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Abstract: The use of 3D point cloud-based technology for quantifying standing wood and stand
parameters can play a key role in forestry ecological benefit assessment and standing tree cultivation
and utilization. With the advance of 3D information acquisition techniques, such as light detection
and ranging (LiDAR) scanning, the stand information of trees in large areas and complex terrain can
be obtained more efficiently. However, due to the diversity of the forest floor, the morphological
diversity of the trees, and the fact that forestry is often planted as large-scale plantations, efficiently
segmenting the point cloud of artificially planted forests and extracting standing wood feature
parameters remains a considerable challenge. An effective method based on energy segmentation
and PointCNN is proposed in this work to address this issue. The network is enhanced for learning
point cloud features by geometric feature balance model (GFBM), enabling the efficient segmentation
of tree point clouds from forestry point cloud data collected by terrestrial laser scanning (TLS) in
outdoor environments. The 3D Forest software is then used to obtain single wood point cloud after
semantic segmentation, and the extracted single wood point cloud is finally employed to extract
standing wood feature parameters using TreeQSM. The point cloud semantic segmentation method is
the most important part of our research. According to our findings, this method can segment datasets
of two different artificially planted woodland point clouds with an overall accuracy of 0.95 and a
tree segmentation accuracy of 0.93. When compared with the manual measurements, the root-mean-
square error (RMSE) for tree height in the two datasets are 0.30272 and 0.21015 m, and the RMSEs
for the diameter at breast height are 0.01436 and 0.01222 m, respectively. Our method is a robust
framework based on deep learning that is applicable to forestry for extracting the feature parameters
of artificially planted trees. It solves the problem of segmenting tree point clouds in artificially planted
trees and provides a reliable data processing method for tree information extraction, trunk shape
analysis, etc.

Keywords: deep learning; semantic segmentation; extraction of tree feature information; TLS LiDAR
data; artificially planted forest

1. Introduction

The standing wood characteristics of trees provide important three-dimensional
data [1] that can be extracted to obtain detailed information, such as a tree’s position,
height, wood volume, and diameter at breast height [2]. While the information on standing
characteristics is important for forest resource management [3], field inventories [4], and
artificial afforestation, it can also assist in the research of tree animal habitats and their
habitat structures [5] and in urban gardens for landscape design [6]. Traditional methods to
obtain tree information generally require manual field measurements, and there are many
tools and methods to measure forestry information directly [7]. However, this process
is highly time-consuming and may cause some damage to the trees. The development
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of modern remote sensing techniques, particularly light detection and ranging (LiDAR)
sensor-based simultaneous localization and mapping (SLAM) [8–11], has made the explo-
ration of imaging is gradually increasing [12,13] and has made it possible for technicians
without considerable training to easily collect high-quality 3D information on forestry
and reconstruct forestry point cloud maps. The laser scanning systems commonly used
to collect forestry information can be divided into the following categories depending on
the carrier platform: terrestrial laser scanning (including terrestrial laser, backpack laser,
and vehicle-borne laser), satellite lidar scanning, and airborne laser scanning. Among
them, terrestrial laser scanning systems are widely used in forest remote sensing because
of their high flexibility and portability and good point cloud quality [14–18]. The datasets
we collected in this paper are based on terrestrial laser scanning. While the extraction
of forestry 3D information has become increasingly rich and high quality, its complexity
creates processing challenges.

Deep learning is currently one of the most widely researched areas of machine learning,
with applications in object part segmentation, natural language processing, target detection,
instance segmentation, semantic segmentation, and many other areas. Two-dimensional
deep learning algorithms have been effectively used for the automatic classification of im-
ages and videos, such as the automatic recognition of whether fruit is corrupt for precision
agriculture [19], autonomous driving [20–22], and town survey planning [23]. While more
of the representational information of 3D objects is reflected in point clouds, there have been
many attempts to use deep learning on large 3D point clouds. For example, SnapNet [24]
converted a 3D point cloud into a set of virtual 2D RGBD snapshots, which could then be se-
mantically segmented and projected onto the original point cloud data. SegCloud [25] used
3D convolution on voxels and applied 3D fully convolutional neural networks to generate
downsampled voxel labels. However, these methods do not capture the intrinsic structure
of the 3D point cloud, and converting the point cloud to a 2D format also causes the loss of
original information and spatial features. There are also methods for directly processing
point clouds that have shown good performance. Point-Net [26] was a pioneering work
that used raw point clouds as deep learning inputs in each voxel, while PointNet++ [27]
built on PointNet with enhanced local structural information integration capabilities. These
point cloud segmentation methods have many extensions and applications in forestry point
cloud segmentation. For example, PointNet is used for the independent segmentation of
tree crowns [28], and PointNet++ is employed for the semantic segmentation of forestry
environments [29]. This paper focuses on the segmentation of tree point clouds (both stem
and foliage) as we believe that good tree point cloud segmentation is a prerequisite for
obtaining more accurate stand information.

