
 

 

 

 
Remote Sens. 2022, 14, 3832. https://doi.org/10.3390/rs14153832 www.mdpi.com/journal/remotesensing 

Article 

A Strategy for Variable-Scale InSAR Deformation Monitoring in 

a Wide Area: A Case Study in the Turpan–Hami Basin, China 

Yuedong Wang 1,2, Guangcai Feng 1,2,*, Zhiwei Li 1,2, Shuran Luo 1, Haiyan Wang 3, Zhiqiang Xiong 1, Jianjun Zhu 1,2 

and Jun Hu 1,2 

1 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China 
2 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring 

Ministry of Education, Changsha 410083, China 
3 Chongqing 208 Geological Environment Research Institute Co., Ltd., Chongqing 400700, China 

* Correspondence: fredgps@csu.edu.cn; Tel.: +86-182-7486-7449 

Abstract: In recent years, increasing available synthetic aperture radar (SAR) satellite data and grad-

ually developing interferometric SAR (InSAR) technology have provided the possibility for wide-

scale ground-deformation monitoring using InSAR. Traditionally, the InSAR data are processed by 

the existing time-series InSAR (TS–InSAR) technology, which has inefficient calculation and redun-

dant results. In this study, we propose a wide-area InSAR variable-scale deformation detection strat-

egy (hereafter referred to as the WAVS–InSAR strategy). The strategy combines stacking technology 

for fast ground-deformation rate calculation and advanced TS–InSAR technology for obtaining fine 

deformation time series. It adopts an adaptive recognition algorithm to identify the spatial distribu-

tion and area of deformation regions (regions of interest, ROI) in the wide study area and uses a 

novel wide-area deformation product organization structure to generate variable-scale deformation 

products. The Turpan–Hami basin in western China is selected as the wide study area (277,000 km2) 

to verify the proposed WAVS–InSAR strategy. The results are as follows: (1) There are 32 defor-

mation regions with an area of ≥1 km2 and a deformation magnitude of greater than ±2 cm/year in 

the Turpan–Hami basin. The deformation area accounts for 2.4‰ of the total monitoring area. (2) A 

large area of ground subsidence has occurred in the farmland areas of the ROI, which is caused by 

groundwater overexploitation. The popularization and application of facility agriculture in the ROI 

have increased the demand for irrigation water. Due to the influence of the tectonic fault, the water 

supply of the ROI is mainly dependent on groundwater. Huge water demand has led to a continu-

ous net deficit in aquifers, leading to land subsidence. The WAVS–InSAR strategy will be helpful 

for InSAR deformation monitoring at a national/regional scale and promoting the engineering ap-

plication of InSAR technology. 
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1. Introduction 

Advanced microwave remote sensing technology can precisely monitor deformation 

over wide areas, which helps geohazard surveys of phenomena such as underground 

fluid development, mineral mining, and landslide. In recent years, fast-developing inter-

ferometric synthetic aperture radar (InSAR) technology and abundant available synthetic 

aperture radar (SAR) data [1–4] has laid the foundation for high-precision and wide-scale 

InSAR ground-deformation monitoring. InSAR technology has been successfully used to 

monitor ground deformation at a regional [5–9] and national scale [10–13]. Large-scale 

geodetic technology, such as InSAR, usually describes the spatial characteristics of ground 

deformation by deformation rate, and shows deformation development over time using 

a time series of deformation. The deformation region usually accounts for a small part of 
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the monitoring area [11], so the ground deformation we are interested in only accounts 

for a small part of the wide-area monitoring results. At present, the engineering projects 

to obtain ground deformation in a wide study area (WSA) usually calculate the defor-

mation time series using InSAR datasets covering the whole WSA, using time-series In-

SAR (TS–InSAR) technology. Even with multiple spatial resolutions, such schemes re-

quire a lot of computing resources and storage space, and even then require repeated cal-

culations and provide redundant results, especially in the non-deformation region [14]. 

Therefore, it is necessary to develop a set of efficient monitoring methods and procedures 

for wide-area InSAR deformation and a more feasible multi-scale deformation product 

organization structure in the WSA.  

One way to improve the computational efficiency of the TS–InSAR method is to in-

troduce a parallel processing method, which can be realized using high-performance com-

puters (HPC) [12,15–19]. However, the high cost of HPC equipment hinders the popular-

ization of this strategy. Another way is to improve the TS–InSAR method itself, by intro-

ducing sequential adjustment theory for real-time InSAR data processing [20–22], intro-

ducing a geological model or time-series filtering algorithm for high-dimensional defor-

mation calculation [23–26], or realizing a high-precision TS–InSAR deformation calcula-

tion using block solutions [27,28]. These strategies can improve the efficiency of the TS–

InSAR solution to a certain extent. However, for wide-area InSAR deformation monitor-

ing, high-precision independent calculation of all InSAR datasets in the WSA will provide 

many useless time-series results, especially in the non-deformation area. Therefore, it is 

necessary to develop a demand-oriented multiple spatio-temporal-scale deformation 

monitoring method, considering the universality of monitoring strategies, computing re-

sources, measurement accuracy, and the efficiency of deformation calculation and inter-

pretation. 

The averaging of multiple interferograms (stacking) method was proposed by the 

authors in [29], which can obtain the ground-deformation rate by averaging the phase of 

the multitemporal differential InSAR (DInSAR) dataset. Compared with conventional TS–

InSAR technologies, such as persistent scatterer (PS) [30], small-baseline subset (SBAS) 

[31], and interferometric point target analysis (IPTA) [32], stacking only obtains the defor-

mation rate with lower technical requirements and higher computational efficiency. 

