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Abstract: A new algorithm is developed to accurately compute the electromagnetic (EM) fields in 

the layered biaxial anisotropic media. We enclose the computational region in an infinitely long 

rectangular region by four vertical truncation planes and establish the corresponding algorithm to 

approximate the EM fields in the entire space. The EM fields in this region are expanded as a two-

dimensional (2-D) Fourier series of the transverse variables. By using the spectral state variable 

method, the generalized reflection coefficient matrices and transmission matrices are then derived 

to determine the Fourier coefficients per layer. Therefore, we can obtain the spatial-domain EM 

fields by summing the 2-D Fourier series. To enhance the accuracy and efficiency of this algorithm, 

we apply the method of images to estimate the influence of the artificial boundaries on the EM fields 

at the observer. We then further develop a quantitative principle to choose the proper size of the 

region according to the desired error tolerance. With the proper choice, the summation of the series 

can achieve satisfactory accuracy. This algorithm is finally applied to simulate the responses of the 

triaxial logging tool in transversely isotropic and biaxial anisotropic media and is verified through 

comparisons to the other method. 
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1. Introduction 

Electrical engineering and geophysical exploration applications involve electromag-

netic (EM) fields in the layered (horizontally or cylindrically) media, including the design 

of microstrip circuits and antennas, airborne electromagnetic surveys, well logging, and 

so on [1–7]. In addition to the numerical methods such as the finite-difference and finite-

volume method [8,9], the traditional integral-based analytic methods can also deal with 

the layered structures. For the horizontally layered media, one can express the spatial-

domain EM fields as a two-dimensional (2-D) Fourier integral involving mixed spectral-

domain EM fields (i.e., these fields are functions of one spatial variable and two spectral 

variables). When the medium is isotropic or transversely isotropic (TI), the spectral-do-

main EM field can be decomposed into TE and TM waves and can be further solved by 

introducing the scalar generalized reflection coefficients [10–12]. Then, one can obtain the 

spatial-domain EM fields by evaluating the so-called Sommerfeld integrals [13], which 

are derived from the 2-D Fourier integrals due to the cylindrical symmetry. However, 

when the media are biaxial anisotropic (BA), this decomposition will be invalid because 

the TE and TM waves are coupled to each other at interfaces. 

The spectral state variable method has been developed to deal with the BA cases [14–

16]. By defining a spectral state variable vector (which can be chosen differently as in 

[17,18]), one can derive a first-order differential system with a 4 4  system matrix. This 

system governs the spectral-domain EM fields, and its solutions for the homogeneous 

media can be solved easily. The solution for the layered media can be obtained by 
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combining each homogeneous layer’s solution with the generalized reflection coefficient 

matrices. Furthermore, one can also apply the 3-D Fourier transform to express the spatial 

EM fields as 3-D Fourier integrals involving the spectral-domain EM fields with a depend-

ence of full spectral variables [19]. No matter which representation is used, the 2-D Fourier 

integrals always arise when one implements the spectral-to-spatial transformation. Unlike 

the integral for the TI cases, which for the BA cases cannot degrade into 1-D integral, its 

efficient evaluation is more challenging because of its high dimensionality. Sainath et al. 

[20] applied a complex-plane Gauss–Laguerre quadrature to evaluate this integral. To 

make the integrand decay fast, the singularity subtraction was introduced by Hu et al. 

[21], and a variation of this technique was provided by Hong et al. [18]. 

In recent decades, the problem of exploration and development of the anisotropic 

reservoirs, which are typical lossy media, has attracted a lot of attention in geophysical 

EM well logging [22–26] and the inversion of logging data [27,28]. To simplify the EM 

modeling in such media, the approximate solution of the EM fields is assumed to be a 2-

D Fourier series of transverse variables x and y. This expression requires the entire space 

to be truncated by four vertical planes for the Fourier series and is only applicable to a 

finite interval. Therefore, the computational region is an infinitely long (along z-axis) rec-

tangular region with a finite cross-section. In our previous work [29], we developed this 

finite-region approximation (FRA) technique to model the EM fields in the simple homo-

geneous media. In this paper, FRA are applied to deal with the layered BA media by com-

bining it with the spectral state variable method. Furthermore, a quantitative principle for 

choosing the proper size of the region is introduced. 

First, both the EM fields in this region and the source quantity are expanded as 2-D 

Fourier series about transverse variables x and y. The Fourier coefficients can be regarded 

as the discrete spectral-domain EM fields. Second, the mentioned spectral state variable 

method is then employed to determine the spectral-domain EM fields per layer. Finally, 

we can obtain the spatial-domain EM fields by summing the 2-D Fourier series. The error 

of the proposed FRA relative to the exact solution of the original problem in the entire 

space is the reflections from the four artificial truncation planes. Since the amplitude of 

EM waves in lossy media will decay rapidly as it propagates, the reflections will be neg-

ligible as long as the region is large enough. However, an oversized region may lead to 

the slow convergence of the series. To enhance the efficiency of FRA, we apply the method 

of images to quantitively estimate the error of the EM field at the observer for the homo-

geneous isotropic case and further develop a quantitative principle to determine the 

proper size of the region according to the desired error tolerance. Once the region’s size 

is chosen, the proper truncation order of the summation of series can be determined by 

using a simple criterion in the process of summation. With the proper choice of the re-

gion’s size, the summation of the series can achieve a satisfactory accuracy with a rela-

tively small truncation order. Note that the spectral-to-spatial transformation in our new 

method is implemented by the simple summation of the 2-D Fourier series, without re-

sorting to the additional numerical quadrature algorithms as in these integral-based meth-

ods. 