Although all of the above methods have performed well in forestry point cloud se-
mantic segmentation, the semantic segmentation of tree point clouds in artificial forestry
scenarios still faces many challenges, one of which is the mismatch of point cloud geo-
metric features in the scene. In an artificial forest environment where tree trunks are mainly
characterized by linearity and verticality, tree crowns are mainly characterized by linearity
and scattering, the ground is mainly characterized by planarity, and the number of point
clouds for each geometric feature does not match the scene, making the network unable
to learn the features of each label better. For example, the different numbers of planarity
and vertical feature point clouds of branches affect the network’s learning of stem labels.
The network does not learn enough about the rest of the geometric features, which affects
segmentation when there are too many point clouds of one geometric feature. At the same
time, as forestry point clouds are characterized by their large scale and disorder, it is difficult
to achieve the same results on forestry point clouds with some convolution methods that
work well in indoor environments. However, the energy partitioning proposed by [30,31]
can partition largescale forestry point clouds into geometric partitions unsupervised, and
then our proposed geometric feature balance model (GFBM) is employed to balance the
overall geometric features and finally embed PointCNN [32] for feature learning. PointCNN
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can preserve the spatial location information of point clouds due to the introduction of
X-Conv, which can solve the problem of disorder in forestry point clouds to a certain extent.

In the context of previous studies, extracting tree parameters directly using commercial
software is possible but does not exclude the rest of the point cloud in the environment [17].
The Fully Convolutional Neural Network (FCN) series of networks can also be used
to classify foliage and stem point clouds, but the results are mediocre [33]. Our paper
presents a method based on deep learning for extracting tree feature parameters from
artificially planted forest. It removes distracting points from the environment by semantic
segmentation and has good segmentation accuracy. It focuses on the following key points:
(1) Energy segmentation partitions the original point cloud into geometric partitions;
(2) Geometric feature matching balances the geometric features of the whole scene; (3) The
geometrically balanced point clouds are embedded in the PointCNN network for learning;
(4) The software 3D Forest [34] and TreeQSM [35–38] are used to build a quantitative
structure model (QSM) and then obtain standing tree characteristics, such as tree height
and diameter at breast height.

2. Materials
2.1. Methodology Overview

The motivation for this work is to provide a method that can extract standing wood
feature parameters in an artificially planted forest environment with TLS point clouds. The
semantic segmentation method is an important step in this process and works well for trees
in different point cloud datasets. Here, we describe how the dataset was built, the model
framework and training methods for deep learning, the methods for building QSM models,
and how these models and methods were validated. Figure 1 shows a schematic picture of
how the method in this paper dealt with an original point cloud. This schematic shows a
tool that extracts standing wood feature parameters from the point clouds of artificially
planted forests in different complex scenarios. The tool is suitable for the TLS acquisition of
forest point clouds (of high resolution). We classified the point cloud data into four labels:
foliage, stem, ground, and other points (including shrubs, grass, and a few human figures).
The geometric feature balance model is involved in processing the data during training of
the deep learning networks but not when segmenting the test point cloud.
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2.2. Class Selection Approach

The classes for semantic segmentation were chosen based on the visual inspection of
the point clouds with color information omitted. Although some frameworks [39–41] can
segment point clouds with color and reflection, our model is intended to work on spatial (X,
Y, Z) coordinates alone such that it can work on more artificial forest point clouds collected
by different equipment. The selected forestry point cloud is subject to certain conditions.
Because the purpose of our semantic segmentation was to extract feature information from
the collected point clouds of the forestry environment, QSM models needed to be built from
the collected point clouds. Thus, the collected point clouds must be relatively complete
when stitching together to form a forestry point cloud map, and the point clouds require
a certain coverage and accuracy. For example, the DBH and height of trees can at least
be measured directly from the tree point cloud, and most LiDAR equipment can collect
such point clouds. While some of the stems or branches in the point cloud diagram do not
work very effectively when reconstructed, we kept them because they are still important
for trunk shape analysis or when analyzing the growth trend of stems. The manual labeling
of point clouds requires a high degree of concentration and judgment, and to ensure the
consistency of the data in this paper, all datasets in the text were manually segmented by
one author. When labeling foliage and stem, if a part of the junction between the two faintly
resembled the points of foliage, it was labeled as foliage. When labeling ground points and
stems, if a part looked like a point of the ground, then it was classified as ground. Object
points above or below the ground except trees were not our primary segmentation targets
and were grouped into the other points.

2.3. Study Area

Our data were collected autonomously using terrestrial laser scanning. The extracted
terrestrial laser scanning data were obtained using a RIEGL VZ-2000i scanner with high
laser pulse repetition rate of up to 1.2 MHz, a field of view of −40◦ to +60◦ for vertical
scanning and 360◦ for horizontal scanning, a maximum scanning range of 2500 m, and
the ability to operate in environments from 0 to 40 ◦C. The two datasets were stitched
by RIEGL’s RISCAN PRO software and are in two different coordinate systems and the
position of the scanner at the first station is the starting point of the coordinates. RIEGL’s
unique LiDAR technology, based on waveform digitization, online waveform processing,
and multi-echo period processing, enables high-speed, long-range, high-precision measure-
ments in poor visibility conditions, such as dust, haze, rain, and high vegetation cover. The
equipment was used to collect the point cloud 77 times at the experimental site during the
Bajia Park plantation dataset trial and 98 times on the experimental site during the Gaotang
plantation trial. The final point clouds were stored in LAS 1.4 format.

