at a wavelength affected by fluorescence (typically around
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one of the two fluorescence maxima at 690 and 750 nm) compared to another that is less or
not affected by fluorescence. Some examples of the use of reflectance-based indices include
R∗690/R∗600, R∗740/R∗800, R∗750/R∗800, R∗685/R∗655, and R∗690/R∗655, as well as curvature indices
such as (R∗685)

2/(R∗675 · R∗690) [123–129]. While a full decoupling of the fluorescence effects
from the apparent reflectance cannot be achieved using these methods, the normalization
of the reflectance using ratios optimizes the indices that are sensitive to changes in fluores-
cence and have an advantage over radiance-based approaches by not requiring complex
processing and knowledge of various fluxes and parameters.

As shown in Section 2.2, the Compound Ratio is computed in our data from the
radiance received at the sensor in order to isolate the changes in apparent reflectance
of vegetation from the atmospheric transmission and incident irradiance on the target.
In Figure 3, changes in the Compound Ratio at wavelength ∼0.75 µm can visibly be
matched with concurrent changes in air quality parameters for similar scans in Figure 5.
On the other hand, the Compound Ratio at wavelengths of 0.9 µm presents relatively little
to no variation with time. Given these observations, and the fact that the Compound Ratio is
a measure of the change in reflectance rather than radiance, we employ a reflectance-based
approach and measure the variation in fluorescent emissions by using a Solar-Induced
Fluorescence indicator (SIFi) computed as a simple ratio of the amplitude of the Compound
Ratio at 0.75 µm relative to that of the less affected reference at 0.9 µm as:

SIFit =
C0.75,t

C0.9,t
. (9)

Using the SCOPE simulated spectra in Figure 6, the SIF indicator was calculated using
Equation (9), with the values shown for various parameter values in Figure 7. Provided
that the Compound Ratio is the relative change in reflectance, we also compute the relative
change in the various vegetation parameters from the output of SCOPE (∆Cx, such that
x is ab for chlorophyll AB content, ca for carotentoid content, etc.) by considering one
simulation to be the parameter at time 0, and computing the change in each Cx in the
same manner shown in Equation (8). In Figure 7a, there is a clear correlation between
the SIF indicator and the change in fluorescence quantified by integrating the simulated
fluorescence spectra in Figure 6c with a Pearson’s correlation coefficient (r) of 0.72. Given
the input parameter values, it is evident that these correlations are primarily driven by
changes in chlorophyll AB content (r = 0.88), with a weaker influence by dry matter content
(r = −0.34) and relatively no impact from carotenoid content, leaf water equivalent layer,
or senescent material fraction. Given the relation between fluorescence and photosynthesis
rate as seen in Figure 6d, this correlation also translates into a strong correlation between
the SIF indicator and the change in photosynthetic rate seen in Figure 7b (r = 0.86) and
shows that it is reasonable to use this indicator as a tracer of vegetation health.

Figure 7. SCOPE simulations showing the correlations between the SIF indicator values calculated
using Equation (9) and relative changes in: (a) the integrated solar induced fluorescence spectra,
(b) photosynthesis rates, (c) chlorophyll AB content (Cab), (d) carotenoid content (Cca), (e) dry matter
content (Cdm), (f) leaf water equivalent layer (Cw), and (g) senescent material fraction (Cs).
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2.4.2. Principal Component Analysis (PCA)

Vegetation indices that use linear or ratio combinations of various wavelengths selec-
tively indicate stress conditions in a particular domain; for example, indices based on the
red edge such as NDVI and RDVI [130] represent a measure of leaf chlorophyll content,
while xanthophyll-related indices such as PRI focus on the green peak. However, the full
vegetation spectrum from 0.4–1.0 µm contains information on pigments, cellular biochemi-
cals (proteins, lignin, cellulose), and water leaf content, among various other indicators of
plant health. Therefore, hyperspectral imaging provides a wealth of information on the sta-
tus of vegetation throughout the VNIR wavelength range. Using the entire spectrum rather
than a few narrow bands has the potential to offer a more holistic approach to capturing
the health of vegetation. On the other hand, hyperspectral images are known to contain
redundant information, and so Principal Component Analysis (PCA) decomposition is
commonly used in hyperspectral analyses to reduce dimensionality by removing such re-
dundant information while encoding global spectral information important for identifying
vegetation health in a set of characteristic spectra [131,132]. In our case, PCA uses correlated
spectral attributes of the Compound Ratio spectra at the various time steps to determine
an orthogonal basis set of N Principal Component (PC) spectra that describe the principal
variability in them. Using N = 4 results in principal components that explain a total of
>99% of the variability in the vegetation’s Compound Ratio spectra, and any additional
components yield relatively insignificant explained variances (<0.5%). Figures 8 and 9
show the PCA decomposition of the vegetation and building spectra, respectively, where
the explained variances for the components in vegetation are 70.5%, 24.8%, 2.6%, and 1.4%,
while those of the buildings are 42.1%, 0.9%, 0.4%, and 0.3%. We note that their shapes
clearly show the dominance of noise in the composition of the spectrum of buildings.

Figure 8. (a) The mean Compound Ratio spectrum of vegetation pixels. (b) The amplitude of each of
the 4 principal components as functions of wavelength and their Explained Variance (EV) in %.
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Figure 9. (a) The mean Compound Ratio spectrum of building pixels. (b) The amplitude of each of
the 4 principal components as functions of wavelength and their Explained Variance (EV) in %.