In the numerical results section, the proposed FRA is applied to simulate the re-

sponses of the triaxial logging tool in the layered TI and BA media. The singularity sub-

traction similar to [13,21] is used to address the challenge of slow convergence for the 

highly deviated well. The agreements between results obtained by our method and those 

by the transmission line method (TLM) [30] validate our algorithm. 

2. Theory 

2.1. Spectral State Equation and Its Solution in Homogeneous Media 

As shown in Figure 1, an infinitely long region [ , ] [ , ] ( , )L L L L         is occu-

pied by a J -layer anisotropic medium with interfaces ( 1,..., 1)jz j J  . Region   has a 

finite square cross-section with length 2L  in the xy-plane. The permittivity  , 
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permeability   of the medium are assumed to have the value for vacuum, and the me-

dium can be characterized by the conductivity tensors 1 2, ,..., Jσ σ σ . The tensor σ  for an 

arbitrary layer is assumed to be symmetric: 

.
xx xy xz

xy yy yz

xz yz zz

  

  

  

 
 

  
 
 

σ  (1)

 

Figure 1. The infinitely long rectangular region with a square cross-section and a layered anisotropic 

medium. 

Given a magnetic dipole source ˆ ˆ ˆ
x y zM M M  M x y z ( ˆ ˆ ˆ, ,x y z  are the unit vectors in 

the three coordinate directions, and the time dependence is assumed to be i te  ) located 

at (0,0, )z  r , the EM fields generated by this source satisfy Maxwell’s equations: 

( ) [ ( )+ ( )]

( ) ( ) ( )

i

i

 



  

  

E r H r M r r

H r σ E r
 (2)

where ( , , )x y z r  represents the position of the observer. 

To find the solution of (2), we first expand ( )E r  and ( )H r  in terms of 2-D Fourier 

series about variables ,x y : 

( ) ( )( ) ( ) , ( ) ( )n m n mi k x k y i k x k y

nm nm
n m n m

z e z e
   

 

   

    E r E H r H   (3)

where nk n L  and mk m L , ,m n (  is the set of integer number). In analogy 

to those integral-based methods, the unknown Fourier coefficients nmE  and nmH  can be 

regarded as the EM fields in the (discrete) spectral domain, and the integer pair nm  is 

the spectral index. The delta function can also be expressed as a 2-D Fourier series [29], 

i.e., 

( )

2

( )
( )

4
n mi k x k y

n m

z z
e

L




 


 


   r r  (4)
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By substituting (3), (4) into (2), we can derive the equations about nmE  and nmH  for 

each spectral index, i.e., 

( ) ( )

0 2

( ) ( )

( )
[ + ]

4

( )

n m n m

n m n m

i k x k y i k x k y

nm nm

i k x k y i k x k y

nm nm

z z
e i e

L

e i e






 

 


 

  

M
E H

H σ E

 

 
 (5)

By defining the state vector T
, , , ,[ , , , ]nm x nm y nm y nm x nmE E H H b      and applying the 

proper manipulations [15,20], Equation (5) can be decomposed into the following state 

equation: 

( + ) ( )nm nm nmd dz i z z   A b S  (6)

and 

, , , ,

,

n y nm m x nm zx x nm zy y nm

z nm

zz

ik H ik H E E
E

i

 

 

  




   
  (7)

, , ,

1
( )z nm m x nm n y nmH k E k E


      (8)

where T 2[ , , , ] 4nm y x m z n zi M i M ik M ik M L   S  is the source vector; nmA  is the 4 4  

system matrix that can be partitioned into 
Tnm

 
  
 

A A
A

A A
Ⅰ Ⅱ

Ⅲ Ⅰ

. These submatrices are 

2

2

2

2 2

( )
,

( )

( ) 1

( )

m xz zz m yz zz m zz n m zz

n xz zz n yz zz n m zz n zz

xx xyxz zz xz yz zz

xy yyxz yz zz yz zz

k k ik ik k

k k ik k ik

i i ki

i i

      

      

      

        

   

   

 

 

   
    

    

     
     

     

A A

A

Ⅰ Ⅱ

Ⅲ

2

2

n n m

n m m

k k

k k k

 
 

 

 

Where zz zz i    
. The system matrix nmA  has the factorization 

u

1

1

d

[ ]

[ ]

nnm nm

n

m

m nm

nm

nm

nm







 
  

 

A

Λ
LL

LL Λ

Λ  (9)

with eigenvalues in diagonal matrix nmΛ  and eigenvectors in columns of matrix nmL . 