Stacking has been widely used for deformation identification [33–37]. A wide-area defor-

mation monitoring project usually identifies deformation regions based on the ground-

deformation rate [38]. For the deformation region, the corresponding deformation time 

series is extracted to analyze the spatio-temporal evolution of deformation. The defor-

mation time series in stable zones has less information. Therefore, combining stacking and 

TS–InSAR may contribute to efficient variable-scale deformation monitoring. 

In this study, we propose a wide-area InSAR variable-scale deformation detection 

strategy (WAVS–InSAR). WAVS–InSAR uses stacking technology to quickly calculate the 

low-spatial-resolution ground-deformation rate over the WSA. Then, an adaptive intelli-

gent recognition algorithm is used to identify the location and area of the deformation 

regions and determine the regions of interest (ROI). Advanced TS–InSAR technologies are 

then used to obtain the high-spatio-temporal-resolution deformation time series in the 

ROI. Finally, the variable-scale InSAR deformation product in the WSA is obtained by a 

novel variable-scale deformation product organization structure. To verify the proposed 

WAVS–InSAR strategy, we applied it to the Turpan–Hami basin (about 277,000 km2) in 

Xinjiang, China. The Turpan–Hami basin is the driest place in China, and has the least 

rainfall in China. Many tectonic faults, as well as agricultural and mining areas, are scat-

tered across the basin. It is of great significance to obtain the spatio-temporal distribution 

characteristics of ground subsidence and to investigate the surface deformation related to 

the active agricultural economy and mineral exploitation in the basin.  

The remainder of the paper is organized as follows. We introduce the WAVS–InSAR 

strategy in Section 2. In Section 3, the general situation of the Turpan–Hami basin, InSAR 

data, and the data-processing details are briefly described. The variable-scale deformation 
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product in the Turpan–Hami basin is shown in Section 4, followed by the discussion in 

Section 5. Section 6 presents the conclusions. 

2. Methodology 

We first collect all available InSAR datasets covering the WSA, and preprocess all 

datasets through registration and DInSAR, to generate the multitemporal DInSAR da-

tasets with the same spatial reference data. Then, we apply the WAVS–InSAR strategy to 

process the multitemporal DInSAR data to obtain variable-scale deformation products in 

a wide area. The WAVS–InSAR includes the following four modules (Figure 1). 

(1) We obtain the wide-area deformation rate using the stacking method [29]. First, we 

calculate the deformation rate of each frame using stacking. Then, we mosaic the re-

sults of all frames to obtain the wide-area deformation rates. 

(2) We detect ROI from the deformation rates. Setting the threshold for the deformation 

rate, the extension radius, and the minimum clustering area, we calculate the spatial 

distribution and area of the ROI in the WSA using an adaptive deformation detection 

method [39]. 

(3) We obtain the high-spatio-temporal-resolution deformation result of ROI. The high-

spatio-temporal-resolution time-series and/or multidimensional deformation of the 

ROI are calculated using advanced TS–InSAR technologies, such as PS, SBAS, IPTA, 

and the multidimensional small-baseline subset (MSBAS) [40–42]. 

(4) We generate the variable-scale deformation product, combining the high-spatio-tem-

poral-resolution results of ROI and wide-area deformation rate to generate the vari-

able-scale deformation product, which can describe deformation in stable areas only 

with low-spatial-resolution deformation rate, and in the ROI with the high-spatio-

temporal-resolution deformation rate and time series. 

 

Figure 1. Flowchart of the method for the variable-scale monitoring of deformation in a wide area. 

2.1. Wide-Area Deformation Monitoring Using Stacking 

The stacking technology can calculate the deformation rate based on weight and av-

erage the unwrapped phases of the multitemporal DInSAR dataset. The stacking technol-

ogy assumes linear ground-deformation changes, and temporal randomly distributed 

phase noise, such as atmospheric delay phase. Assuming 1N   SAR images of one frame 

covering the WSA constitute M InSAR pairs, the displacement phase can be separated as  

2

1 1

M M

i i ii i
t t 

 
     (1)
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in which   is the rate of deformation phase change. i  and it  are the interference 

phase and the time interval of the i-th InSAR pair, respectively.  

The rate of the deformation phase change would be converted to the deformation 

rate ( defV ) as,  

4defV      (2)

where   is the wavelength of the SAR sensor. The multitemporal DInSAR data in each 

frame is processed using stacking technology to obtain the ground deformation of the 

WSA. 

2.2. ROI Detection Based on Wide-Area Deformation Rate 

Luo et al. [39] proposed an improved method to automatically identify and evaluate 

geological hazards using TS–InSAR results. By judging and analyzing the deformation 

rate and time series in the monitoring area, the method can automatically identify the 

deformation region and evaluate its hazard grade. In this study, we improve this method 

to accurately delineate the ROI. 

To improve the accuracy of ROI detection, we first apply spatial domain filtering to 

the wide-area monitoring results to obtain deformation results with good spatial con-

sistency. Then, we set the thresholds for deformation rate, extension radius, and minimum 

clustering area. When the absolute value of the deformation rate is greater than the defor-

mation rate threshold, it is considered to be an active point. Otherwise, it is a stable point. 

Buffer zones are established around the active points according to the extension radius. 