Dimensionality is reduced by projecting each 848-channel Compound Ratio spectrum
onto the N components and, as we describe in Section 3.2, it is the variability in those
projected amplitudes that is compared with air quality variability. This variability in
amplitudes in essence is a measure of the variations in vegetation spectra, and given that
changes in the health of vegetation result in variations in their spectra proportional in
magnitude to changes in health status, it follows that the variability in projected amplitudes
is representative of vegetation health. To test this claim, we performed the same PCA
decomposition on the Compound Ratio spectra calculated from the SCOPE simulated
apparent reflectances in Figure 6. In the same manner as in Section 2.4.1, we explore
the correlation between the various principal component amplitudes and the parameters
of the model and show their correlation coefficients in Table 2. Principal component
1 shows a significant inverse correlation with the change in the rate of photosynthesis
(r = −0.82) and the chlorophyll AB content (r = −0.84). Principal component 2 exhibits
a weaker correlation with photosynthesis rate (r = 0.35), but shows a significant inverse
correlation with dry matter content (r = −0.92). Principal component 3 shows levels of
correlation with photosynthesis (r = 0.24), chlorophyll AB content (r = −0.26), dry matter
content (r = 0.22), and senescent material fraction (r = −0.30), but it also exhibits stronger
correlation with carotenoid content (r = −0.57). Lastly, component 4 shows only a weak
correlation with chlorophyll AB content (r = 0.27), and stronger correlation with carotenoid
content (r = −0.69).
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Table 2. Pearson’s correlation coefficients between the PCA component amplitudes of the Compound
Ratio spectra calculated from the SCOPE simulated apparent reflectances and relative changes in the
various vegetation health indicators: photosynthesis rates, chlorophyll AB content (Cab), carotenoid
content (Cca), dry matter content (Cdm), leaf water equivalent layer (Cw), and senescent material
fraction (Cs).

∆ Photosynthesis ∆Cab ∆Cca ∆Cdm ∆Cw ∆Cs

PCA 1 −0.82 −0.84 −0.04 −0.05 0.03 −0.09
PCA 2 0.35 0.02 −0.02 −0.92 −0.08 −0.33
PCA 3 0.24 −0.26 −0.57 0.22 0.06 −0.30
PCA 4 0.10 0.27 −0.69 −0.09 0.00 0.12

2.4.3. Linear Model

To explore the dependence of these vegetation health indicators on air quality, we
model each indicator as a simple linear function of the air quality parameters:

ft = −→w · P (10)

P = (
−→
O3,
−→
PM2.5,

−→
T ,
−→
H ,
−→
1 ), (11)

where ft is the quantified vegetation health measure extracted from the Compound Ra-
tio spectra as a function of time and represents both the SIF indicator (SIFi) as seen in
Section 3.1 and PCA component amplitudes in Section 3.2, −→w is a vector containing the air
quality parameter coefficients, and P contains the normalized measured O3, PM2.5, temper-
ature (T), and humidity (H) as functions of time together with a constant. Markov Chain
Monte Carlo (MCMC) sampling, implemented with the EMCEE package in Python [133],
is used to estimate the probability distribution of the parameters −→w in each model. This
MCMC approach generates samples of the likelihood function, which we define here as

ln p(y|t,−→w , ε) = −1
2 ∑

t

[
(yt − ft(

−→w ))2

ε2
t

+ ln (2πε2
t )

]
, (12)

where y is the observed quantified vegetation health measure extracted from the spectra
as a function of time and ε represents an amount by which the noise is underestimated.
By generating sufficient samples of the posterior surface, the maximum likelihood and
(fully covariant) uncertainties for the air quality parameter coefficients −→w are determined.

3. Results

As described in Section 2.4 above, our primary results are derived by comparing
two methods for quantifying vegetation health—an SIF indicator composed of the sim-
ple ratio of Compound Ratios at 0.75 and 0.9 µm and projected amplitudes from PCA
decomposition—with air quality indicators over time. For a comparison with other com-
monly used vegetation indices that address different parts of the spectrum, we also present
the use of NDVI and PRI in Appendices A.1 and A.2, respectively.

3.1. Solar-Induced Fluorescence Indicator (SIFi)

The Solar-Induced Fluorescence indicator (SIFi) (ratio of Compound Ratios at 0.75 and
0.9 µm) was calculated for both the vegetation and buildings in Figure 1 at each scan time
using the full spectral resolution of 848 spectral channels. This time series was standardized
across time steps to have µ = 0 and σ = 1. Figures 10 and 11 show the resulting full
posterior distributions of the linear coefficients for the atmospheric variables after MCMC
sampling, as described in Section 2.4.3. Both figures also show the standardized SIFi
values plotted as functions of scan number, and a 10% sample of the possible models using
the parameters’ coefficients produced by MCMC. The median values for the atmospheric
parameter coefficients are summarized in Table 3 together with their fully covariant 3σ
ranges of uncertainty that are calculated using the 3σ contours in the posterior distributions
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provided in the corner plots in Figures 10 and 11. We note the importance of utilizing the
full covariance to compute the uncertainties, particularly in the case of the temperature and
ozone, which exhibit strong covariance and would result in significant underestimation
of uncertainty if calculated using the cross-sections of the contours without regard to the
full covariance.

Figure 10. (Top): MCMC corner plot of the posterior distribution of air quality parameters for
vegetation. (Bottom): The measured SIF indicator (SIFi) values as a function of scan number with
10% of randomly selected models from those identified as probable by MCMC, with the vertical lines
indicating the change in days.
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Figure 11. (Top): MCMC corner plot of the posterior distribution of air quality parameters for
buildings. (Bottom): The measured SIF indicator (SIFi) values as a function of scan number with
10% of randomly selected models from those identified as probable by MCMC, with the vertical lines
indicating the change in days.

To show the goodness of fit of models to both vegetation and buildings, Figure 12
shows the measured and predicted values of SIFi with the ranges of uncertainties obtained
for each scan from the MCMC parameter values, as well as the χ2 per degree of freedom
(χ2/dof = ∑( ft−

−→
P · −→w )2/ε2, where the sum is over time steps) distribution of all possible

models. The distribution of χ2/dof for both vegetation and buildings centered around
1 indicates that the extent of the match between the predicted and measured values of SIFi
produces a good fit within the error variance. For a more quantitative description of the
goodness of fit of the models to the measured SIFi values, we show the resulting statistics
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for both vegetation and building models in Table 3. The table shows that all air quality
parameter coefficients in the model of the SIFi of vegetation health are not consistent
with zero, while those of the buildings models are all consistent with zero to within 3σ
uncertainty. Moreover, 40% of the variation in this linear model of vegetation health is
explained by the air quality model, while only 1% of variation is explained in buildings.

Table 3. Top: MCMC median of atmospheric coefficient parameters to model the SIF indicator (SIFi)
values at full (848-channel) spectral resolution, together with the 3σ uncertainty shown as super-
and subscripts, which include the full parameter covariance derived from the 3σ contours in the
posteriors provided in Figures 10 and 11. Bottom: Model evaluation statistics for the maximum
likelihood solution for vegetation and buildings.