2.3.1. Beijing’s Dongsheng Bajia Park Dataset

Beijing’s Dongsheng Bajia Park is located at No. 5 Shuangqing Road, Dongsheng
Township, Haidian District, Beijing, China (N: 40◦01′4.78′′ E: 116◦20′40.63′′). Dongsheng
Bajia Park is the largest country park in Beijing, in the temperate monsoon zone, with an
average annual rainfall of 688.26 mm and an average annual temperature of 13.1 ◦C. It
covers an area of about 1521.75 mu and is rich in plant species, with more than 21,700 trees
and greenery covering over 90% of the area. The plantation forest studied in this paper
covers an area of approximately 20 mu, and the tree species planted include mainly tsubaki
and poplar. As shown in Figure 2, trees (mainly tsubaki) were used as the object of study to
validate our method. The scene consisted mainly of trees (including foliage and stem), the
ground, and a number of objects considered to be distracting, including human shadows
and light emitters.
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Figure 2. Study area of Bajia Park in Dongsheng, Beijing, China: (a) RGB aerial view of Bajia Park;
(b) Aerial view of the point cloud map of the sample site; (c) RGB image of the white sample site
shown in the figure, which clearly shows the relationship between tree plant distribution; (d) Our use
of TLS to collect data.

2.3.2. Gaotang Triploid Populus Tometosa Dataset

The triploid Populus tometosa plantation is located in Qingping Town National Eco-
logical Park, Gaotang County, Liaocheng City, Shandong Province, China (N: 36◦48′46.33′′

E: 116◦05′23.00′′). Qingping Town National Ecological Park is the largest plain forest park
in Shandong Province, in the temperate monsoon zone, with an average annual rainfall
of 589.3 mm and an average annual temperature of 13.0 ◦C. It covers an area of about
50,000 mu, with a forest coverage rate of over 80% and rich flora and fauna resources. The
trees were planted in the spring of 2015 using triploid Populus asexualis B301 ((P. tomentosa
× P. bolleana) × P. tomentosa) with an average diameter at breast height of 2 cm and a height
of 3 m. The trees were fertilized with conventional fertilizer (170 g of urea per plant per
year, in four applications) during the growing season, and a completely randomized group
design with three treatments: full irrigation (FI), controlled irrigation (CI), and no irrigation
(CK). As shown in Figure 3, 20 mu of poplar was chosen to validate our method. The whole
scene consisted of trees (including foliage and stem), the ground, some human shadows
that are considered as human disturbance, dwarf shrubs, and grasses on the ground.
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Figure 3. Condition of the Populus tometosa study area: (a) RGB aerial view of hairy poplar; (b) Aerial
view of cloud map of hairy poplar sample site; (c) RGB image of hairy poplar sample site clearly
illustrating the inter-plant spacing and inter-row relationship; (d) Our use of TLS to collect data.

2.4. Data Pre-Processing
2.4.1. Training and Validation Data

The first step in training was to obtain sufficient and high-quality training, valida-
tion, and test data. Since the manual labeling of point cloud data is time-consuming and
monotonous, especially trunk and foliage labeling that requires a skilled and patient opera-
tor, the data were expanded by random rotations of the X and Y axes and multiplication of
the axes by random scale variations of 0.6–1.4 times for the training set samples. A large
number of samples helps to avoid overfitting, allowing the network to be trained with as
much data as possible. We then converted the point clouds in the training and validation
sets into the HDF5 [42] format for training and validation.

At the same time, we also generated different training and validation datasets for the
two datasets due to their different characteristics. For the Bajia Park dataset, four types
of datasets were manually generated during semantic labeling, including (1) Complete
and partially mutilated single tree stems; (2) Crown and foliage; (3) Complete ground;
(4) Other point clouds in the scene, such as human shadows (operators) and experimental
equipment (solar radiometers). In addition to the trait characteristics of the trees themselves
being different from the Bajia dataset, the Gaotang poplar dataset also had more plants on
the ground in the point cloud map than the Bajia dataset. As we only focused on stand
information for trees in this paper, these plants were grouped into other categories in this
dataset. The total number of trees in the Bajia dataset was approximately 230 complete
tree point clouds and some fragmented tree point clouds, while the number of trees in the
Gaotang dataset was approximately 215. The two datasets were divided into a training
set and a validation set according to a 7 to 3 ratio of the holdout method, so the Bajia
dataset contained 158 trees for training and 72 trees for validation and the Gaotang dataset
contained 154 trees for training and 61 trees for validation. Figure 4 shows the details of
single tree labeling of the dataset, which illustrates the differences in traits between the
poplar and Tsubaki trees in the two datasets. All datasets were annotated according to this
criterion during labeling in this work. As shown in Figure 5, our training and validation
datasets consisted of 3 to 20 trees in each point cloud; a part of them are shown here.
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Figure 5. Schematic diagram of dataset labeling data: (a–c) Labeling of part of the Dongsheng Bajia
dataset; (d–f) Labeling of part of the Gaotang triploid Populus tometosa dataset.

2.4.2. Testing Data

The accuracy and robustness of our semantic segmentation method were tested by
taking a block of sample data from the Bajia Park and Gaotang poplar data. Detailed
parameters of the test set are shown in Table 1.

Table 1. Detailed parameters for the test set of our two self-built datasets.

Data Name Sensing Method Forest Type NT NP RTP Area

Baijia Park Terrestrial Laser Scanner
(RieglVZ-2000i)

Artificially
planted woods

74 28,648,947 97.99% 916.424 m2

Gaotang Park 57 22,782,508 55.66% 388.370 m2

NT: Number of trees; NP: Number of scanned points; RTP: Ratio of tree point cloud to scanned points.