The active points are clustered following the principle of spatial proximity relationship 

[43]. The clustering regions are smoothed to refine the boundary. The robust deformation 

regions and their area are obtained by removing regions smaller than the minimum clus-

tering area. The ROI can be finally located based on spatial clustering and the area of de-

formation. 

A detailed description of the intelligent recognition part of the method can be found 

in [39]. It should be noted that InSAR can only obtain one-dimensional (1D) deformation 

along the line-of-sight (LOS) direction of the SAR sensor, so the InSAR data of one geom-

etry is insensitive to the deformation of some regions, especially landslides [44]. To obtain 

more reliable deformation detection results, we need to use the above method and InSAR 

data from different observational geometry. The detection results of multitrack InSAR 

data are taken together as the final deformation regions. Then, we can adaptively deter-

mine the ROI and perform fine monitoring. 

2.3. ROI Deformation Refinement Using Advanced TS–InSAR 

When calculating the wide-area deformation rate, we select the InSAR data with the 

same acquisition time from different frames to facilitate the splicing of the results from 

different frames and to maintain the consistency of the wide-area deformation rate. To 

accurately monitor the deformation in the ROI, we first crop the registered InSAR datasets. 

The cropped datasets are used to obtain the time-series and multidimensional ground de-

formation of the ROI. Detailed steps are as follows. 

(1) Deformation time-series calculation. We process the collected InSAR datasets using 

TS–InSAR technology, with a smaller multi-looking number (a higher spatial resolu-

tion). In this study, we use an improved IPTA method to calculate the deformation 

time series of the ROI [45,46]. 

(2) Multidimensional deformation rate/time-series calculation. If the ROI has InSAR 

data with different observation geometry during the same acquisition time, we can 

obtain the vertical and horizontal displacements using the MSBAS method. 

If multi-sensor and multitemporal InSAR data covering the ROI are available, we can 

collect all data to analyze the long-term deformation and understand the deformation 



Remote Sens. 2022, 14, 3832 5 of 20 
 

 

spatio-temporal evolution features based on the data-overlapping and deformation model 

[47,48]. 

2.4. Variable-Scale Deformation Product Generation 

The low-spatial-resolution deformation rate can be used to detect a stable surface in 

the WSA, which greatly reduces the task and data volume of wide-area InSAR defor-

mation monitoring. In addition, we obtain the fine results of the deformation time series 

with a high spatial resolution of ROI using advanced TS–InSAR technology. A variable-

scale deformation product organization structure includes low-spatial-resolution defor-

mation rates in stable areas of the WSA and the high-spatio-temporal-resolution defor-

mation in the ROI. Hence, we superimpose the high-spatio-temporal-resolution defor-

mation at the corresponding regions of the ROI on the wide-area deformation rate results 

to improve the spatial and temporal dimensions of the deformation in the ROI. At this 

stage, we can obtain variable-scale deformation products in the WSA, which only contain 

low-spatial-resolution deformation rates in stable regions, and fine monitoring results in 

the ROI. 

3. Study Area and Data Processing 

3.1. The Turpan–Hami Basin 

The Turpan–Hami basin, consisting of the Turpan and the Hami depressions, is an 

intermountain basin located in northwest China (Figure 2). Since the end of the Early Per-

mian period, the Turpan–Hami basin has developed following the model of “fault-de-

pression foreland”. It is a typical faulted basin, with limited sedimentary range, great lat-

eral variation of sedimentary thickness, and multiple depositions and subsidence centers. 

The geological conditions and active tectonic motion contribute to oil and gas accumula-

tion and make the Turpan–Hami basin the largest coal-derived petroleum-producing ba-

sin in China [49]. Moreover, there are many mineral resources in this basin, e.g., coal, iron, 

and potassium (sodium) saltpeter. It is the world’s largest potassium (sodium) saltpeter 

resource. Aydingkol Lake, located in the middle of the Turpan depression, is the lowest 

depression in China, 154.31 m below sea level [50]. Centering on Aydingkol Lake, the 

Turpan depression presents a roughly three-ring shape. The outermost ring has high 

snow-capped mountains. The middle ring is the Gobi gravel belt. The inner ring is an oasis 

plain belt, most of which belongs to a piedmont sloping plain, and accumulates a large 

area of fine soil alluvium. The water in the basin mainly comes from rainfall and meltwa-

ter from the surrounding mountains. The Tianshan mountains, e.g., Bogurda Mountain 

and Harlick Mountain, are in the north of the Turpan depression. The Flaming Mountains 

fault zone lies nearly east–west in the Turpan depression, between Turpan city and 

Shanshan county (Figure 2). Weathered material is transported from the Tianshan moun-

tains to the center of the basin by water flow, but is blocked by the Flaming Mountains 

fault line and accumulates in the northern part of the mountains. The surface water and 

groundwater from the Tianshan mountains are also blocked by the Flaming Mountains 

fault line. The head height of the shallow aquifers is raised on both sides of the Flaming 

Mountains, creating overflow zones and an oasis in these areas. 
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Figure 2. The Turpan–Hami basin and SAR data coverage. 

The Turpan–Hami basin has a typical continental warm temperate desert climate, 

with abundant heat and extremely little precipitation. It has 3200 h of sunshine in a year. 