Vegetation Buildings

parameters

O3 0.16+0.13
−0.13 −0.07+0.18

−0.17 *
PM2.5 −0.23+0.08

−0.09 −0.01+0.10
−0.10 *

Temperature 0.53+0.13
−0.14 0.16+0.18

−0.19 ***
Humidity −0.28+0.08

−0.08 −0.02+0.11
−0.10 *

b (offset) 0.00+0.07
−0.07 * 0.00+0.09

−0.09 *
ε 0.78+0.05

−0.05 1.00+0.06
−0.07

statistics

r2 0.40 0.01
Adj. r2 0.40 0.01

F-statistic 183.30 3.08
Prob. (F-stat.) 0.00 0.02

Log-likelihood −1281.60 −1557.70
* and *** indicate measurements consistent with zero within 1σ or 3σ uncertainty, respectively.

Figure 12. Measured vs. predicted SIF indicator (SIFi) values (left), and χ2 per degree of freedom
(right) for vegetation and buildings models.

3.2. Principal Component Analysis (PCA)

As we describe in Section 2.4, the 848-channel Compound Ratios of vegetation and
buildings were projected onto the first four PCA components shown in Figures 8 and 9. The
air quality parameter coefficients, their 3σ uncertainties, and the goodness of fit statistics of
the maximum likelihood solution for our linear model are summarized in Table 4. The full
posterior distributions for fits to each PCA component amplitude (for both vegetation and
buildings) are provided in the Supplementary Materials.

The results in Table 4 show that the maximum likelihood solution for the 4th principal
component of vegetation, which has an explained variance of 1.4%, produces the highest
r2 value of 47%, while component 1 (EV = 70.5%) produces results most similar to those
obtained with the SIFi, both in terms of air quality coefficients and r2 value. The lowest
performing principal component of vegetation (component 3) shows an r2 value of 11%,
which is 2.6× that of the best performing building component (component 1, r2 = 4%).
It is worth noting that all the air quality coefficients for principal components 1 and 2
of the buildings are consistent with zero to within 3σ uncertainty, while in component 3
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temperature has a non-zero coefficient, and PM2.5 and humidity are not consistent with
zero for component 4.

The low level of explained variance (r2 ∼4%) is likely due to a combination of factors,
chief of which are the assumptions undertaken when calculating the Compound Ratios
outlined in Section 2.2 regarding the constant reflectivity of buildings. Relative to the
significant changes in reflectivity observed in the spectra of vegetation, the assumption
that the reflectivity of buildings remains constant over time holds true, as seen in Figure 3.
However, the PCA components in Figure 9 show that there is a small amount of structure
within the noise in the Compound Ratio of buildings. This can be explained by the fact
that dirt, moss, and other pollutants as well as water following rainy days can stick to the
sides of buildings, which may cause a slight change in their spectra over time. Moreover,
the reflectivity of concrete varies depending on a number of factors including porosity, color,
water content, and even surface moisture [134,135], which are correlated with changes in
humidity and temperature. This effect is evident in the parameter coefficients for PCA
components in Table 4, where components 3 and 4 show parameter coefficient values for
temperature and humidity, respectively, that are non-zero to within uncertainty. Another
potential source of correlation is windows in the buildings that could be reflecting the
spectra of the nearby vegetation or the sky, thus producing small change in the Compound
Ratio spectrum over time.

Table 4. Top: MCMC median of atmospheric coefficient parameters to model the PC amplitude of
each PCA component at full spectral resolution, together with the 3σ uncertainty shown as super-
and subscripts, which include the full parameter covariance derived from the 3σ contours in the
posteriors provided in Figures S1–S8 in Supplementary Materials. Bottom: Model evaluation statistics
for the maximum likelihood solution for vegetation and buildings.

Component 1 Component 2 Component 3 Component 4

Vegetation Buildings Vegetation Buildings Vegetation Buildings Vegetation Buildings

pa
ra

m
et

er
s O3 −0.14+0.13

−0.13 0.09+0.16
−0.17 ** −0.17+0.15

−0.16 0.07+0.15
−0.16 ** −0.15+0.16

−0.16 *** −0.06+0.15
−0.16 ** 0.14+0.12

−0.12 −0.02+0.16
−0.15 *

PM2.5 0.24+0.08
−0.09 −0.02+0.11

−0.11 * −0.03+0.10
−0.09 * −0.08+0.10

−0.10 ** −0.04+0.11
−0.10 ** 0.00+0.11

−0.11 * 0.15+0.08
−0.08 0.11+0.10

−0.10
Temperature −0.46+0.14

−0.14 0.14+0.17
−0.16 *** −0.15+0.17

−0.16 *** 0.04+0.17
−0.17 * 0.34+0.17

−0.17 0.24+0.16
−0.17 0.19+0.13

−0.13 −0.05+0.17
−0.16 *

Humidity 0.38+0.08
−0.09 −0.03+0.10

−0.10 * −0.15+0.10
−0.10 −0.09+0.11

−0.10 *** 0.17+0.10
−0.10 −0.10+0.11

−0.11 *** 0.50+0.08
−0.08 −0.18+0.10

−0.10
b (offset) 0.00+0.07

−0.07 * 0.00+0.09
−0.09 * 0.00+0.09

−0.08 * −0.00+0.08
−0.09 * 0.00+0.09

−0.09 * 0.00+0.09
−0.09 * 0.00+0.07

−0.06 * −0.00+0.08
−0.08 *

ε 0.79+0.04
−0.05 0.98+0.06

−0.07 0.94+0.06
−0.06 0.99+0.06

−0.07 0.95+0.06
−0.06 0.98+0.06

−0.07 0.73+0.05
−0.05 0.98+0.05

−0.07

st
at

is
ti

cs

r2 0.38 0.04 0.13 0.02 0.11 0.04 0.47 0.04
Adj. r2 0.38 0.04 0.13 0.02 0.11 0.03 0.47 0.03
F-statistic 168.70 11.85 40.85 6.17 33.12 10.62 247.60 10.44
Prob. (F-stat.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Log-likelihood −1299.50 −1540.40 −1487.20 −1551.40 −1500.80 −1542.70 −1209.20 −1543.10

*, **, and *** indicate measurements consistent with zero within 1σ, 2σ, or 3σ uncertainty, respectively.