The 2 2  diagonal submatrices u
nmΛ  and d

nmΛ  consist of eigenvalues with positive and 

negative imaginary parts, respectively. The matrices nmL  and nmΛ  can be obtained by 

using linear algebra libraries or by analytically solving the eigenequation of nmA  [15]; 

therefore, they can be regarded as the known quantities. Substituting (9) into (6) yields 

( + ) ( ).nm nm nmd dz i z z   Λ w Σ  (10)

where 

1 1] ,[ [ ]nm nm nm nm nmnm
  w L Lb Σ S  (11)

represents the mode-wave vector and the new source term, respectively. In order to facil-

itate the derivation, we can divide nmΣ  into sub-vectors 
u

d

nm
nm

nm

 
  
 

Σ
Σ

Σ
. For the homoge-

neous media, the solution of (10) can be expressed as 
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u

d

( ) u

( ) d

, for 
0

0
,for 

nm

nm

i

nm

nm

i
nm

z z

z z

e
z z

z z
e













 
 

  
 

 
 

  

Λ

Λ

Σ

w

Σ

 (12)

The upper sub-vector of nmw  represents the upward mode-wave since u
nmΛ  con-

sists of eigenvalues with positive imaginary part. Similarly, the lower sub-vector repre-

sents the downward mode-wave. 

2.2. Solution of Mode-Waves in the Layered Media 

Based on the solutions of mode-waves in the homogeneous media and the superpo-

sition principle, we can further find the solutions in the layered media. The subscript nm  

signifying the spectral index will be omitted for the sake of brevity, and the layer index j  

and s  are used to signify an arbitrary layer and the source layer, respectively. To facili-

tate the derivation, we introduce the following notations: 

u
1 1

d( ) ( )
,j j j jj jz z zi i

j j

z
e e

    
 

Λ Λ
Q P  (13)

2.2.1. Formal Solution of Mode-Waves in the Source Layer 

We first consider the source layer. To simplify the analysis, we assume that the source 

is located in one of the middle layers, i.e., 1,1s sz z z s J
    . These horizontal inter-

faces will reflect the mode-waves produced directly by the source, which is the mode-

waves in the homogeneous medium. Thus, the incident mode-waves in this layer has the 

same form as (12), i.e., 

u

d

( ) u

in

( )

c

d

, for 
0

0
,for 

s

s

z z

zi z

i

s

e
z z

z z
e













 
 

  
 

 
 

  

Λ

Λ

Σ

w

Σ

 (14)

The reflected mode-waves can be expressed as 

u
1

d

(

r

)

f

)

e

(

s s

s s

z

zi

i z
s

s
z

s

e

e













 
  
  

Λ

Λ

U
w

D
 (15)

where sU  and sD  represent the amplitudes of reflected upward wave at 1sz z   and 

reflected downward wave at sz z , respectively. Conversely, by introducing the gener-

alized reflection coefficient matrices , 1j jR  and , 1j jR  [14], we can express sU  and sD  

in terms of each other, i.e., 

1
d u( d u

, 1 1

( )

,

)[ ], [ ].ss ssi i

s s s s s

z z z

s

z

s s s se e  







     Λ ΛU R Σ P D D R Σ Q U   (16)

Solving for sU  and sD  from (16) yields 

1
d

d u
1

u1 d u
, 1 , 1 , 1 , 1

1 d u
,

(
1 , 1 , 1

( ) ( )

, 1
) ( )

[ ] [ ],

[ ] [ ].s

s ss

s s

s

s

z z z

s

i i
s s s s s s s s s s s s

i i
s s s s s s s s s

z

z z z z
s s

e e

e e

 

 





   
   




  
  

  

  

Λ Λ

Λ Λ

U I R P R Q R Σ P R Σ

D I R Q R P R Q R Σ Σ

   

   
 (17)

Combining (17) with (15), we can obtain the reflected part ref
sw . Thus, for the source 

layer, we may calculate the incident wave and the reflected wave separately and then add 

these two parts to obtain the total mode-waves. For the convenient derivation of the mode-
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waves in the source-free layers, we should express sw  in terms of the amplitudes of the 

total upward and downward mode-waves, as follows: 

u
1

u

d
1

d

,

)

1

( )

(

( )

( )

, 1

1

, for  

, for  
s

s

s

s

s

s

ss

z z

z z

z z

s
z z

i

s si

s s

s
i

s s

s
i

e
z z z

e

e
z z z

e































 




 
    
  

 
 

   
  

Λ

Λ

Λ

Λ

A
R

w
R

A




 (18)

Here, s
A  is the amplitude for the total upward mode-waves at sz z , s

A  is the 

amplitudes for the total downward mode-waves at 1sz z  . They have the following ex-

pressions: 

d u
1

d u
1

1 d u
, 1 ,

(

(

1 , 1

1 d u
, 1 , 1 , 1

)) (

) ( )

[ ] [ ],

[ ] [ ].

s s s s

s s s s

i i
s s s s s s s s s s

i i
s s s s s s s s s s

z z z z

z z z z

e e

e e

 

 





  
  

 


  

 

 
 

   

   

Λ Λ

Λ Λ

A I Q R P R Q R Σ Σ

A I P R Q R Σ P R Σ

  

  
 (19)