The hydrogeology, climate, and lighting conditions make it an ideal place for growing 

cantaloupe, grapes, cotton, and off-season vegetables. Groundwater is the main source of 

agricultural water in the arid area. Previously, karezes were the predominant under-

ground water conservancy project in this region. A karez uses the principle of water po-

tential artware to divert water from shallow aquifers to the surface for irrigation. There 

are more than 2000 karezes in the Turpan–Hami basin, accounting for more than 70% of 

the total number of karezes in Xinjiang [51,52]. However, many electromechanical wells 

have been built in the Turpan–Hami basin since the 1960s. Groundwater exploitation has 

increased yearly, with the annual overexploitation reaching 2.48 × 1010 m3, leading to the 

continuous decline of groundwater level. Advanced water conservancy facilities have re-

duced people’s dependence on karezes. Meanwhile, the water supply source of karezes is 

shallow aquifers. The continuous reduction of groundwater level directly leads to the de-

crease or even drying-up of karezes [53]. The number of water-filled karezes in the Turpan 

depression decreased from 1237 in 1957 to 214 in 2014 [51]. In addition, the increased de-

mand and excess consumption of water resources in upstream areas have seriously threat-

ened the water supply of Aydingkol Lake, resulting in water area shrinkage. The exploi-

tation of groundwater and mineral resources will make the surface of the Turpan–Hami 

basin unstable and threatened by potential geohazards. 

3.2. InSAR Datasets 

To monitor wide-area deformation in the Turpan–Hami basin, we collected eight 

frames of InSAR data covering the whole Turpan–Hami basin from the Sentinel-1 satellite. 

The Sentinel-1 satellite began operation in April 2014, and has different observation peri-

ods in different regions, resulting in inconsistent periods of SAR data in different regions. 

To ensure the consistency of deformation rates from multiple frames, we selected the im-

ages (628 images in total) from the eight frames acquired from October 2017 to May 2020 

(Table 1). The spatial coverage of each dataset is shown in Figure 2. 
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Table 1. Acquisition periods of the datasets. 

Sensor Frame Time Number Frame Time Number 

S
en

ti
n

el
-1

 AT172F1317 
13/10/2017–30/05/2020 

77 AT143F131 
11/10/2007–28/05/2020 

81 

AT172F1322 77 AT143F136 81 

AT70F1316 
18/10/2017–30/05/2020 

78 AT41F130 
16/10/2017–21/05/2020 

78 

AT70F1321 78 AT41F135 78 

DT121F449 19/03/2015–27/04/2020 107 AT41F135 25/03/2015–21/05/2020 123 

ALOS-1 
AT496F840 

22/01/2007–14/09/2009 
11 AT497F840 

08/02/2007–04/10/2010 
11 

AT496F850 11 AT497F850 11 

Wide-area InSAR deformation shows that many subsidence funnels are concentrated 

in the south part of the Flaming Mountains fault zone in the Turpan depression (hereafter 

referred to as the SFM–def region). The SFM–def region (the yellow box in Figure 2) was 

selected as an application demonstration area of ROI to carry out the fine monitoring of 

the deformation time series. Four frames from the ALOS-1/PALSAR dataset spanning 

from 2007 to 2010 (green rectangles in Figure 2) and a descending track from the Sentinel-

1 dataset (red rectangle in Figure 2) covering the SFM–def region were collected. The com-

mon monitoring time of the Sentinel-1 ascending (AT41F135) and descending 

(DT121F449) tracks data is from 2015 to 2020 (Table 1). These data were used to precisely 

monitor the long-term and fine deformation in the SFM–def region. 

3.3. Data Processing 

We preprocessed all InSAR datasets covering the WSA. In each frame, one image was 

selected as the master image to register and resample the rest images. Multitemporal In-

SAR pairs were generated from SAR data in the same frame, based on the appropriate 

spatio-temporal baseline thresholds. All multitemporal DInSAR pairs were processed us-

ing GAMMA software [54] and two-pass DInSAR technology [55] to obtain multitemporal 

deformation signals. The shuttle radar topography mission (SRTM) digital elevation 

model (DEM) with a resolution of 30 m [56] was employed to remove the topographic 

phases. The point targets with a coherence lower than 0.3 were eliminated [57]. Least-

squares-based filtering and the minimum cost flow method [58] were then applied to fur-

ther suppress phase noise [59] and unwrap the differential interferogram, respectively.  

The eight frames of the Sentinel-1 data were preprocessed with a spatial baseline (per-

pendicular) and temporal baseline of 100 m and 48 days, respectively, and a multi-looking 

operation of 20:4. Then, stacking was used to process all the multitemporal deformation 

signals in each frame, to obtain a wide-area deformation rate of the Turpan–Hami basin. 

The adaptive deformation detection method proposed in Section 2.2 was used to delineate 

the deformation regions. The thresholds of the deformation rate, extension radius, and 

minimum clustering area were set as ±2 cm/year, 250 m, and 1 km2, respectively.  

For the SFM–def region, we set the multi-looking parameters of ALOS-1/PALSAR 

and Sentinel-1 data as 3:8 and 8:2, respectively. The improved IPTA method was used to 

compute the four frames of the ALOS-1/PALSAR data and the ascending/descending 

tracks from the Sentinel-1 datasets to obtain long-term and high-resolution displacements. 