3.3. Isolating Solar Angles and Diurnal Effects

The methodology in Section 2.2 is designed to isolate the apparent reflectance from the
effects of atmospheric attenuation and irradiance. However, as seen in Equation (3), there
remains an irradiance term (E) with which the solar-induced fluorescence is normalized,
and studies have shown that the direct and diffuse fractions of the sun-sensor geometry
affect vegetation reflectance, with an impact on uncertainty ranging from ∼9% up to ∼58%
for various vegetation indices and solar-induced fluorescence [83,84]. Furthermore, due to
the diurnal change in solar angle, coupled with the diurnal change in temperatures and
ozone concentrations, the question arises as to whether the correlations uncovered in the
previous sections may solely be the product of the correlation between diurnal changes in
solar angles and vegetation health indicators rather than impact of air quality changes on
vegetation health.

To address this concern, we isolate the diurnal behavior by dividing our hyperspectral
samples into independent time series separated by their acquisition time of day (i.e.,
the hyperspectral images captured at 08h00 each day form a separate series from those
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captured at 08h15, etc.). This results in 41 independent series of spectra captured between
08h00 and 18h00 in 15 min intervals, with each time-of-day series being composed of
27 scans on average. Since all scans in each separate series are acquired at the same time of
day, any changes in temperature, ozone, or vegetation health indicators including solar-
induced fluorescence should be independent of the diurnal changes in solar angles. We note
that while solar incidence angle can measurably vary over the course of a month, the data
used for this work were acquired during the month of May into early June when the sun
is approaching aphelion and the variation in solar declination is at its annual minimum.
Given that New York City is at a latitude of 41◦N, during the period of this study the solar
incidence angle exhibits negligible change across the entire month with variation on the
order of 2–3 degrees. The SIFi for each series is standardized across days independently
for both vegetation and building pixels as shown in Figure 13 with daily variations at fixed
time of day shown horizontally (the time series for each day is shown vertically). Here, it
is evident that vegetation SIFi exhibits more structured variation at each time of day and
across days than does the building SIFi, which is dominated by noise.

Figure 13. Solar-Induced Fluorescence indicator (SIFi) for vegetation (left) and buildings (right)
standardized horizontally for each time-of-day series plotted for each day vertically. Each horizontal
time-of-day series is independent of diurnal correlations between solar angles, temperature, ozone,
and vegetation health indicators since each data point is captured daily at the same time.

As in Section 3.1, MCMC sampling of the likelihood surface is performed for each
time-of-day series independently for both vegetation and building SIFi correlations with
the various air quality parameters. Figure 14 shows the range of r2 of the linear model fit
for each series, where it is evident that a linear model composed of O3, PM2.5, temperature,
and humidity is far more capable of explaining the variations in the time-of-day series
of vegetation SIFi, with a median r2 of 0.51, than the buildings’ with a median r2 of 0.16.
Moreover, considering only the optimal times in the day in terms of lighting between 09h30
and 15h30, the vegetation median r2 is 0.58, while the buildings’ is 0.15. Furthermore,
by repeatedly drawing random time-of-day series, each with 27 values drawn from a uni-
variate Gaussian (whose width is set to be equal to the standard deviation of the observed
building time-of-day series), and correlating them with the MCMC sampled models, we
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find that the frequency and magnitude of high-r2 anomalous correlations are consistent
with those seen in the results for buildings. Figure 15 shows the coefficients for O3, PM2.5,
temperature, and humidity and their 3σ uncertainty for each of the time-of-day SIFi series
for vegetation and buildings. While the mean values of the coefficients for vegetation show
more structure and are generally not consistent with zero to within 1σ uncertainty relative
to the noisier trends seen in the building coefficients, all coefficients for both are generally
consistent with zero to within 3σ uncertainty.

Figure 14. r2 values that portray the levels at which linear models composed of O3, PM2.5, tempera-
ture, and humidity are capable of explaining the variability in each series of standardized time-of-day
Solar-Induced Fluorescence indicator (SIFi) for vegetation (left) and buildings (right).

Figure 15. The coefficients for models containing all air quality parameters: O3, PM2.5, temperature,
and absolute humidity, for each series of standardized time-of-day Solar-Induced Fluorescence
indicator (SIFi) for vegetation (left) and buildings (right).

It is also worth noting that in Figure 15, the coefficient values for O3 and temperature
exhibit a significantly strong anti-correlation. To test the possibility that the cause of the
coefficients for ozone and temperature being consistent with zero to within 3σ uncertainty
may be in part due to this covariance, the MCMC sampling was repeated with temperature
and humidity eliminated from the linear model, leaving only O3 and PM2.5. The resulting
models have a median r2 of 0.38 for vegetation (0.42 if only 09h30 to 15h30 times are
included), while those of the buildings have a median r2 of 0.04. The resulting coefficients
for O3 and PM2.5 for all sampled models of each time-of-day series are shown in Figure 16.
While O3 and PM2.5 coefficients (median values of 0.05 and −0.03, respectively) are con-
sistent with zero within 3σ uncertainty for the buildings, for vegetation the coefficients of
O3 have a median of 0.66 and are not consistent with zero within 3σ uncertainty and the
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coefficients of PM2.5 have a median of −0.22 and are not consistent with zero within 1− 2σ
uncertainty in general.

Figure 16. The coefficients for models that only contain O3 and PM2.5 concentrations, with tem-
perature and absolute humidity absent, for each series of standardized time-of-day Solar-Induced
Fluorescence indicator (SIFi) for vegetation (left) and buildings (right).

3.4. Temperature and Ozone

Strong correlations between O3 concentrations and temperature are clearly visible in
the scatter plots in Figure 17, as well as both exhibiting a measurable impact on the SIFi
value of vegetation. Even though both variables are correlated through the diurnal cycle,
the results in Section 3.3 show that when time of day is isolated, the impact of ozone on
the SIFi is suppressed when temperature is included as a variable in the linear model in
comparison with its effect when temperature is removed. It can then be inferred that the
identified impact of ozone and temperature on the measured health of vegetation in this
work thus far is intertwined, thus producing the question of whether the impact of ozone
is a transitive correlation that is purely the result of the impact of temperature change on
varying photosynthetic rates, or whether ozone is truly impacting vegetation health.