2.2.2. Formal Solution of Mode-Waves in the Source-Free Layers 

For the rest of the source-free layers, by using the generalized reflection coefficients 

[14,25], we can express the mode-waves as 

u

d

)

, 1

(

( )
 , for  

j

j

j

j

zi

j ji

z

z z

j j

e
j s

e





 









 
  
 
 

Λ

Λ
w A

R
 (20)

u

d

1

1

,

(

1

)

( )
 , for  .

j

j

j

ji

j j

j j
i z

z z

z

e
j s

e



















 
  
  

Λ

Λ

R
w A


 (21)

Here, expression (20) applies for layers above the source, and j
A  is the amplitude 

for the total upward mode-waves at jz z , whereas expression (21) applies for layers 

below the source, and j
A  is the amplitudes for the total downward mode-waves at 

1jz z  . As in (18), (20) and (21), we have expressed the mode-waves in all layers in terms 

of the reflection coefficients and the amplitudes of the total upward and downward mode-

waves. These unknown coefficients and amplitudes can be determined by matching 

boundary conditions at interfaces. 

Suppose that the transmission coefficients , 1 1,,j j j j T T  and the local reflection coeffi-

cients , 1 1,,j j j j R R  are obtained in advance (see Appendix A). According to the field con-

tinuity conditions across interfaces jz  below z , and we can derive the following equa-

tions: 

1
, 1 , 1 1 1, 1

1, 1 1, 1 , 1 , 1

,

+ .

j j j j j j j j j j j

j j j j j j j j j j j j

   
    

  
     

 



P A R Q R A T A

R A R A T Q R A



 
 (22)

Solving for j
A  and 1,j jR  from (22) yields the following recurrence formulas 

1
, 1 , 1 1, 1

1
1, 1, , 1 , 1 , 1 , 1 1,

[ ] ,

+ [ ] .

j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j

  
   


      

 

 

A I P R Q R P T A

R R T Q R I P R Q R P T



  
 (23)

Similarly, for these interfaces jz  above z ( 1,2,...,j s ), we can derive the corre-

sponding recurrence formulas  
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1
1 1 1, 1 1, 2 1 , 1

1
, 1 , 1 1, 1 1, 2 1 1, 1 1, 2 1 , 1

[ ]

[ ] .

j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j

  
       


            

 

  

A I Q R P R Q T A

R R T P R I Q R P R Q T



  
 (24)

Furthermore, we can allow 

1,0 , 1 0J J R R   (25)

because there is no reflected downward mode-wave in the top layer and no reflected up-

ward mode-wave in the bottom layer. These recurrence formulas (23), (24), together with 

(19), (25) give the generalized reflection coefficients per interface and the amplitudes of 

mode-waves per layer. Then, the solution of mode-waves nmw  for an arbitrary layer can 

be determined by using (18), (20) and(21). 

2.2.3. Spatial-Domain EM Fields 

Using the solution of nmw  and the relation nm nm nm Lb w , we can obtain the four hor-

izontal EM field components and further obtain the rest of the vertical components by 

using (7) and (8). In summary, the spectral-domain EM fields can be expressed as 

T E
, , ,

T H
, , ,

[ , , ] ,

[ , , ] ,

nm x nm y nm z nm nm nm nm

nm x nm y nm z nm nm nm nm

E E E

H H H

 

 

E F w

H LF

L

w

   

   
 (26)

where E
nmF  and H

nmF  are 3 4  matrices, as expressed below 

E

* * * *

H

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0 .

0 0

nm

zx zz zy zz n zz m zz

nm

m n

ik ik

k k

     

 

 
 
 
 
     

 
   
   

F

F

 (27)

Substituting (26) into (3) yields the spatial-domain EM fields, i.e., 

( ) ( )E H( ) , ( ) .n m n mi k x k y i k x k y

nm nm nm nm nm nm
n m n m

e e
   

 

   

    E r F w H rL F L w  (28)

It can be easily verified by direct substitution that solution (28) satisfies the following 

boundary conditions: 

, ( , , ) , ( , , ),

, ( , , ) , ( , , ),

, ( , , ) 0, , ( , , ) 0.

L y z L y z

x L z x L z

x y x y

 

 

   

E H E H

E H E H

E H E H

 (29)

Hence, the FRA solution can be regarded as the solution to the Maxwell’s equations 

in the region   subject to the boundary conditions in (29). 

2.2.4. Tensor Green’s Function and the Choice of Region’s Size and Truncation Order 

In the previous subsections, we derived the spatial-domain EM fields ( )E r , ( )H r  

produced by a single magnetic dipole source ( ) M r r . Allowing ˆ ˆ ˆ, ,M x y z  succes-

sively, we can compute the corresponding magnetic fields , ,x y zH H H  due to the three 

mutually orthogonal unit sources. Their combination produces the spatial-domain mag-

netic Green’s function, i.e., 
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( , ) , ,
xx xy xz

x y z yx yy yz

zx zy zz

H H H

H H H

H H H

 
 

      
 
 

G r r H H H  (30)

where pqH  denotes the p-component of the magnetic field due to the unit source in the 

q-axis direction. Using (28), we can also write the Green’s function as a Fourier series, 

( )H( , ) n mi k x k y

nm nm nm
n m

e
 



 

    WLG r r F  (31)

where the 4 3  matrix , , ,, ,nm nm x nm y nm z
   W w w w  represents the combination of the 

mode-waves corresponding to the three sources.  