Moreover, MSBAS technology was used to obtain multidimensional deformation from the 

ascending/descending tracks of the Sentinel-1 datasets. Then, we obtained the variable-

scale deformation product of the Turpan–Hami basin, which consists of low-spatial-reso-

lution deformation rates in the stable areas and high-spatio-temporal-resolution defor-

mation in the SFM–def region. 
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4. Results 

4.1. Monitoring and Detecting the Wide-Area Deformation in the Turpan–Hami Basin 

The wide-area ground subsidence in the Turpan–Hami basin (Figure 3) shows that 

the surface of the Turpan–Hami basin is generally stable. The regions with deformation 

account for a small proportion of the whole. The main deformation type is subsidence. 

Based on the deformation detection threshold set in Section 3.3, we identified 32 defor-

mation areas (the funnel) in the Turpan–Hami basin (the blue lines in Figure 3). The area 

of each funnel is shown in Table 2. The detected deformation area accounts for about 2.4‰ 

of the total monitoring area. 

Analyzing the hydrogeology and land cover of the deformation areas, we divided the 

ground deformation in the Turpan–Hami basin into three types: 

(1) Ground subsidence in agricultural areas caused by groundwater overexploitation. 

This kind of subsidence has the largest area and is concentrated in the oasis plain 

south of the Flaming Mountains fault zone (Figure 3a). 

(2) Ground subsidence associated with mineral mining. This kind of deformation is spo-

radically distributed over the Turpan–Hami basin. Such deformation regions have a 

small area but large deformation magnitude, e.g., Figure 3b. 

(3) Ground uplift associated with the lake water withdrawal, resulting in saline–alkali 

lands. This kind of deformation is mainly distributed around Aydingkol Lake, char-

acterized by small magnitude and mainly horizontal movement (Figure 4e,f). 

Table 2. The area of the deformation funnels. 

Num. Area (km2) Num. Area (km2) Num. Area (km2) Num. Area (km2) 

1 437.6 9 5.5 17 2.3 25 1.6 

2 61.2 10 5.1 18 2.3 26 1.5 

3 42.6 11 4.8 19 2.2 27 1.5 

4 26.1 12 4.1 20 2.2 28 1.5 

5 16.1 13 3.4 21 2.1 29 1.4 

6 11.1 14 3.1 22 2.1 30 1.2 

7 9.1 15 2.6 23 2.0 31 1.1 

8 6.8 16 2.5 24 1.9 32 1.0 

Total area (km2) 669.6 

 

Figure 3. Wide-area subsidence rate map and the detected deformation regions. The numbers iden-

tify the location of the top 10 deformation regions. (a) The SFM–def region in Figure 4. (b) One of 

the major mining areas. Background image: Google Maps satellite image. 
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Figure 4. Deformation rate along LOS directions from (a) ALOS-1/PALSAR, (b) ascending track 

Sentinel-1, and (c) descending track Sentinel-1 data. Negative values indicate the direction away 

from the SAR satellite, while positive values indicate the opposite. (d) The hydrogeology of this 

area. (e,f) The deformation rate along the up–down and east–west directions calculated from as-

cending/descending tracks Sentinel-1 data. The red dotted line delineates the central area of the 

subsidence funnels from 2007 to 2010. The magenta dotted line delineates the central area of the 

subsidence funnels from 2015 to 2020. 

The largest deformation funnel is distributed in the SFM–def region, with an area of 

437.6 km2, surrounded by small funnels (Figure 3a). The optical images show that the sub-

sidence funnels in the SFM–def region are highly correlated with the location of agricul-

tural areas. Aydingkol Lake is in the south of the SFM–def region (Figure 3a). In recent 

years, the area of the lake has continuously shrunk, and a large area of saline–alkali land 

has appeared. There is obvious ground uplift in these saline–alkali regions. In addition, 

multiple subsidence funnels are observed close to some mines, e.g., the funnel cluster in 

Figure 3b. The wide-area deformation results are discussed in detail in Section 5. 

4.2. Deformation Time Series of the SFM–Def Region from 2007 to 2020 

4.2.1. Long-Term Deformation in the Spatial Dimension 

The long-term (2007–2010 and 2015–2020), multidimensional (along with up–down 

and east–west directions), and high-spatial-resolution displacements are obtained from 

the four frames of the ALOS-1/PALSAR data and the ascending/descending tracks from 

the Sentinel-1 data, using advanced IPTA and MSBAS technologies (Figure 4). The ground 

deformation is mainly distributed in a plain area south of the Flaming Mountains fault 

line (Figure 4d). There are large areas of farmland in this region (Figure 3a), and the irri-

gation relies heavily on groundwater. The ground deformation is mainly vertical, with 

small horizontal movement (Figure 4e,f), which is typical for displacements caused by 

groundwater extraction [60–62]. The red and magenta dotted lines in Figure 4 delineate 

the settlement funnel centers in 2007–2010 and 2015–2020, respectively. The area and mag-

nitude of the subsidence in the northwest of the SFM–def region gradually decrease, but 

the subsidence area in the southeast gradually expands and becomes connected. The cen-

ter of the funnel shifts from the northwest to the southeast, and form a giant funnel with 
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a larger subsidence rate and area in the southeast region. See Section 5 for detailed analysis 

and discussion. 

4.2.2. Long-Term Deformation in the Time Dimension 

The long-term deformation rate can reflect the spatial distribution and evolution 

characteristics of ground deformation. We select two profiles (AA′ and BB′) and two 

points (P1 and P2) in the SFM–def region (Figure 4) to investigate the variation character-

istics of deformation in the time domain. The long-term time-series displacements at the 

corresponding position in the two monitoring periods, i.e., 2007–2010 and 2015–2020, are 

shown in Figures 5 and 6. The time-series cumulative deformation at AA′ and P1, BB′ and 

P2 can represent the deformation characteristics of the central region of the subsidence 

funnels during the two monitoring periods. 