3. Methods

The deep learning framework we used in this work was based on energy segmentation,
our proposed geometric feature balance model (GFBM), and PointCNN, as shown in
Figure 6. The energy segmentation function was used as a pre-segmentation framework
for point clouds, allowing point clouds to be efficiently segmented into smaller geometric
partitions based on object geometry without losing major fine details, and its energy
segmentation method for forming geometric partitions is mainly listed here. Each geometric
partition matched the geometric features after entering the GFBM so that the geometric
features of the whole scene were balanced. A PointCNN based on TensorFlow [43] was
embedded in the subsequent semantic segmentation using a convolutional network to
learn the input point cloud features.
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Figure 6. The deep learning network structure in this paper, where N1–Nj represent each geometric
partition; Nl, Np, Ns, and Nv represent the point clouds of linear, planarity, scattering, and vertical as
the main features, respectively; Kl, Kp, Ks, and Kv represent the point clouds of each feature added
after the geometric features are balanced. In PointCNN, in each X-Conv operation, N represents the
number of points in the next layer, C represents feature dimensionality, K rep-resents the number of
nearest neighbors, and D represents the dilation rate.

3.1. Energy Segmentation Network

We describe the process of energy segmentation network in this section, where the
input raw point cloud was computationally energy segmented, allowing the transformation
of raw input point cloud data of millions of points into a few hundred geometric partitions,
where the local geometry of the points within each partition was similar.

For the input point cloud P, the geometric partitioning was calculated based on the
features of its 3D geometry. The point cloud was geometrically partitioned according to
the above four features: linearity, planarity, scattering, and verticality. Each point will only
belong to one geometric partition.

According to [44], these features were defined by the local domain of each point in the
point cloud. The eigenvalues for each point λ1 ≥ λ2 ≥ λ3 were calculated of the covariance
matrix of the positions of the neighbors. The neighborhood size was chosen such that it
minimized the eigentropy E of the vector (λ1/Λ, λ2/Λ, λ3/Λ), where E represents the
point cloud adjacency relationship. According to the best neighbor principle proposed by
Weinmann et al. [44], Λ = ∑3

i=1 λi, which is in accordance with the optimal adjacency:

E = −
3

∑
i=1

λi
Λ

log(
λi
Λ
) (1)

According to the findings of [45], a formula for the linearity, planarity, and scattering
of the local neighborhood can be presented based on these eigenvalues.

linearity =
λ1 − λ2

λ1
(2)
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planrity =
λ2 − λ3

λ1
(3)

scattering =
λ3

λ1
(4)

Linearity describes how elongated the neighborhood is, planarity describes how well
it is fitted by a plane, and high-scattering values correspond to an isotropic and spherical
neighborhood. These three characteristics combine to form dimensionality. Verticality can
also be obtained from the definition of eigenvectors and the values defined above. Let µ1,
µ2, µ3 be the three eigenvectors associated with, respectively, λ1, λ2, λ3. We then define the
unary vector of principal direction in R3 as the sum of the absolute values of the coordinate
of the eigenvectors weighted by their eigenvalues.

[û]i ∝
3

∑
j=1

λj

∣∣∣[uj
]

i

∣∣∣, pouri = 1, 2, 3 et ‖û‖ = 1 (5)

We considered that the vertical part of this vector characterizes the verticality of a
point field.

In this article, the generalized minimal partition problem was studied by referring
to the partition problem of global properties. For each point i, we computed a vector of
geometrical features and associated its local geometric feature vector fi ∈ R4 (dimensionality
and verticality) to calculate piecewise constant approximation g*, where g* is defined as
the vector of R4×P minimizing the following Potts segmentation energy. We obtained the
point cloud geometric partition by solving this optimization problem.

g∗ = argmin
g∈R4xP

∑
i∈P
‖gi − fi‖

2
+ ρ ∑

(i,j)∈E
ωi,j

[
gi − gj 6= 0

]
(6)

In the above equation, [ ] is an Iverson bracket; for any point i belonging to P, ρ is the
regularization factor and influences the coarseness of the partition;ωi,j is the edge weight,
equal to 0 in 0 and 1 everywhere else. For the partition, l0-cut pursuit [46] was used to solve
this energy partitioning problem. The advantage of this method is that it does not require
the definition of the size of the point cloud and the different energy partitions of the whole
scene are obtained quickly after calculation.

3.2. Geometric Feature Balance Model

The main function of this module is to balance the geometric features of the point
cloud input to the network. For example, for the trees in the point cloud, most of the
branches have scattering geometric features predominantly, but there are also branches
with more vertical or planarity geometric features, and increasing the number of these
branches in the training set is beneficial to enhance the network’s learning of the details
of the stem label. In this paper, the geometric features of the whole scene are balanced
in-stead of a particular label, which is beneficial for global features and less computationally
intensive. The overall process is shown in Figure 7.
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Figure 7. Using Figure 5a as an example, the main geometric features selected for each geometric
partition are visualized.

The formula for calculating the four geometric features of the local neighborhood was
shown in the previous Section 3.1. For each geometric partition, the average value of its
four geometric features was calculated separately, and then the most representative feature
of each geometric partition was selected as the geometric feature of this partition so that
the number of point clouds with the four features as the main features in the whole scene
could be obtained, respectively.

After the above operation, we obtained four types of point clouds with linearity,
planarity, scattering, and verticality as the main features, namely, Pl, Pp, Ps, and Pv. The
geometric feature balancing strategy was to use the largest number of point clouds in
the four-point cloud feature sets as the quantitative benchmark, and the rest of the geo-
metric feature sets were aligned by this benchmark in order of magnitude, as shown in
Equations (7)–(9) below. The geometric features were balanced by copying and panning
the point cloud, adding a random angle of rotation to the panning to increase the general-
izability of the network. Meanwhile, to ensure that the overall geometric features of the
scene do not change as a result of the rotation operation, the rotation was performed with a
reference axis paired with Z.