In practice, we can calculate the finite series in (31) by taking its partial sum, i.e.,  

( ), H( , ) ( , ) n m

N N
i k x k yL N

nm nm nm
n N m N

e 

 

    G Lr r G r r F W  (32)

where the superscripts L  and N  are used to signify the region’s size and the truncation 

order, respectively. Using the notation of partial sum, the FRA solution in (31) can be ex-

pressed as a limit when N  , i.e., 

, ,( , ) lim ( , ) ( , )L N L

N




   G r r G r r G r r  (33)

When L , the FRA solution further becomes the exact solution of the original 

problem in the entire space, 

exact , ,( , ) lim ( , ) ( , )L

L

  


   G r r G r r G r r  (34)

Therefore, we will use the unified notation with double superscripts to express the 

three solutions: the FRA solution ,L G , the approximate solution ,L NG , and the exact so-

lution , G . The total error of the approximate solution ,L NG  can then be divided into 

two parts, 

, , ,
total

, , , ,

spectral spatial

[ ] [ ]

.

L N L N

L N L L

 

   

 

   

 

Δ G G

G G G G

Δ Δ

 (35)

Here, , ,
spatial

L    Δ G G  represents the reflections from the four truncation planes, 

which is caused by the finite L , which we call the spatial truncation error, whereas 
, ,

spectral
L N L  Δ G G  is the spectral truncation error caused by the finite N . We first study 

the spatial truncation error. 

For simplicity, we assume that the source is located at 0 (0,0,0) r  in an unbounded 

medium. As shown in Figure 2a,b, , G  is the solution to a free-space problem, whereas 
,L G  can be regarded as the solution to a boundary-value problem in   subject to the 

boundary conditions (29). Using the method of images, we can construct an equivalent 

free-space problem to the problem in Figure 2b by introducing an infinite number of im-

age sources with the same magnitude and direction as the original source. As shown in 

Figure 2c, these sources are located at 

0 (2 ,2 ,0), ,pq pL qL p q   r r   (36)
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(a) (b) (c) 

Figure 2. Schematic of the three related problems, where the red dot and the green dots represent 

the original source and the image sources, respectively. (a) Original free-space problem. (b) Bound-

ary-value problem of the proposed FRA. (c) Equivalent free-space problem to the problem in (b). 

The one located at 0,0 0
  r r  represents the original source (shown in red dot) and 

the rest located at pq
 r  represent the image sources (shown in green dots). It is easy 

to verify that the sum of the contributions due to the original source and its image sources 

satisfies the conditions in (29). By the uniqueness theorem, we conclude that the problem 

in Figure 2c is equivalent to the problem in Figure 2b. Thus, the FRA solution ,L G  can 

be expressed as 

, ,
0

, ,
0

( , ) ( , )

( , ) ( , ),
pq

L
pq

q p

pq

 
  

 

   

 

 

   

 


r

G r r G r r

G r r G r r r
 (37)

From (37), we obtain the following expression for the spatial truncation error: 

, ,
spatial 0 0

,

( , ) ( , )

( , ), .
pq

L

pq

  

 

 

  

 
r

Δ G r r G r r

G r r r
 (38)

To measure the magnitude of a tensor, we introduce the following Frobenius norm 

for an arbitrary 3 3  tensor A  with entries , , 1, 2,3ija i j  : 

3 3
2

F
1 1

ij
j i

a
 

 A  (39)

Taking the norm of (38) and using the triangle inequality, we have 

,
spatial F F

( , ) ,
pq

pq
 

 

 
r

Δ G r r r  (40)

The right-hand side of (40) gives an upper bound for the spatial truncation error. 

When the medium is isotropic, each term of can be calculated by using the exact formula 

of the magnetic Green’s function in the free space [31]: 

2 2
,

iso 2 2 2 2

1 3 3
( , ) 1 1 ( )( )

4 4

ikR ikRk e i k e i

R kR k R R kR k R R R 
       

         
   

r r r r
G r r I  (41)

where ( )k i i    , R  r r , ˆ ˆ ˆ ˆ ˆ ˆ  I xx yy zz  is the identity dyad. We use (41) 

to estimate the influence the computational region’s size L  on the EM fields and further 

develop a principle to choose the proper L  even for the anisotropic media.  
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Consider a specific case as an example: the observer is located at 

1.016 (1 2,0, 3 2) m r , and the frequency of the source is 20 kHz . The right-side of 

(40) only depends on the variables   and L ; thus, we can define it as the following 

function: 

,
iso F

( , ) ( , )
pq

pqf L  

 

 
r

G r r  (42)

Its P-th ( 1,2,...,P   ) order approximation can be defined as  

,
iso F

,
max{| |,| |}

( , ) ( , )
pq

P pq

p q P

f L  

 


 
r

G r r  
(43)

which represents the contributions of the 2(2 1) 1P    image sources nearest to the origi-

nal source. Figure 3 shows the graph of ( , )Pf L  when P  is equal to four different val-

ues 1, 2, 3 and 1000 in the case of 1 S/m  . From the results, we can observe that 