Figure 17. Scatter matrix showing the distribution of O3 concentrations (in g/cm3), temperature (in
◦C), and SIFi and their correlations.
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To address this question and identify the impact of O3 on the measured change in
vegetation health, we separate all scans into individual series based on their temperature
and standardize their O3 concentrations, and vegetation and building SIFi values. Dis-
carding series with fewer than 10 scans leaves 38 different series with a maximum of 56
and an average of 25 data points ranging in temperature from 9.5 ◦C to 31 ◦C. Figure 18
shows the trends in standardized O3 and vegetation and building SIFi values for each
individual temperature together with their associated Pearson’s correlation coefficient val-
ues. On average, vegetation SIFi has r = 0.31 with ozone, while buildings have r = −0.05.
This indicates that, independent of temperature, the effect of ozone on vegetation health
remains significant.

Figure 18. Each plot shows the trends in standardized O3 concentrations (black), SIFi for vegetation
(green), and SIFi for the buildings (blue) for scans of equal temperature. A summary of the Pearson’s
correlation coefficients of these time series for both the vegetation and buildings are shown in the
figure in the bottom right corner, and indicates a clear correlation between ozone and vegetation
health (but not between ozone and building pixels) when temperature is held constant.
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It is worth mentioning that controlling for temperature also provides control for
temperature-dependent processes that might affect the correlation between O3 concentra-
tions and vegetation health. For example, isoprene (C5H8) is an abundant biogenic volatile
organic compound, primarily emitted by plants, that is highly reactive and considered an
important precursor for surface ozone formation [136]. Additionally, isoprene emissions
by plants reach a maximum in summer between midday and afternoon that coincide with
higher levels of sunshine and ambient temperatures [137], which are similar conditions
required for increased levels of photosynthesis. Furthermore, isoprene production in plants
is used as a heat-tolerance mechanism that increases in higher temperatures, thus resulting
in the production of more O3 [138]. However, finding a correlation between SIFi and O3
while controlling for temperature leads to the conclusion that it is unlikely that isoprene
production is the main driver of the observed correlation.

4. Discussion

The results in the previous sections show that, regardless of the indicator used to
quantify vegetation health, following our proposed method for atmospheric correction,
there is a far stronger correlation between time-dependent changes in air quality and
vegetation health than with that same indicator applied to nearby building spectra. Using
the simple ratio of Compound Ratios at 0.75 µm to 0.9 µm to indicate the change in
Solar-Induced Fluorescence (SIF), 40% of variation in the SIF indicator (SIFi) with time is
explained using the simple linear model of air quality parameters (O3, PM2.5, temperature,
and humidity). On the other hand, <2% of the variation is explained in the SIFi values of
buildings. Given that the SIFi changes provide cues concerning the health of vegetation,
particularly the chlorophyll AB content and photosynthetic rates, it can be inferred from
this result that the high explained variance of air quality parameters with SIFi changes is
an indication that air quality is producing a measurable impact on the health of vegetation.
Furthermore, all air quality parameter coefficients in the linear model of the SIFi for
buildings are consistent with zero to within 3σ uncertainty (fully covariant uncertainties
derived from MCMC sampling of the likelihood), while none are consistent with zero
for vegetation.

Similar results were obtained using Principal Component Analysis (PCA), where the
variations in the amplitude of each of the four Principal Components (PCs) with time
were used in the modeling. Component 1 showed an r2 of 38% for vegetation and 4% for
buildings and, while components 2 and 3 showed lower correlation with changes in air
quality than components 1 and 4, their correlations were still larger than those between
building PCA amplitudes and air quality. Even though component 4 shows the least
Explained Variance (EV) of 1.4%, it exhibited the strongest correlation of 47% for vegetation
and only 4% for buildings. Interpreting this result is challenging since PCA produces
components that are orthogonal by design and so explicating their structure as being
representative of a physical property is not feasible. However, qualitatively assessing the
shape of component 4 in Figure 8 reveals characteristic structures such as an inverted green
peak, red edge, and SIF peaks that are particularly effective at indicating vegetation health.
The fact that the principal component with the least explained variance shows these features
together with the greatest correlation with changes in air quality is an indication that much
of the spectrum of vegetation does not contain important information regarding its health.
At high spectral resolutions, it is inevitable that redundant information will be present,
as well as temporal variation that is not related to vegetation health. Therefore, the practice
of using the ratio of particular wavelengths, as is the case with the SIFi, or dimensionality
reduction processes such as PCA lends itself to extracting the essential information needed
to infer vegetation health.

MCMC results showed a positive correlation for changes in ozone and temperature
with changes in SIFi values, and a negative correlation for variation in PM2.5 and hu-
midity. This result is also seen with NDVI in Appendix A.1, and the opposite is seen in
component 1 of PCA (noting that the amplitude of this component resembles the mean
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spectrum of vegetation reflected about the x-axis). Given the functional connection between
photosynthesis and SIFi, and the negative effects of PM2.5 on photosynthetic rate, the ob-
tained negative correlation is expected. Humidity is known to increase with increased
opaque cloud cover [139], which results in reduced sunshine and can therefore explain
the resulting negative correlation with photosynthetic rate. Ozone, on the other hand,
shows a counter-intuitive correlation given the known adverse effects it has on photo-
synthesis. The prevalent consensus in the literature over the past two decades suggests
that increased surface ozone results in a decrease in chlorophyll content, causing adverse
effects on tree biomass and visible leaf injury, leading to decreased photosynthesis [21–24].
However, studies demonstrating these effects are traditionally carried out under controlled
environmental conditions using plant chambers to expose plants to known O3 concentra-
tions. While values vary by species, O3 levels of 200–300 ppb are required for the impact
on plant physiology to be measurable [28]. Ozone levels in excess of 100 ppb are rela-
tively rare in New York City, our data peak at ∼80 ppb (see Figure 5). Since O3 does not
accumulate in plant tissue and given the difficulty in separating its impacts from those
of other environmental variables, conclusive proof of its impact on urban vegetation is
lacking in the literature, and our results do not contradict previous findings. The positive
correlation of ozone concentration with SIFi values found in this work can potentially be
explained by several environmental correlations and dependencies that cause this observed
result. One such explanation is the co-occurrence of ozone with carbon dioxide. Since the
Industrial Revolution, the concentrations of atmospheric carbon dioxide and ozone have
increased in tandem [140]. CO2 generally enhances vegetation productivity and growth,
and given the co-occurrence of O3 and CO2, the positive correlation obtained in this work
between variations in vegetation health indicators and O3 may be the result of increased
CO2 concentrations.