If
Pl > Pi(i = p, s, v) (7)

obtain
Ki = [

Pl − Pi
Pi

]•Pi (8)

or obtain
Ki = [

Pl − Pi
Pi

+ 1]•Pi (9)

3.3. PointCNN Deep Learning Network

PointCNN solves the point cloud disorder problem by employing transpose matrices.
Compared to PointNet, which uses symmetric functions to deal with point cloud disorder,
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PointCNN can reduce feature loss. In PointCNN, we used an encoder–decoder paradigm,
it is called X-conv, where the encoder reduces the number of points while increasing the
number of channels. Then, the decoder part of the network increases the number of points,
and the number of channels is incrementally reduced. The network also uses the same
“skip connection” architecture as U-Net [47]. The most important characteristic of X-conv is
that it can both weight and guarantee the invariance of the input features, and then apply
the traditional convolution to the features, it is the basic block of PointCNN.

PointCNN differs from traditional grid-based CNNs in two main ways. First, the
method of local region extraction is different. While CNN extracts local features directly
through K × K blocks, PointCNN extracts local features by representing K neighboring
points on a point and then fusing the features in the K neighborhood by weighting the sum,
enabling it to achieve the same effect as a convolution operator fusing domain features in
regular data. Second, the method of local region information learning is also different. CNN
usually extracts image features by Conv and then pools downsampling, while PointCNN
uses X-Conv to extract features, aggregating them into fewer points to increase the channels
to recursively learn the correlation with the surrounding points. A comparison of the two
methods is shown in Figure 8.
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3.4. Training Details and Performance Measures

We provide more details of the training in this section. All training and testing were
conducted on a personal computer, with CUDA-accelerated computation using an Nvidia
3060 GPU during the training process. A development environment of Python 3.6 and
TensorFlow GPU 2.4.1 was set up on Ubuntu 18.04, with a basic learning rate of 0.0002 and
batch study size of 8. The network was trained over 150 rounds, and all were trained using
a randomized dropout method, which was applied before the last fully connected layer to
reduce over-fitting. This method can effectively improve the generalization of the training
process and make the algorithm perform well on sparse point clouds.

A comparison between the manually measured real values and the QSM measure-
ments was carried out as a reference for the effectiveness of standing wood feature infor-
mation extraction. The Softmax cross-entropy function was used as the loss function of the
deep learning network. To evaluate the performance of the semantic segmentation model,
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Python packages Numpy and Seaborn were used to evaluate our results and generate
confusion matrices. IoU is the evaluation index for each category, and OA is the overall
precision evaluation index of the dataset. Precision indicates the proportion of actual
positives to predicted positives and Recall indicates the proportion of actual positives that
are correctly predicted.

IoU =
TP

TP + FP + FN
(10)

OA =
TP + TN

TP + TN + FP + FN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

where TP is the true positive, TN is the true negative, FP is the false positive, and FN is the
false negative.

3.5. QSM Formation and Feature Parameter Extraction

The QSM of a tree is the structural model of the tree, describing its basic branch
structure and geometric and volumetric properties. These properties also include the total
number of branches of the tree and the parent–child relationship of the branches, the length,
volume, and angle of individual branches, and the branch size distribution. There are
other properties and distributions that can be easily calculated from the QSM. The QSM
consists of construction blocks, usually of some geometric shape, such as cylinders and
cones. The cylinder was used here as it is the most reliable and is highly accurate for
estimating diameters, lengths, orientations, angles, and volumes in most situations. A QSM
consisting of cylinders provides a downsampled representation of the tree and can store a
lot of information about the tree, as mentioned previously.

In actual cases, using the semantically segmented tree point cloud followed by QSM
and standing wood feature information extraction can reduce the interference of the rest of
the point cloud in the environment on the accuracy of the tree information and also prove
the necessity and accuracy of our point cloud segmentation method.

In this paper, 3D Forest software was used to instance segment the semantic segmented
tree point clouds, and then TreeQSM was used to extract standing wood feature information
from our segmented point clouds by fitting columns to convert the point clouds into
QSM models, which can represent over 99% of our segmented tree trunk point clouds
with an accuracy of over sub-millimeter. TreeQSM has two key steps in extracting tree
parameters; the first step is the topological reconstruction of branching structure, which is
the segmentation of the point cloud into stem and individual branches. The second step is
the geometrical reconstruction of branch surfaces, which is realized by fitting cylinders. For
more details on the original TreeQSM method, please refer to the original articles [35–38].

4. Results

The segmentation results for the two test datasets are shown here, including the energy
segmentation results, the semantic segmentation results, and the results of standing wood
feature parameter extraction for the processed tree point clouds.

4.1. Semantic Segmentation Results

The energy partitioning results for the test set are shown in Figure 9a,b, where the
left-hand side shows the partitioning results for the Bajia dataset and the right-hand side
shows the partitioning results for the Gaotang dataset. It can be seen that the morphology
of the poplar and Tsubaki trees in the two datasets are completely different; the Gaotang
dataset that has more branches and leaves has significantly more geometric partitioning.
Due to the disorderly nature of the point cloud, the energy partitioning of the test set does
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not affect the final result of the semantic partitioning and is only shown here to demonstrate
the process of unsupervised segmentation.
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Figure 9. (a–f) Results of the energy and semantic segmentation of two different datasets, in the
semantic segmentation results. The left graph shows the manually calibrated reference and the right
shows the predicted results.

