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Abstract: Thanks to the excellent feature representation capabilities of neural networks, target
detection methods based on deep learning are now widely applied in synthetic aperture radar (SAR)
ship detection. However, the multi-scale variation, small targets with complex background such as
islands, sea clutter, and inland facilities in SAR images increase the difficulty for SAR ship detection.
To increase the detection performance, in this paper, a novel deep learning network for SAR ship
detection, termed as attention-guided balanced feature pyramid network (A-BFPN), is proposed
to better exploit semantic and multilevel complementary features, which consists of the following
two main steps. First, in order to reduce interferences from complex backgrounds, the enhanced
refinement module (ERM) is developed to enable BFPN to learn the dependency features from
the channel and space dimensions, respectively, which enhances the representation of ship objects.
Second, the channel attention-guided fusion network (CAFN) model is designed to obtain optimized
multi-scale features and reduce serious aliasing effects in hybrid feature maps. Finally, we illustrate
the effectiveness of the proposed method, adopting the existing SAR Ship Detection Dataset (SSDD)
and Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0). Experimental results show that the
proposed method is superior to the existing algorithms, especially for multi-scale small ship targets
under complex background.

Keywords: deep learning; synthetic aperture radar (SAR); balanced feature pyramid network (BFPN);
ship detection

1. Introduction

Synthetic aperture radar (SAR) is a kind of active microwave imaging sensor with
an all-day and all-weather capability to provide high-resolution images [1]. Due to the
particularity of SAR images, artificial interpretation of SAR images is a time-consuming
and labor-intensive process. SAR image target detection aims to automatically locate and
identify specific targets from images, which has a significant application prospect in defense
and civilian fields, such as target identification, object detection, ocean development and
terrain classification [2–4], to name a few. As a basic marine task, SAR ship detection is
of great value in maritime traffic control, maritime emergency rescue and intrusion target
warning [5], which has received wide attention in recent years.

Traditional SAR ship detection methods can be divided into three types, including
exploiting backscattering amplitude properties, polarization properties and geometric
properties. In the first category, the constant false alarm rate (CFAR) algorithm has been
widely utilized in SAR ship detections [6,7]. According to the background clutter sta-
tistical distribution model, the detection threshold is adjusted adaptively, and the most
suitable threshold for ship target is obtained. However, this approach relies heavily on
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human predefined distributions and is strongly influenced by background statistical re-
gions. Therefore, under the interference of complex background, the traditional SAR image
detection method is difficult to achieve accurate ship detection. In the second category,
methods based on polarization properties distinguish the target and background by using
the differences in scattering mechanism between ships and sea clutter [8,9]. However, it is
a difficult task to build a comprehensive polarization scattering characteristic library. The
last category is based on geometric properties by using the size, area, shape, and texture
features [10,11], in which template matching strategy is usually adopted for ship detection.
However, the object detection performance of these methods relies heavily on a library of
templates previously built through expert experience. They require all SAR image pixels to
be matched with the template, resulting in significant computational costs. However, the
detection ability of these traditional algorithms for SAR ship targets of different scales is
weak, and furthermore, it is difficult to deal with complex scenarios and small targets.

In recent years, with the rise of artificial intelligence and rapid advances in SAR
imaging technologies, many researchers in the SAR field began to study the ship detection
method based on deep learning (DL). At present, several SAR ship detection methods
based on DL have been proposed, which are mainly divided into two groups including
two-stage methods based on regional convolutional neural network (CNN) (RCNN) [12]
and one-stage methods based on you only look once (YOLO) [13] and single shot detector
(SSD) [14]. Compared with traditional methods, approaches based on DL have realized
significant advantages of high efficiency and precision, because they enable computing
models with multiple layers of processing to learn data representations with multiple
layers of abstraction, which effectively improves detection accuracy. However, due to
the unique imaging technology of SAR, there is a large amount of speckle noise, and
ship detection in SAR images is susceptible to land facilities, islands, wave clutter, and
changeable sea conditions. At the same time, due to the multi-resolution imaging mode,
multi-scale, especially small targets are the characteristics of SAR images. When the
small target is mapped to the final feature map, the missing rate is high due to the lack
of localization refinement and classification information, which reduces the detection
performance. Therefore, it is necessary to further develop the algorithm suitable for multi-
scale variation, small targets with complex background.