The long-term deformation at AA′ and P1 shows that the subsidence of the area with 

the most significant subsidence in the first monitoring period tends to be stable, and slows 

down in the second period. In the first period, the subsidence rate of the section northwest 

of AA′ is higher than that of the southeast section. However, in the second period, this 

phenomenon is reversed. The subsidence center moves from northwest to southeast, 

which is consistent with the spatial evolution of the global subsidence funnel. In the first 

period, the subsidence rate of BB′ is small, and presents two separate funnels. In the latter 

period, the two funnels merge into a giant funnel. The subsidence area and rate increases 

significantly.  

Both ALOS-1/PALSAR and Sentinel-1 data can reflect the overall change characteris-

tics of the subsidence in time and space well (Figures 4 and 5). However, compared with 

the ALOS-1/PALSAR data, which have a revisit period of ≥46 days, the Sentinel-1 data can 

capture more detailed changes to the deformation signals with obvious periodicities in 

the time dimension due to its higher temporal resolution (≥12 days) (Figure 6). The sub-

sidence mainly occurs in summer. The ground tends to be stable or slightly uplifted in 

winter. See Section 5 for detailed analysis and discussion. 

 

Figure 5. The long-term cumulative deformation at the profiles (a,c) A-A′ and (b,d) B-B′ in Figure 4. 
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Figure 6. The time-series cumulative deformation at P1 and P2 in Figure 4. The blue dots represent 

the InSAR observations. The magenta lines are the linear fitting results of the corresponding InSAR 

observations. 

4.2.3. Reliability Assessment 

As can be seen from Figure 4, the deformation results of the SFM–def region from the 

ALOS-1 data of different frames have good consistency. The deformation obtained by the 

Sentinel-1 data of ascending and descending tracks also has good consistency in spatial 

distribution and magnitude. This indicates that the TS–InSAR results have a good con-

sistency. To quantitatively assess the reliability of the TS–InSAR results, we compare the 

average subsidence rates extracted from the overlapped areas of two adjacent InSAR 

frames acquired at the same period, e.g., ALOS-1/PALSAR datasets from AT496F840 and 

AT496F850, and Sentinel-1 datasets from AT143F136 and DT121F449 (Figure 2). Due to 

the different observation geometry of each monitoring point in different frames, we con-

vert the LOS deformation to the vertical direction for comparison. The correlation between 

the results at AT496F840 and AT496F850, and Sentinel-1 results at AT143F136 and 

DT121F449, are 0.98 and 0.99, respectively. The root-mean-square errors (RMSEs) between 

them are 0.02 and 0.01 mm/year, respectively. These results show good consistency, and 

the differences at most points are smaller than three times the RMSE (between the red 

dotted lines in Figure 7). 

 

Figure 7. Comparison between the results obtained by (a) ALOS-1/PALSAR AT496F840 and 

AT496F850 data, and (b) the Sentinel-1 AT143F136 and DT121F449 data. The red dotted lines denote 

the value three times the root-mean-square error.  
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5. Discussion 

5.1. Anthropogenic Factors of Ground Deformation in the Turpan–Hami Basin 

We obtained variable-scale deformation products in the Turpan–Hami basin using 

the proposed WAVS–InSAR method. The distribution of most detected deformation fun-

nels (Section 4.1) is highly consistent with human activity, such as agriculture cultivation 

and mineral mining. The agricultural area in the SFM–def region has a funnel cluster with 

the largest deformation area and magnitude in the Turpan–Hami basin. We obtained the 

long-term and multidimensional ground deformation in the SFM–def region in Section 

4.2. The subsidence center of the first period (2007–2010) shifted from the northwest to the 

southeast in the second period (2015–2020).  

We collect optical images of the SFM–def region in 2007 and 2018 (Figure 8a,b), cor-

responding to the two monitoring periods. The green lines mark the locations of the green-

houses that appeared in the latter period. As the optical images show, the majority of 

farmland in the SFM–def region in 2007 was open-air farmland. However, in 2018, there 

was a large area of greenhouses, especially in the farmland far from the Flaming Moun-

tains fault line. Many open-air farmlands in 2007 had been changed to greenhouses (Fig-

ure 8). In traditional open-air farmland, the crops are mainly grain and cotton, which are 

planted in spring, managed in summer, and harvested in autumn. However, in green-

house farmland, the expected proportion of fruit and vegetable cultivation is more than 

70% [63]. After 2009, many greenhouses were built in Turpan, especially in the agricul-

tural areas far from the southern margin of the Flaming Mountains fault line (Figure 8b). 

Advanced agricultural planting technologies have brought huge economic benefits to 

Turpan, but also increased the environmental burden, especially the demand for water 

[53]. Irrigation water in the SFM–def region is mainly groundwater. Hence, ground sub-

sidence caused by groundwater overexploitation is more significant in the greenhouse 

areas of the SFM–def region, resulting in aquifers carrying net deficit and the subsidence 

center shifting to the southeast (Figure 8a,b). 