The semantic segmentation results are shown in Figure 9c–f, with the manually anno-
tated point clouds on the left and the segmented point clouds on the right, which are the
result of energy segmentation into geometric partitions followed by semantic segmentation.
These point cloud inspection sets are visually very similar to the reference data for manual
segmentation. For the segmentation results, the tree point cloud is well-segmented from
the whole point cloud. While some stems and foliage are misclassified into ground and
other points, and some ground is misclassified into foliage, which is not common. In the
Bajia test set, a small number of points of trees are misclassified as ground, which occurs
in point clouds located at the edges of the data sample and in the Gaotang dataset. While
some of the shrubs in the other point categories are misclassified as stems mainly in the
root point cloud, the number of misclassifications is not significant.

The training accuracy and loss curves during the training process of the Bajia and
Gaotang data sets are shown in Figure 10. In the training process, the training accuracy
tends to increase while the training loss function tends to decrease, which indicates that
our network has a good learning ability for global features. For the Bajia dataset, the total
training and validation time is approximately 120 h. Additionally, for the Gaotang dataset,
the total training and validation time is approximately 110 h. After 130 rounds of training,
the training accuracy and loss curve stabilize in the Bajia dataset, with the training accuracy
and loss function converging to 0.95 and 0.14, respectively, and in the Gaotang dataset,
these figures are closer to 0.93 and 0.18, respectively.



Remote Sens. 2022, 14, 3842 15 of 23

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 23 
 

 

  
(e) Gaotang Reference (f) Gaotang Prediction 

Figure 9. (a–f) Results of the energy and semantic segmentation of two different datasets, in the 

semantic segmentation results. The left graph shows the manually calibrated reference and the right 

shows the predicted results. 

  
(a) Bajia Accuracy (b) Bajia Loss 

  
(c) Gaotang Accuracy (d) Gaotang Loss 

Figure 10. Training accuracy values and loss function curves. 

For the Bajia and Gaotang datasets, the segmentation results achieve our goal of data 

processing, and the tree point cloud is well-segmented from the overall point cloud. Of 

the four labels, we observed that for the three categories of ground, foliage, and other 

points, the model has significantly higher accuracy than the stem label when predicting 

and that the other point category with the fewest points in the entire map has the highest 

precision. This is illustrated in Figure 11, which shows the semantic partitioning confusion 

matrix for the overall two test sets. 

Figure 10. Training accuracy values and loss function curves.

For the Bajia and Gaotang datasets, the segmentation results achieve our goal of data
processing, and the tree point cloud is well-segmented from the overall point cloud. Of the
four labels, we observed that for the three categories of ground, foliage, and other points,
the model has significantly higher accuracy than the stem label when predicting and that
the other point category with the fewest points in the entire map has the highest precision.
This is illustrated in Figure 11, which shows the semantic partitioning confusion matrix for
the overall two test sets.

In both test datasets, the overall accuracy of trees (including stem and foliage) in the
Bajia dataset is 0.94, significantly higher than the 0.90 of the Gaotang dataset. This may
be because the leaves of the Tsubaki trees in the Bajia dataset are mainly concentrated at
the top of the trees, and the branch angle is large, so the leaf feature network is easier to
learn. In contrast, the triploid poplar planted in the Gaotang dataset has a large number
of branches and a large branch-to-diameter ratio, the tree canopy envelope is tighter, the
leaves are smaller and more numerous, and there are a large number of ground plants
that affect the segmentation accuracy of the tree point cloud and cause the trunk to be
misclassified into leaves more often.

In these two datasets, the ground class had the highest Recall, reaching 0.983 and
0.988, respectively. The other classes have high Precision but low Recall in the Bajia dataset,
probably because the other point classes contain several types of unappreciated points,
including light-emitting instruments and human shadows. As these objects are more
different and less numerous in the overall point cloud map, their features are not well
learned by the network, which leads to their misclassification as stems. The detailed metric
parameters are shown in Table 2.
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Table 2. The Recall, Precision, Overall Accuracy, and IoU.

Dataset Indicators Ground Foliage Stem Others

Bajia Park

Precision 0.932 0.983 0.890 0.959
Recall 0.983 0.903 0.980 0.618

IoU 0.917 0.889 0.875 0.602
OA 0.934

Gaotang Park

Precision 0.979 0.952 0.816 0.979
Recall 0.988 0.886 0.898 0.935

IoU 0.977 0.848 0.747 0.916
OA 0.938

4.2. Comparison of QSM Results with Manual Measurements

The segmented point cloud was used to generate a QSM model using 3D Forest
software and MATLAB-based TreeQSM and then extracted to analyze the tree feature
information, which was an important step in our overall workflow. Semantic segmenta-
tion was carried out to prepare for the extraction of stand information to deal with the
interference of distracting objects in the artificially planted woods on the extraction of tree
feature information.

A brief demonstration of the extracted tree height and diameter at breast height data
and its comparison with the actual measurements after forming the QSM model for the
test dataset is shown in Figure 12. The correlation coefficient R2 and the root-mean-square
error were calculated separately for both datasets to qualitatively evaluate our results.

As shown in Figure 12, a total of 74 trees from the Bajia dataset and 57 trees in the
Gaotang dataset were counted for both height and diameter at breast height compared to
the manual measurements. It can be seen that the accuracy of both height and diameter
at breast height is higher in the Bajia dataset, likely because the branches of the Tsubaki
tree branch are at large angles and cross over less, and the diameter at breast height is
relatively larger.