Air quality parameters, particularly O3 concentrations and temperatures, are known
to exhibit a diurnal behavior that is correlated with solar angle. Solar-induced fluorescence
is also known to vary with sun-sensor geometry, and with a fixed sensor view, the variation
in solar zenith angle can result in a diurnal pattern in SIF that resembles the diurnal
change in temperature, which also affects O3 concentrations. By separating the obtained
scans into independent time series by the time of day of their acquisition, we isolate the
impact of air quality from that of the diurnal cycle and observe that with a linear model of
air quality parameters fit to each time-of-day series separately, the vegetation exhibits a
median r2 of 0.51, while the buildings show a far lower median value of 0.16. Furthermore,
by isolating the scans into independent series based on their temperature, we find that
vegetation on average has a Pearson’s correlation coefficient value of 0.31 with ozone, while
the buildings’ is −0.05. These results show that while perhaps some correlation of air
quality with vegetation health may be influenced by diurnal changes in solar angle and
temperature, it is clear that the impact of O3 on vegetation health remains significant when
controlling for solar angle and temperature.

In all test cases, the amount of variation explained by models fitting a linear com-
bination of air quality parameters to the change in quantified measures of the spectra of
vegetation was higher than that for buildings, however, it did not exceed 50%. The rela-
tively low r2 in the vegetation models may be due to a variety of factors. While we expect
that the effect is small given the unique spectrum of vegetation, one such factor is the
accuracy of k-means clustering, whereby non-vegetation pixels can potentially be misla-
beled as vegetation. The inclusion of misidentified pixels could reduce the correlation with
air quality if, for example, built structures are mislabeled as vegetation since (as we have
found for building spectra) the correlation with air quality is weaker for built structures
than vegetation. However, a likely more important consideration is that in this work we
assume a simple linear combination of air quality parameters. Given the complexity in the
interactions between air quality and vegetation, the results could potentially be improved
using a more complex model. Finally, another important consideration potentially affecting
the goodness of fit of the model is the fact that vegetation health is dependent on a complex
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variety and combination of factors besides the air quality parameters selected in this work.
Vegetation health is also dependent on soil quality [141], water runoff and retention [142],
direct sunlight and shade [143], pests, disease, invasive species and weeds [58,61], and a
plethora of other factors that are outside the scope of this work. Nonetheless, we argue
that the r2 values for the linear air quality models and vegetation health found here are
sufficient to indicate a robust correlation, especially in comparison with those obtained for
the buildings.

5. Conclusions

Using a Visible and Near-Infrared (VNIR) single slit, scanning spectrograph, deployed
by the Urban Observatory (UO) [71–74] in New York City, that captures 848 spectral
channels in the 0.4–1.0 µm wavelength range, we obtained side-facing scans of an urban
scene in 15 min intervals between 08h00 and 18h00 for 30 days between 3 May and 6 June
2016. Selecting vegetation pixels using unsupervised k-means clustering, together with
nearby building pixels split into two random sets (sets a and b) as controls, we present the
use of the Compound Ratio to remove the contribution of solar irradiance and atmospheric
attenuation from the change in apparent reflectance in the mean spectra over time. We
then correlated vegetation health indicators from the Compound Ratio of vegetation and
buildings with publicly available concentrations of ozone (O3) and particulate matter
(PM2.5), temperature, and humidity temporally coincident with the VNIR scans. For the
vegetation health indicators, we used both a two-channel Solar-Induced Fluorescence (SIF)
ratio of 0.75 µm to 0.9 µm (SIFi) as well as amplitudes of a Principal Component Analysis
(PCA) decomposition designed to capture broader spectral features.

Modeling these vegetation health indicators as a simple linear combination of the air
quality and environmental parameters, and using Markov Chain Monte Carlo (MCMC)
sampling of the likelihood to generate posterior distributions and determine parameter
covariances, we found a strong correlation between changes in air quality parameters
and variations in both indicators for vegetation health. Variations in SIFi values show
significantly stronger correlation with air quality parameters for vegetation (r2 = 0.40)
compared to our control sample of buildings (r2 = 0.01), and all air quality parameter
coefficients for the building model were consistent with zero to within 3σ uncertainty.
Similar results were obtained for PC amplitudes, with the strongest correlation between
air quality parameters and variations in vegetation health measures found with the fourth
PCA component (r2 = 0.47). By isolating the impact of the diurnal sun-sensor geometry
on changes in solar-induced fluorescence, we show that the influence of air quality on
vegetation health remains significant (r̃2 = 0.51) in comparison with that of the buildings
(r̃2 = 0.16). Furthermore, separating into series of constant temperature, we find that the
impact of O3 on vegetation health is measurably independent of the correlations between
diurnal sun-sensor geometry, solar-induced fluorescence, and temperature.

The strong correlation between a simple linear combination of air quality parameters
and variations in all vegetation health indicators, especially the PCA decomposition results
that encode information from the full resolution spectra, demonstrates the potential of
reversing the analysis and using urban vegetation as a bioindicator for air quality. Specifi-
cally, the results indicate that it may be possible to extract the air quality parameters from
the atmospherically corrected Compound Ratio spectra of urban vegetation by leveraging
the ability of statistical models to learn coherent associations between the various spectral
channels and their relation with air quality parameters. Evaluating the efficacy of such
models to extract air quality from Compound Ratio spectra of vegetation as a function of
spectral resolution will be the subject of future work.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs14163854/s1, Figures S1–S8: MCMC corner plots of posterior
distributions for PCA components 1 through 4 of both the vegetation and the buildings.

https://www.mdpi.com/article/10.3390/rs14163854/s1
https://www.mdpi.com/article/10.3390/rs14163854/s1
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Appendix A. Air Quality Correlation with Changes in NDVI and PRI