 

Figure 8. (a,b) Optical images of the SFM–def region in 2007 and 2018. Green lines delineate green-

house planting areas. (c,d) Zoom-ins of the blue rectangular area in (a,b) in 2007 and 2018. Back-

ground image: Google Maps satellite image. 
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Karezes are an important water supply in arid agricultural areas, known as “the foun-

tains of life”. In China, karezes are mainly distributed in the Turpan–Hami basin (Section 

3.1). A karez is composed of vertical shafts, culverts, water outlets, open channels, and 

waterlogging dams, with length ranging from several to dozens of kilometers [51]. The 

number and distribution of karezes can reflect the changes to the ecological environment 

in the Turpan–Hami basin. It is important to evaluate the health of the aquifer. We com-

pared two high-resolution (0.44 m) optical images covering the blue rectangular region of 

Figure 8a,b in July 2003 and May 2013 (Figure 9), where ground subsidence funnels in the 

second period (Figure 9a,b) were developed. In July 2003, lots of small mounds—the shaft 

part of a karez—are linearly distributed in this area (Figure 9c). However, a lot of small 

mounds have disappeared in the optical image taken in May 2013, indicating the karezes 

in the area were severely damaged (Figure 9d). Some areas that karezes passed through 

were turned into farmland (Figure 9e,f). The water supply of karezes was destroyed. The 

water supply in this area will depend mainly on the extraction of groundwater using elec-

tromechanical wells. The karezes may have ceased to function, and dried up. 

 

Figure 9. Deformation rate in the blue rectangular area of Figure 8 from (a) ALOS-1/PALSAR, (b) 

ascending track Sentinel-1 data. (c,d) Optical images of this area in July 2003 and May 2013, respec-

tively. (e,f) Zoom-ins of the yellow rectangular area in (c,d). Background image: Google Maps sat-

ellite image. 

In addition, we collected land cover data of the SFM–def region in 2000, 2010, and 

2020 (Figure 10) (data from global Land Cover Data Product and Service website of Na-

tional Basic Geographic Information Center of China (http://www.globallandcover.com/), 

accessed on 10 July 2022), and the corresponding area of land cover type in each period 

(Table 3). The agricultural area has continuously expanded in the past two decades. Arti-

ficial areas have expanded rapidly in the past decade, more than 10 times the rate of the 

previous decade. Water and wetland areas have decreased in the last decade. In 2000 and 

2010, the lake area and the surrounding wetland area of Aydingkol Lake was stable, indi-

cating that surface runoff and groundwater are still effective for supply of the lake. These 

water sources can also partially alleviate the overexploitation of groundwater for agricul-

tural use. However, in 2020, land cover data showed that the waters and wetland of Ay-

dingkol Lake had almost disappeared. Farmland area is in the inner ring of Aydingkol 

Lake (Section 3.1). The excessive use of surface and underground water in farmland areas 

has seriously reduced the water supply of the lake, resulting in the shrinkage of water and 
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wetland, which will seriously endanger the ecological environment. The transformation 

of local agriculture and the economy has upset the ecological balance in the SFM–def re-

gion and the balance of aquifers. Conflicts between the development of the local agricul-

tural economy and ecological environment should arouse the attention of local govern-

ments. 

 

Figure 10. Spatio-temporal evolution of the land covers in the SFM–def region in 2000, 2010, and 

2020. The red and magenta dotted lines delineate the central area of the subsidence funnels during 

the periods 2007–2010 and 2015–2020, respectively. 

Table 3. The area of different land covers in the SFM–def region in 2000, 2010, and 2020, obtained 

from Globeland 30. 

Sort 

Time 
Farmland Grassland Wetland Waters Artificial Nudation 

2000 574.33 652.74 99.90 13.68 43.81 2288.24 

2010 657.46 669.62 99.90 14.09 48.50 2181.47 

2020 705.65 658.64 0.16 1.53 110.14 2194.59 

Percentage 1 a 14.5% 2.6% 0 3.0% 10.7% −4.7% 

Percentage 2 b 7.3% −1.6% −99.8% −89.1% 127.1% 0.6% 

Percentage 3 c 22.9% 0.9% −99.8% −88.8% 151.4% −4.1% 

Unit: km2. a: Percentage of numerical growth in 2010 compared with 2000. b: Percentage of numerical 

growth in 2020 over 2010. c: Percentage of numerical growth in 2020 compared with 2000. 

5.2. Geological Explanation of Ground Deformation in the Turpan–Hami Basin 

There are many farmlands in both the Turpan and Hami depressions. Facility agri-

culture planting areas are also developed in other agricultural areas, e.g., the oasis areas 

in Hami and the western part of Turpan. However, why is there a large area of ground 

subsidence funnels in only the agricultural areas of the SFM–def region? 
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We plotted the deformation results and the corresponding optical images and faults 

of the oasis areas in the Turpan depression and the Hami depression (Figure 11). Rainfall 

is scarce in the Turpan–Hami basin. Irrigation water in the oasis agricultural areas de-

pends on rainfall and meltwater from the surrounding mountains (Section 3.1). The Flam-

ing Mountains fault line lies east–west in the Turpan depression, blocking water flowing 

from the Tianshan mountain to the south. The other areas, e.g., the northern part of the 

Flaming Mountains fault line and Hami, can directly obtain abundant mountain water. 

The surplus water in the Hami oasis can even form a river to supply the downstream area 

in the southwest (Figure 11d). However, the SFM–def region is short of surface water and 

groundwater, and the only river channel has almost dried up. As the distance from the 

southern margin of the fault increases, the water supply gradually decreases. The limited 

surface water cannot meet the continuously increasing demand for irrigation water, re-

sulting in the continuous overexploitation of aquifers, causing the development of many 

subsidence funnels in this area. 