( , )Pf L  converges quickly with the increase in P  and the values of 3 ( , )f L  becoming 

almost consistent with that of 1000 ( , )f L . Thus, we choose 3 ( , )f L  to approximate 

( , )f L  to investigate the influence of region size L . The whole graph of 3 ( , )f L  in 

Figure 4 demonstrates that 3 ( , )f L  decreases monotonically with the decrease in   

and L . If the conductivity   is known and some error tolerance denoted by tole  is 

given, we can find a unique proper value of L , denoted by pL , such that 

3 p tol( , )f L e   (44)

 

Figure 3. P-th order approximation ( , )Pf L  of the infinite series ( , )f L  for the four different 

1,2,3P   and 1000. 

 

Figure 4. The graph of the function 3 ( , )f L  and the illustration of the process for choosing proper 

region size. 
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Theoretically, the above principle of choosing pL  can ensure that the spatial trunca-

tion error does not exceed tole . Considering a medium of 1 S/m  , Figure 4 illustrates 

the corresponding choices p 7.408L  , 10.646, 14.134 m for meeting the three different er-

ror tolerances 4 5 6
tol 10 ,10 ,10e    . Figure 5 further shows the changes in the total error of 

the approximate solution p ,L N
G  with the truncation order N  ranging from 1 to 200 for 

the three different values of pL . The error is defined by 

p p, , ,
total 0 iso 0

F F
( , ) ( , )

L N L N    Δ G r r G r r  (45)

 

Figure 5. Error of p ,L N
G  with increasing truncation order N  for three cases of pL  when the me-

dium is isotropic. 

We can observe that there exists a proper truncation order pN  for each case of pL , 

and the total error of p ,L N
G  no longer decreases after N  is up to pN . This observation 

indicates the following results: 

p p p p, , ,

p,
L N L N L

N N


  G G G  (46)

That is, p p,L N
G  has arrived at the value of p ,L 

G , and the spectral truncation error 
p p p, ,

spectral

L N L 
 Δ G G  can be ignored. Consequently, the total error of p p,L N

G  is equal to 

the spatial truncation error, which will not exceed the present error tolerance tole , i.e.,  

p p,

total spatial 3 p tolFF
( , )

L N
f L e  Δ Δ  (47)

The numerical results in Figure 5 confirm this conjecture. In a practical calculation, 

we can determine pN  as the smallest N  that meets the following stopping criterion: 

p p

p

, , 2

F
tol,

F

0.01

L N L N

L N
e




 
G G

G
 (48)

and take p p,L N
G  as the final result. 

For the case of the anisotropic medium (including TI and BA cases) with tensor con-

ductivity σ , we can take p p pmin{ , , }x y z     as the approximate isotropic conductivity, 

where p p p, ,x y z    are the three principal components of tensor σ . The previous principles 

for determining pL  and pN , which is based on the isotropic model, can then be gener-

alized to the anisotropic case as well. Considering a TI medium of diag(10,10,1) S/mσ , 
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Figure 6 presents the total error of p ,L N
G  as the truncation order N  increases for the 

three pL  determined by 4
tol 10e  , 5 610 ,10  . The total error is calculated by 

p p, , ,
total 0 TI 0

F F
( , ) ( , )

L N L N    Δ G r r G r r  (49)

where ,
TI
 G  is the exact solution of the magnetic Green’s function in an unbounded TI 

medium, and its formula can be found in [32]. For this medium, although we cannot guar-

antee that the error of approximate solution p p,L N
G  is less than the present tole , the results 

in Figure 6 demonstrate that the error is close to the present tole . Thus, we still apply pre-

vious principles to determine pL  and pN  for the anisotropic media. For a J-layer aniso-

tropic medium, we may take 1min{ ,..., ,..., }j J      as the approximate isotropic conduc-

tivity, where j  is the minimum of the three principal components of the conductivity 

in layer j . In the following section, the error tolerance will be fixed at 5
tol 10e  . 

 

Figure 6. Error of p ,L N
G  with increasing truncation order N  for three cases of pL  when the me-

dium is anisotropic. 

3. Results 

In this section, we apply the proposed FRA to simulate the responses of the triaxial 

logging tool in the layered TI and BA formations. As shown in Figure 7a, the tool is 

equipped with three mutually orthogonal transmitters T ,T ,Tx y z  and three mutually or-

thogonal receivers R , R , Rx y z . Figure 7b illustrates the orientation of the tool coordinates 
t t tx y z  with respect to the formation coordinates xyz : the ty -axis is assumed to be par-

allel to the xy -plane and the tz -axis points to the direction from the transmitters to re-

ceivers. The rotation matrix from xyz  to t t tx y z  can be expressed as 

cos sin 0 cos 0 sin

sin cos 0 0 1 0

0 0 1 sin 0 cos

   

 

 

   
       
      

R  (50)

where   and   represent the azimuthal and dip angles of the tool. To simulate the re-

sponses of the triaxial logging tool, the magnetic Green’s function in (30) should be con-

verted into the tool coordinates by 

t t t

t t t t T

t t t

xx xy xz

yx yy yz

zx zy zz

H H H

H H H

H H H

 
 

  
 
 

G R GR  (51)
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where t ( , , , )pqH p q x y z  denotes the response of the receiver R p  due to the transmitter 

Tq . In the following results, the offset-spacing, the operating frequency and the azimuthal 

angle of the triaxial logging tool will be fixed at 1.016 m, 20 kHz and 0 , respectively. The 

superscript “t” of response t
pqH  will be omitted for brevity. 