Appendix A.1. Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) is one of the most commonly
used vegetation indices in studies of vegetation health, first used in 1974 [144]. The basis
for the NDVI is measuring leaf chlorophyll content using the amplitude of the highest light
reflectance in the near-infrared relative to the absorption in the red band. The formula
for calculating the NDVI we employ for this work using the Compound Ratio Cλ,t at
wavelength λ and time t is:

NDVIt =
CNIR,t − CRed,t

CNIR,t + CRed,t
(A1)

where we use NIR = 0.75 µm and Red = 0.69 µm as recommended by [145].
Following the calculation of the NDVI for each scan, we apply MCMC modeling as

described in Section 2.4 and obtain the full posterior distribution of air quality parameters
for both vegetation, as seen in Figure A1, and buildings, in Figure A2. The resulting range
of atmospheric parameter coefficients is shown in Table A1 together with the goodness of
fit statistics from performing an ordinary least squares fit.

Table A1. Top: MCMC median and 3σ uncertainty (including the full parameter covariance, derived
from the MCMC posteriors of atmospheric coefficient parameters to model the NDVI values. Bottom:
Model evaluation statistics for the maximum likelihood solution for vegetation and buildings.

Vegetation Buildings

parameters

O3 0.16+0.14
−0.14 −0.16+0.16

−0.17 ***
PM2.5 −0.15+0.09

−0.09 0.03+0.10
−0.10 *

Temperature 0.45+0.15
−0.15 0.02+0.17

−0.18 *
Humidity −0.17+0.08

−0.10 0.02+0.10
−0.12 *

b (offset) 0.00+0.07
−0.08 * 0.00+0.09

−0.09 *
ε 0.84+0.05

−0.06 0.99+0.05
−0.07

statistics

r2 0.29 0.02
Adj. r2 0.29 0.02

F-statistic 113.20 5.39
Prob. (F-stat.) 0.00 0.00

Log-likelihood −1373.30 −1553.00
* and *** indicate measurements consistent with zero within 1σ or 3σ uncertainty, respectively.

http://MUONetwork.org
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Figure A1. MCMC corner plot of posterior distribution for NDVI of vegetation.

Consistent with the results obtained using SIF, r2 using the NDVI for vegetation
is significantly higher than for buildings, and all air quality coefficient parameters for
the building model are consistent with zero to within uncertainty but not for vegetation.
However, the r2 obtained using the NDVI for vegetation (30%) is slightly lower than that
obtained using SIF (40%) and component 4 of PCA (47%).
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Figure A2. MCMC corner plot of posterior distribution for NDVI of the buildings.

Appendix A.2. Photochemical Reflectance Index (PRI)

Another vegetation index commonly used to assess plant physiology is the Photochem-
ical Reflectance Index (PRI) [63]. It is sensitive to changes in carotenoid pigments, such as
xanthophyll, in plant foliage, and functions as a measure of the efficiency of photosynthesis.
It is similar in formulation to the NDVI except it focuses on the green peak rather than the
red edge in the spectra of vegetation. The formula for calculating the PRI we employ for
this work using the Compound Ratio Cλ,t at wavelength λ and time t is:

PRIt =
C0.531,t − C0.57,t

C0.531,t + C0.57,t
. (A2)



Remote Sens. 2022, 14, 3854 32 of 42

Following the calculation of the PRI for each scan, we apply MCMC modeling as
described in Section 2.4 and obtain the full posterior distribution of air quality parameters
for both vegetation, as seen in Figure A3, and buildings, in Figure A4. The resulting range
of atmospheric parameter coefficients is shown in Table A2 together with the goodness of
fit statistics from performing an ordinary least squares fit.

Although the results show that r2 for vegetation is greater than that of buildings,
which mimics the results obtained from all other vegetation health indicators used in this
work, the values of r2 for both vegetation and buildings are the lowest of any measure by
a significant amount. Furthermore, all air quality parameter coefficients of buildings are
consistent with zero to within 1σ, and aside from ozone, so are the parameter coefficients
for vegetation.

Figure A3. MCMC corner plot of posterior distribution for PRI of vegetation.
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Figure A4. MCMC corner plot of posterior distribution for PRI of the buildings.
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Table A2. Top: MCMC median and 3σ uncertainty (including the full parameter covariance, derived
from the MCMC posteriors of atmospheric coefficient parameters to model the PRI values. Bottom:
Model evaluation statistics for the maximum likelihood solution for vegetation and buildings.

Vegetation Buildings

parameters

O3 −0.33+0.15
−0.16 −0.01+0.17

−0.16 *
PM2.5 0.03+0.10

−0.10 * −0.02+0.11
−0.10 *

Temperature 0.09+0.16
−0.16 ** −0.05+0.17

−0.16 *
Humidity −0.01+0.11

−0.12 * −0.03+0.12
−0.13 *

b (offset) 0.00+0.08
−0.09 * 0.00+0.09

−0.09 *
ε 0.97+0.06

−0.07 1.00+0.06
−0.07

statistics

r2 0.06 0.01
Adj. r2 0.06 0.00

F-statistic 18.53 1.28
Prob. (F-stat.) 0.00 0.28

Log-likelihood −1527.70 −1561.10
* and ** indicate measurements consistent with zero within 1σ or 2σ uncertainty, respectively.

Appendix B. Evaluating Building as Reference

One consideration regarding the methodology described in Section 2.2 that uses the
nearby building facade as a control for the Compound Ratio is the extent to which the
vegetation area under study is spatially collocated with that building. It is important to
ensure that the observed variations are not due to atmospheric variability along the line-of-
sight separation between the vegetation and building pixels. As can be seen in Figure 1,
the vegetation lies in the foreground of the buildings at a distance of approximately 0.1
km. To investigate the soundness of using the building as atmospheric irradiance and
transmission control for the vegetation, we also generate the Compound Ratio time series
for other buildings in the scene at distances comparable to or larger than the separation
between the vegetation and control building in this work. If the variations found in the
vegetation pixels in Section 3 were due to atmospheric variation along the line of sight
between the vegetation and control building, we would expect to see variations of similar
amplitude and with similar correlation to the air quality variations when comparing our
control building to other buildings in the scene. On the other hand, if the variation in
vegetation pixels is due exclusively to the effects of air quality on vegetation and not on
line-of-sight atmospheric variation between the vegetation and control, we would expect
the comparison between that control and other buildings in the scene to have minimal
temporal variation and correlation with air quality.