In both datasets, the accuracy of tree height seems better than diameter at breast
height, the point clouds of the trees are fitted frame by frame, and some deviations may
occur during the fitting process, but this is acceptable and the QSM algorithm still does
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not fit the diameter at breast height well enough, increasing the measurement error. The
results of the standing wood information extraction achieved by QSM are briefly presented
here, illustrating the importance and effectiveness of the semantic segmentation work in
this paper.
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Figure 12. (a,c) Comparison of tree height and diameter at breast height with manual measurements
for the Bajia test set. (b,d) Comparison of tree height and diameter at breast height with manual
measurements for the Gaotang test set.

5. Discussion
5.1. Evaluation of Our Approach

Extracting information on standing tree characteristics in forestry environments
through LiDAR scanning techniques is of great importance for forestry automation. Ana-
lyzing the physical parameters of trees can be very helpful for studying the relationship
between the standing canopy and sap flow, light, soil, etc. Our approach provides a new
method to reliably extract tree feature information from TLS point clouds of artificially
planted woods. The automatic extraction of tree point clouds from laser scanned data
is an important prerequisite for standing feature information extraction, tree phenotype,
and biophysical parameter estimation. The semantic segmentation method in this paper
provides a new and reliable method for extracting tree point clouds from LiDAR-scanned
forestry point clouds. This semantic segmentation method enhances the learning of the net-
work for artificially planted woodland object features by balancing the geometric features
in the scene, and the point clouds are segmented by PointCNN. The semantic segmen-
tation in both forestry scenes obtains good segmentation results, and this method has
high robustness.

However, there are still some limitations to this work. For example, the manual
labeling of point clouds remains highly subjective. While the ground and other points are
generally correctly labeled, when labeling tree stem and foliage, although the majority of
points are labeled accurately, a small number of points are inevitably incorrectly labeled
due to the limited time available and the fact that some of the blurred points are difficult to
distinguish manually. In Section 2.4.1, we also showed the scale of our labeling of point
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cloud categories, where the fuzzy stem-like point clouds are labeled as foliage-like so that
the network can learn the features of the complete stem point cloud to the maximum ex-tent
and better segment the stem point cloud from the overall point cloud. We believe that
the obtained overall segmentation accuracy of 0.9 for the tree point cloud achieves our
de-sired goal. According to our segmentation study on the two datasets, the accuracy
of tree segmentation in the Bajia dataset is 4% higher than that in the Gaotang dataset.
The main reason for this phenomenon may be the fact that the physical parameters of the
Tsubaki tree in the Bajia dataset are completely different from those of the triploid aspen in
the Gaotang dataset. The Tsubaki tree has an oblate crown with many branches, and the
leaves are relatively large, whereas the long branch leaves of the triploid hairy poplar are
broadly ovate or triangular–ovate leaf-shaped and relatively small.

Additional results are also significant. For example, in the Bajia dataset, some tree
point clouds on the upper boundary of the point cloud edge are misclassified as ground
class, although the number of misclassifications is very small, which may be due to the
similarity between the point cloud boundary features and ground features. In the Gaotang
dataset, leaves on branches are misclassified as stems, which may be due to the lack of
de-tailed labeling or poor learning of network features. However, this does not have a
negative impact on the extraction of standing tree information.

Overall, the method of extracting information from artificially planted woods explored
in this paper effectively extracts standing tree feature information, and the semantic seg-
mentation method maximizes the preservation of spatial features of the point cloud and
achieves good performance in the final test. The network obtains optimal weights through
iteration during the training process, making the model robust in identifying the point
clouds that form the structure of tree trunks and leaves.

5.2. Comparison with Similar Methods

We also compared our experimental results with the results of other papers. It is worth
noting that as different data and methods of labeling the data were employed, these values
do not necessarily characterize the absolute performance of the algorithm, but still provide
a certain reference for our research.

A comparison of our study with other papers can be seen in Table 3, where the
definitions of the classes are different in each paper, but essentially all contain two classes:
leaves and trunk. In the above study, of the four classes counted, [29] performs best in
terms of overall accuracy, which employs a method based on PointNet++. By comparison,
our method performs better in the ground and other point classes, with similar accuracy in
the foliage and lower accuracy in the stem classes. In contrast, [48] compares a variety of
methods, applying a 3D convolutional neural network on voxels and PointNet to segment
the dataset, and also compares data with intensity and without intensity, respectively.
An overall accuracy of 0.925 was obtained in [49], which used an approach based on
unsupervised learning.

Although there are a number of limitations to our comparisons here, our method
obtained more accurate results. This comparison provides a clear understanding of the
differences between methods, which will remain a reference for our future research work.

We also compared different semantic segmentation methods on both the Bajia and
Gaotang datasets using three algorithms, including the MVF CNN [50] (which also uses
CNNs), the point-based method PointNet, and the original unaltered PointCNN network.

MVF CNN is a deep learning-based multi-scale voxel and feature fusion algorithm
for large-scale point cloud classification. First, the point cloud is transformed into two
different-sized voxels. The voxels are then fed into a three-dimensional convolutional
neural network (3D CNN) to extract features. Next, the output features are fed into a
recommended global and local feature fusion classification network (GLNet), and the
multi-scale features of the main branch are finally fused to obtain their classification results.