As shown in Figure 8, a five-layer anisotropic model is assumed, where the thick-

nesses of the three middle layers are 2, 2 and 4 m, respectively. The layers 1, 3 and 5 are 

assumed to be isotropic, and the conductivities are 0.1, 0.1 and 0.05 S/m, respectively. The 

conductivities in layers 2 and 4 share the identical tensor conductivity σ , which is as-

sumed to be TI or BA. 

 
 

(a) (b) 

Figure 7. Triaxial logging tool and its orientation. (a) Structure of the tool in the tool coordinates 
t t tx y z . (b) Orientation of the tool coordinates t t tx y z  with respect to the formation coordinates xyz

, where   and   are the tool azimuthal and dip angles, respectively. 

 

Figure 8. Five-layer anisotropic model and two deviated well logging trajectories in the formation 

coordinates xyz . Layers 2 and 4 share the same tensor conductivity σ . 

3.1. Triaxial Logging Responses in Layered TI Media 

To validate this new algorithm, we compare the results by the present FRA with those 

of the TLM [30] in a TI formation. The five-layer model in Figure 8 is considered, where 

the conductivity σ  of layers 2 and 4 is assumed to be TI and is equal to diag(1,1,0.1) S/m . 

Two different tool dip angles 60    and 89    are considered. We will only provide 

the results of the components Im , Im , Im , Im , Imxx yy zz xz zxH H H H H  because the remaining 

Im , Im , Im , Imxy yx yz zyH H H H  are all zeros. Figures 9 and 10 show the comparison with the 

2 0 mz 

z

xy
S/m0.1layer 1        

layer 2          σ

S/m0.1layer 3        

layer 4          σ

S/m0.05layer 5        

3 2 mz 

4 4 mz 

5 8 mz 
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TLM for the cases of 60    and 89   , respectively. The corresponding relative er-

rors are displayed in Figures 9f and 10f. The relative error of each component is less than 

2% except for a few sampling points (where the absolute value of response is close to zero). 

The excellent agreements validate our algorithm. The direct summation of the Fourier se-

ries for the case of 89    exhibits a weakly convergent behavior, and the required sum-

mation order will be extremely large. This difficulty is solved by using the singularity 

subtraction [13,21]. Furthermore, from Figures 9 and 10, we can find that the local extre-

mums of the cross components Im xzH  and Im zxH  can clearly indicate the location of 

the interfaces for both cases. 

To further validate the present algorithm in formation with a high conductivity, we 

assume the conductivity of layers 2 and 4 to be diag(20,20,2) S/mσ  and the tool dip 

angle to be 60   . Figure 11 shows the comparison with the TLM. The agreement vali-

dates our algorithm again. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9. Responses of the tool with dip angle 60    simulated by TLM and the present 

method. (a) Im( )xxH . (b) Im( )yyH . (c) Im( )zzH . (d) Im( )xzH . (e) Im( )zxH . (f). Relative error. 

   
(a) (b) (c) 
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(d) (e) (f) 

Figure 10. Responses of the tool with dip angle 89    simulated by the TLM and present 

method. (a) Im( )xxH . (b) Im( )yyH . (c) Im( )zzH . (d) Im( )xzH . (e) Im( )zxH . (f). Relative error. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 11. Responses of the tool in the layered model with diag(20,20,2) S/mσ  simulated by 

the TLM and present method. (a) Im( )xxH . (b) Im( )yyH . (c) Im( )zzH . (d) Im( )xzH . (e) Im( )zxH . (f). 

Relative error. 

3.2. Triaxial Logging Responses in Layered BA Media 

Here, we further investigate the response of the triaxial logging tool in the BA for-

mations. The five-layer model in Figure 8 is still considered, where the conductivity σ  of 

layers 2 and 4 is assumed to be BA. The three specific BA conductivities shown in Figure 

11 are considered. All of them share the same principal conductivity diag(4,  1,  0.5) S m . 

The orientations of their principal coordinates p p px y z  with respect to the formation coor-

dinates xyz  are also illustrated in Figure 12: the principal coordinates p p px y z  of the 
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simple BA case are consistent with xyz ; those of the dipping BA case have an anisotropic 

dip angle 15   ; those of the Full-tensor BA case have an anisotropic azimuthal angle 

15    and an anisotropic dip angle 15   . The tool dip angle is fixed at 60   . For 

the simple BA and dipping BA cases, Figure 13 only displays the results of components 

Im , Im , Im , Imxx yy zz xzH H H H , Im ,zxH  because the rest are all zeros. Note that in these two 

cases, the tool dip angle and the anisotropic dip angle are in the same x z -plane. How-

ever, in the cases of full-tensor BA conductivity, this condition no longer holds because of 

the anisotropic azimuthal angle. The results in Figure 14 show that none of the nine re-

sponses are zero. Furthermore, comparing the results of the dipping BA ( 15   ) case 

with those of the simple BA ( 0   ) case, we can observe that the three main components 

Im , Im ,xx yyH H  and Im zzH  are sensitive to the change in the anisotropic dip angle  . 