As shown in Figure A5, aside from the building used as control in this work (B), we
also look at building r, which is in the same complex as B at a distance of 0.05 km west
of the control. We also investigate building y that is at a distance of 0.35 km south-west,
building p at a distance of 0.8 km south, and a building closer to the sensor, w, at a distance
of 0.3 km north of the control building. Given that these building facades contain a smaller
number of pixels than B, we also select a subset of pixels, b, from the control building that
contains a similar sample size to the smallest set.
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Figure A5. Full-resolution RGB representation of the scene as captured by the Urban Observatory’s
hyperspectral imaging system. The blue box labeled B shows the buildings used as control throughout
this work, which are 0.1 km to the south of the center of the vegetation whose spectra are used in
this study. The red box r shows a set of pixels in a building adjacent to the control buildings B at a
distance of 0.05 km west. Box p shows a set of pixels belonging to a building 0.8 km south of the
control. Box w is closer to the sensor than B, and is 0.3 km north of the control. Box y is a building
that is 0.35 km south-west of the control. Box b shows a subset of the control building B with a similar
sample size as p.

Treating the various building sets as objects in the same manner as the treatment of the
vegetation, the Compound Ratio time series of each set of building pixels was calculated
with B as control as per Equation (8). The SIFi was similarly calculated using Equation (9)
(ratio of Compound Ratios at 0.75 and 0.9 µm) for each building at every scan time. Unlike
the treatment seen throughout this work, the time series were not standardized in order to
show the difference in amplitude between the SIFi of vegetation and those of the buildings.
This action does not have an impact on the calculation of the r2 of the models. The modeling
of the time series followed the description provided in Section 2.4.3. Figure A6 shows
the measured SIFi of the vegetation, control building, and each of the buildings selected
in Figure A5 together with a 10% sample of the possible models using the parameters’
coefficients produced by MCMC for each object. Table A3 provides the r2 values for the
best-fit model in each object, together with the median values and 3σ range of uncertainties
for the atmospheric parameter coefficients.

As can be seen in Figure A6, the signal amplitude of SIFi for vegetation is significantly
higher than for all the buildings. This includes the building 8× as far from the control
building as the vegetation, and shows that the measured changes in the vegetation spectra
are far more likely to be due to variations in the properties of vegetation than solely
due to any potential atmospheric transmittance. Furthermore, a linear model composed
of atmospheric parameters is capable of explaining 44% of the variation in the SIFi of
vegetation over time, which is 4× higher than that of a building located at 8× the distance to
the control building as the vegetation. These results indicate that even if one were to assume
that the Compound Ratio of vegetation contains a significant amount of atmospheric
transmission artifacts, such artifacts, given the treatment presented in this work, would be
incapable of explaining the large amount of variance seen in the vegetation’s SIFi. As seen
in the plots in Figure A6, the linear models of atmospheric parameters track changes in
the vegetation’s SIFi over time to a good degree, but are essentially flat and incapable of
tracking the changes in any of the buildings’ time series. Moreover, the subset of pixels
from the control building, b, which contains only 2% of the sample size of the control
building, equal to the sample size of building p, shows a far greater r2 value (0.11) than the
control (0.01) despite being at the same distance. This indicates that much of the variation
seen in the buildings’ SIFi is primarily composed of noise rather than variations due to
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uncorrected atmospheric transmittance. All these results provide a clear indication that the
measured variations in the vegetation throughout this work are dominated by variations in
the health of vegetation, and that any atmospheric transmittance that may have not been
corrected with the provided treatment does not have a significant impact on the analysis
of the correlation of varying air quality and vegetation health as presented throughout
this work.

Figure A6. The SIFi of vegetation and all objects identified in Figure A5 together with 10% of models
randomly selected from those identified as probable by MCMC, with the vertical lines indicating the
change in days, and the r2 of the line of best fit printed in the title of each plot.
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Table A3. MCMC results of the various objects selected in Figure A5, including the r2 values of the
line of best fit and the MCMC median and 3σ uncertainty of atmospheric coefficient parameters to
model the SIFi.

Object Distance to Control (B) r2 O3 PM2.5 Temperature Humidity b (Offset) ε

V 0.1 km 0.44 0.04+0.03
−0.04 −0.07+0.02

−0.03 0.15+0.04
−0.04 −0.05+0.03

−0.03 1.25+0.03
−0.03 0.18+0.01

−0.01
B 0 km 0.01 −0.0002+0.0007

−0.0007 * 0.0002+0.0004
−0.0004 * 0.0002+0.0007

−0.0007 * −0.0004+0.0005
−0.0005 *** 1.0007+0.0004

−0.0004 0.0029+0.0002
−0.0002

r 0.05 km 0.01 −0.002+0.009
−0.008 * 0.001+0.005

−0.005 * 0.003+0.009
−0.009 ** 0.003+0.007

−0.007 ** 0.99+0.01
−0.01 0.037+0.003

−0.003
p 0.8 km 0.12 0.00+0.02

−0.02 * 0.01+0.01
−0.01 ** −0.01+0.02

−0.02 0.04+0.01
−0.01 ** 0.96+0.01

−0.01 0.08+0.01
−0.01

w 0.3 km 0.04 −0.02+0.02
−0.02 *** −0.01+0.01

−0.01 *** 0.03+0.03
−0.02 *** −0.01+0.02

−0.02** 1.05+0.01
−0.01 0.10+0.01

−0.01
y 0.35 km 0.04 0.00+0.01

−0.01 * −0.006+0.006
−0.006 *** 0.01+0.01

−0.01 ** 0.015+0.008
−0.008 0.980+0.006

−0.006 0.045+0.004
−0.003

b 0 km 0.11 −0.010+0.006
−0.006 −0.005+0.004

−0.004 0.001+0.006
−0.006 * 0.006+0.005

−0.005 0.996+0.004
−0.004 0.027+0.002

−0.002

*, **, and *** indicate measurements consistent with zero within 1σ, 2σ, or 3σ uncertainty, respectively.
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