PointNet uses the input of the original point cloud to maximize the spatial charac-
teristics of the point cloud, partitioning the input into voxels of uniform size. The input



Remote Sens. 2022, 14, 3842 19 of 23

of the network is the 3D coordinates (n × 1024 × 3) of the three-dimensional point cloud
containing n voxels and 1024 points within a voxel. This is then fed into the network
for training.

Table 3. Comparison of segmentation results against similar studies. Bold numbers denote the top
score in each metric.

Study Method Ground Precision Foliage Precision Stem Precision Others Precision Overall Accuracy

48

3D Fully
Convolutional

Network
- 0.985 0.595 - -

Convolutional
Network

(with
LiDAR

intensity)

- 0.985 0.652 - -

PointNet - 0.976 0.517 - -
PointNet

(with
LiDAR)

- 0.985 0.554 - -

49 Unsupervised
Learning - - - 0.925 *

29
Modified

PointNet++
approach

0.926 0.974 0.948 0.610 0.961 *
0.954 **

Ours
Improved

Point CNN
Method

0.976 0.972
0.970 ***

0.870
0.934 *** 0.979

0.925 *
0.936 **
0.958 ***

* Including stem and foliage classes; ** Including all of our classes (ground, foliage, stem, and others). *** We
compared against the TLS_1 and TLS_2 datasets from [29]; the datasets contain foliage and stem.

PointCNN takes the structure from the original paper and does not change it, par-
titioning the input point cloud into uniformly sized voxels to feed into the network for
training and prediction of the test set.

In this work, the network was trained, the test set was partitioned, and the maximum
epoch was set to 200. The batch size used eight samples, and the learning rate was 0.0002.
The segmentation results are shown in Figure 13, and quantitative evaluations of the results
are provided in Table 4.
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Table 4. Comparison of the Precision of each method.

Method Ground Precision Foliage Precision Stem Precision Others Precision Overall Accuracy

MVF CNN 0.908 0.832 0.870 0.679 0.850

PointNet 0.873 0.840 0.857 0.828 0.851

PointCNN 0.913 0.902 0.909 0.938 0.908

Improved
Point CNN

Method
0.976 0.972 0.870 0.979 0.936

Among them, MVF CNN and PointNet show a similar accuracy of 0.85, and both
methods have good accuracy in trunk and foliage classes. The original PointCNN has a
higher accuracy of 0.91 compared to the previous two methods, and its stem precision is
the best among the four methods. The overall accuracy of these three methods is not as
good as our method. This suggests that our deep learning framework performs better in
extracting spatial features of trees when processing point clouds of artificially planted trees
captured by TLS.

5.3. Future Research Directions

In future work on this project, our focus will be on improving the accuracy of network
segmentation. In practice, the higher the accuracy of the semantic segmentation, the less
manual correction will be required, which will significantly reduce manual effort and
facilitate the fully automated segmentation of the forest point cloud. We intend to increase
the amount of data in the training set, add the manually corrected test set after segmentation
to the training set, and iterate the training model again to enhance the recognition capability
of the network. We will also explore the applicability of our method in different acquisition
techniques, such as backpack radar and aerial radar. This will enable us to determine its
applicability on point clouds collected by more devices, test its effectiveness in different
forestry contexts, such as primary forest or urban greenery, and explore its segmentation
effectiveness in larger contexts. The problem of shading between branches can affect the
accuracy of manual labelling and the classification results of trees, just as shading can also
have an impact on leaf area calculations [51]. In future work, we will also consider how to
address this issue, for example, by considering whether the use of aerial radar data [52]
would reduce this effect or by considering some graph-based deep learning networks [53].

We will also explore the effectiveness of different neural networks for segmenting
point clouds of artificially planted trees in future work. The varied results of the two
datasets in this paper indicate that different tree species may behave differently on the same
network when using the same tree feature information extraction method, thus whether
different neural networks are suitable for different tree species point cloud data. Exploring
whether there is a relationship between the choice of neural network and the ability to
segment tree point clouds in a forestry environment is of great significance for establishing
a fully automated method for extracting stand information.

6. Conclusions

This work aimed to obtain a complete ground-based radar point cloud tree information
extraction method of artificially planted trees to help us to better investigate the relationship
between the 3D physical information of trees, tree growth, and tree cultivation practices.
We divided the work into forestry point cloud map building, deep learning-based semantic
segmentation, and QSM-based tree feature information extraction.

The forestry map was built using RIEGL equipment and this paper focused on our
proposed semantic segmentation method based on deep learning as the forestry point
cloud collected by LiDAR has noise, and point clouds of other objects are not relevant.
Semantic segmentation is an extremely important component for excluding the influence
of other point clouds on the tree point cloud. Although the need for extracting tree point
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clouds in some practical applications can also be solved by direct manual segmentation, as
human energy is limited and the forestry environment has a vast volume of data, semantic
segmentation based on deep learning is undoubtedly the best approach. The point clouds
are then processed using existing QSM methods to effectively obtain information on the
standing wood features of the target.

Our method showed good segmentation results on the dataset, with RMSEs of 0.30272
and 0.21015 m for tree height and 0.01436 and 0.01222 m for diameter at breast height in
both datasets, respectively, with a high overall accuracy of 0.95 for semantic segmentation
and 0.93 for trees. Compared to the manual segmentation of point clouds, our method
has considerable advantages as an automated process for extracting feature information
from artificial woodland point clouds collected by TLS, providing a strong foundation
for creating a fully automated and high-precision method for extracting information from
artificial woodland stands.
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