 

Figure 11. Comparison of ground deformation and optical images in (a,b) Turpan and (c,d) Hami 

oases. Background image: Google Maps satellite image. 

The climate in the Turpan–Hami basin is dry and sunny, so evaporation is serious, 

especially in late spring and summer, when 75% of the year’s evaporation occurs. Summer 

is also the main period of crop growth, which demands more water for irrigation. The 

agriculture in the SFM–def region relies heavily on groundwater exploitation, which di-

rectly leads to the short-term sharp loss of aquifers, and accelerates surface subsidence. 

From late autumn to early spring, groundwater exploitation intensity in farmland de-

creases. The aquifers are replenished by surface runoff and groundwater reflux. This ex-

plains why the subsidence of the funnels in farmland accelerates in summer and autumn, 

and slows down or turns to slight uplift in winter and spring (Figure 6). 

5.3. Development of InSAR Deformation Monitoring in a Wide Area 

At present, most wide-area InSAR deformation monitoring projects use the TS–In-

SAR algorithm to resolve the deformation time series of all highly coherent monitoring 

points in each frame [10,11,13,17]. Even though different multi-looking ratios for the WSA 
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and the ROI were used to improve the efficiency of data processing by controlling the 

spatial resolution of the results [14], these methods are still not out of the scope of time-

series deformation calculation. Moreover, if the strategy of reducing spatial resolution is 

not optimized, it will cause repeated calculations and reduce monitoring efficiency. The 

deformation rate is usually used to detect potential geohazards in a wide area [38]. There-

fore, the deformation time series of some points is unnecessary, especially for stable areas. 

Hence, calculating the deformation time series at all monitoring points wastes computing 

resources and labor costs, and produces lots of redundant results. For example, defor-

mation areas account for about 2.4‰ of the total monitoring area in the Turpan–Hami 

basin. WAVS–InSAR only calculates the deformation rate at each monitoring point in the 

WSA. Reducing the time dimension of the wide-area deformation results can greatly im-

prove the efficiency of the multitemporal InSAR solution, especially for a lot of InSAR 

frames in the WSA. Spatial distribution and area of deformation are detected by an adap-

tive deformation detection method combined with the obtained wide-area deformation 

rate. After that, high-precision time-series monitoring is only done in the ROI to obtain 

effective fine deformation results. 

For variable-scale deformation results, the WAVS–InSAR strategy proposes a novel 

variable-scale deformation product organization structure, i.e., it shows the deformation 

information at the stable surface with low-spatial-resolution deformation rate, while the 

ROI has a high-spatio-temporal-resolution deformation time series. This structure reduces 

the amount of deformation results in the stable regions of the WSA, locates the ROI effi-

ciently, and improves the spatial and temporal dimensions of the deformation in the ROI, 

which is convenient for the calculation, storage, display, and interpretation of the defor-

mation results. 

As the SAR satellites and InSAR data increase, InSAR deformation monitoring pro-

jects will produce many monitoring results. In the future, wide-area InSAR deformation 

monitoring projects should be object-oriented, integrating different deformation monitor-

ing to obtain deformation results of multidimensional and high spatio-temporal resolu-

tion, and ultimately form a set of universal deformation products. The data-processing 

strategy and deformation product organization structure proposed in WAVS–InSAR will 

greatly improve deformation monitoring efficiency and reduce the storage space of mas-

sive InSAR monitoring data, which may become a standardized data-processing proce-

dure and data-storage format for future wide-area InSAR deformation products. 

6. Conclusions 

In this study, we proposed a variable-scale InSAR ground-deformation detection 

strategy and a deformation product organization structure for wide-area monitoring, 

namely WAVS–InSAR. This strategy efficiently obtains the deformation rate in the WSA, 

and uses an adaptive deformation detection method to process the wide-area deformation 

rate and obtain the spatial distribution and area of the deformation areas (ROI). High-

precision time-series monitoring is then only done in the ROI, to obtain effective fine de-

formation results. Therefore, we can produce variable-scale deformation products in the 

WSA that consist of low-spatial-resolution deformation rates in stable regions, and fine 

monitoring results in the ROI. 

The proposed WAVS–InSAR was used to monitor wide-area deformation in the Tur-

pan–Hami basin, which has an area of 277,000 km2. The results show that there are 32 

deformation regions with an area of more than 1 km2 and a deformation magnitude of 

more than 2 cm/year. The detected deformation areas account for about 2.4‰ of the total 

monitoring area. The SFM–def region is selected as an application demonstration area of 

the ROI to carry out fine monitoring of the deformation time series. We obtain the long-

term and multidimensional deformation of this area from 2007 to 2010 and from 2015 to 

2020 using improved IPTA and MSBAS technologies.  

The subsidence funnel center in the SFM–def region moved from northwest to south-

east during 2007 to 2020. Based on the variable-scale deformation products and the 
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information regarding hydrogeology, land cover and human activities, we analyze the 

causes of ground subsidence. Tectonic faults have blocked the water supply in the SFM–

def region. The rapid development of facility agriculture has increased the water demand 

for irrigation. To solve this problem, groundwater has been overexploited. The aquifers 

in the oasis plain in the SFM–def region are in a state of net deficit. Increased demand for 

water in the upper reaches of Aydingkol Lake has reduced the lake’s water supply. Ay-

dingkol Lake has shrunk dramatically. In addition, there are several deformation areas 

related to mining in the Turpan–Hami basin. 
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