These differences among the results of the three cases indicate that the orientation of BA 

conductivity has a significant influence on the responses of the triaxial logging tool. To 

obtain a more reliable interpretation of logging data, this effect should be considered. 

   

(a) (b) (c) 

Figure 12. Three specific BA conductivities and the orientations of the principal coordinates p p px y z  

with respect to the formation coordinates xyz , where   and   are the anisotropic azimuthal 

and dip angles (similar to the definition of   and   in Figure 7b), respectively. (a) Simple BA. (b) 

Dipping BA. (c) Full-tensor BA. 

   

(a) (b) (c) 
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(d) (e)  

Figure 13. Responses of the tool in the layered simple BA and dipping BA formations. (a) Im( )xxH

. (b) Im( )yyH . (c) Im( )zzH . (d) Im( )xzH . (e) Im( )zxH . 

   
(a) (b) (c) 

   
(d) (e) (f) 
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(g) (h) (i) 

Figure 14. Responses of the tool in the layered full-tensor BA formation. (a) Im( )xxH . (b) Im( )xyH . 

(c) Im( )xzH . (d) Im( )yxH . (e) Im( )yyH . (f) Im( )yzH . (g) Im( )zxH . (h) Im( )zyH . (i) Im( )zzH . 

4. Conclusions 

This paper presents a new algorithm of the EM fields in the layered BA media. We 

solved Maxwell’s equations in a rectangular region with a finite cross-section. Since the 

solution was expressed as a 2-D Fourier series, its evaluation can be implemented by a 

simple summation without resorting to the additional numerical quadrature algorithms. 

Using the method of images, we also developed a quantitative principle to choose the 

proper size of the region according to the desired error tolerance. Our algorithm was ap-

plied to simulate responses of the triaxial well logging tool in layered TI and BA for-

mations, and the numerical results are compared with those by the other method. The 

excellent agreements demonstrate that this algorithm can effectively and accurately sim-

ulate the responses of the triaxial logging tool in normally or highly deviated wells. 
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Appendix A 

By the proper normalization, the eigenvector matrix for layer j  and its inverse ma-

trix can be expressed in terms of the four 2 2  matrices 
, , , ,, , ,j j j jL L L LⅠ Ⅱ Ⅲ Ⅵ

 (the de-

tailed expressions can be found in [15]) and they transpose the matrices as follows: 

T T

T

, , , ,1

, , , ,
T

1 1
,

2 2

j j j j

j j

j j j j


  

    
      

L L L L
L

L L L L
LⅠ Ⅱ Ⅲ Ⅰ

Ⅲ Ⅵ Ⅵ Ⅱ

 (A1)
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Consider a two-layer model and assume an incident downward wave with ampli-

tude 
A  hitting the interface 2z  from upper layer 1 into lower layer 2. The mode-waves 

in these two layers are 

u
1 2

d
1 2

( )
,
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1 2

1
(

z z

z z
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
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w A  (A2)
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z zie 





 
  
  

Λ
w A

T
 (A3)

where 
1 , 2R  and 

1,2T  are the unknown local reflection and transmission coefficients, re-

spectively. To determine these coefficients, we apply continuity conditions across the in-

terface 2z , i.e., 

2 2( ) ( )z z b b  (A4)

where 
2z
 (

2z
 ) represent the left (right) limit of 2z . Using the relation b Lw  and ex-

pressions in (A2) and (A3), the condition can be written as 

2
1,2

2
1

1,

0


  
 

   
L

R

T
L

I
 (A5)

Substituting (A1) into (A5) and solving this equation for 
1 , 2R  and 

1,2T , we have 

T T 1
1,2

T T T T 1
21,2

,1 ,2 ,1 ,2

,1 ,2 ,1 , ,1 ,2 ,1 ,2

2[ ]

[ ] [ ]





 

   

T L L L L

R L L L L L L L L

Ⅵ Ⅱ Ⅱ Ⅵ

Ⅲ Ⅱ Ⅰ Ⅵ Ⅵ Ⅱ Ⅱ Ⅵ

 (A6)

Similarly, assuming that an incident upward wave hits interface 2z  from the lower 

layer 2, and after a similar derivation, we obtain 

T T 1
2,1

T T T T 1
12,1

,2 ,1 ,2 ,1

,2 ,1 ,2 , ,2 ,1 ,2 ,1

2[ ]

[ ] [ ]





 

   

T L L L L

R L L L L L L L L

Ⅲ Ⅰ Ⅰ Ⅲ

Ⅵ Ⅰ Ⅱ Ⅲ Ⅲ Ⅰ Ⅰ Ⅲ

 (A7)
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