Considering the above issues, a novel DL network model for SAR ship detection,
called attention-guided balanced feature pyramid network (A-BFPN), is proposed to better
exploit semantic and multilevel complementary features. First, we developed the enhanced
refinement module (ERM) in the balanced feature pyramid network of the neck to em-
phasize or suppress visual information acquired through training and enhance feature
representation. The enhanced feature map can be used to learn “which” feature map is
more useful in channel dimension and “where” objects in spatial dimension may exist,
to enhance the feature learning ability of the network to the region we are interested in
and suppress its interference by complex background. In doing so, the ship objects can
be accurately located and distinguished. Second, in order to reduce the aliasing effect of
cross-scale feature fusion, this article proposes a channel attention-guided fusion network
(CAFN) to optimize the aliasing feature of fusion and enhance its discrimination ability.
Finally, based on the SAR Ship Detection Dataset (SSDD) [15] and Large-Scale SAR Ship
Detection Dataset-v1.0 (LS-SSDD-v1.0) [16], the effectiveness and feasibility of the proposed
method are verified. The experiments show that this method is superior to other detection
algorithms based on CNN for SAR multi-scale ship targets.

With the exploration of DL by many researchers, CNN is widely used in natural scene
object detection and has made remarkable progress. At present, object detection methods
based on deep learning can be classified into two groups:

(1) Two-stage detection methods. The representative two-stage methods include Faster-
RCNN [15], feature pyramid network (FPN) [17], Mask-RCNN [18], region-based
fully convolutional network (R-FCN) [19], and Cascade-RCNN [20]. The detection
process includes two steps. First, a series of proposal boxes produced by the candidate
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regions, then those proposal boxes are classified, and the exact position of the proposal
boxes is further regressed. R-CNN [21] is the first one that applied DL to object
detection. Later, inspired by SPP-Net [22], Fast-RCNN [23] proposed a pooling
layer of the region of interest (RoI), which improved processing speed and detection
accuracy. Subsequently, Faster-RCNN and improved Fast-RCNN use the region
proposal network (RPN) instead of selective search to extract proposal. It is worth
noting that the emergence of Faster-RCNN is an important milestone for two-stage
detectors. It is composed of a backbone network, RPN and boundary box regression
network. The introduction of RPN significantly improves detection accuracy. On the
contrary, it also greatly increases the cost of testing time. Then Mask-RCNN came
into being, where FCN is introduced to generate relevant mask branches, and the
corresponding RoI align solution is proposed for pixel bias in RoI pooling. Based on
Faster R-CNN, R-FCN greatly improves the detection speed through network shared
computing. The cascade-RCNN alleviates the problem of quality mismatch in training
overfitting and inference through multi-level architecture and has a good optimization
effect on RPN candidate regions. In addition, in order to solve the problem of multi-
scale variation in object detection, many researchers proposed different multi-scale
feature extraction modules. As is known to all, FPN builds a rich multi-scale feature
pyramid through single-resolution input images, where each layer of the pyramid
is used to detect targets of different scales. It integrates multiple layers of feature
information and has been widely adopted by subsequent algorithms. In [24], atrous
spatial pyramid pooling (ASPP) captures object and image contexts on multiple scales
by using atrous convolution at multiple sampling rates. In [25], AugFPN further
tapped the potential of multi-scale features by integrating three simple and effective
components: consistency supervision, residual feature enhancement and soft RoI
selection. In [26], Libra R-CNN solves the problem of imbalance in training through
balanced IoU sampling, balanced L1 loss, and balanced feature pyramid network.

(2) One-stage detection methods. The representative one-stage methods include YOLO [13],
SSD [14], RetinaNet [27], CornerNet [28], and FCOS [29]. Different from the two-stage
detector, RPN is not required, and the one-stage detector classifies and regresses
the target directly at each position of the feature map. The YOLO algorithm regards
detection as a regression problem and directly uses CNN to realize the whole detection
process. It divides the raw image into s× s grids, and the center of each object grid is
responsible for predicting the location and category of target. However, one grid center
predicts only one class of objects. The SSD detects objects of different sizes on multi-
scale feature maps, where anchor module and multi-scale feature extraction layer
are introduced to solve the shortcomings of YOLO rugged mesh and low detection
accuracy of small objects. RetinaNet overcomes the imbalance of positive and negative
samples in the detection by using focus loss. More recently, some anchor-free models
have been proposed that do not require prior knowledge to design anchors, including
the key point-based algorithms such as CornerNet, and anchor point-based algorithms
such as FCOS. Compared with the two-stage detection methods based on R-CNN, the
one-stage detection methods improves detection speed, but at the cost of accuracy.

The traditional SAR ship detection algorithms are listed as follows. He et al. [30] further
proposed an automatic detection method for polarization SAR ships. Kapur et al. [31]
used Shannon entropy concept for image segmentation, which overcomes the problem
of detecting unconnected ships with single parameter threshold segmentation algorithm.
Several two-parameter CFAR algorithms use Gaussian model to build the clutter model of
ocean background [32], which in many cases does not describe the clutter well. In addition,
Shi et al. [33] separated the ship target from the background by extracting target features
through directional gradient histogram.

However, the performance of these approaches is much lower than algorithms based
on DL. Fan et al. [34] applied the full convolutional network to ship detection of polari-
metric SAR images. Kang et al. [35] combined the contextual features of high-resolution
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RPN and ships to improve the positioning precision of small SAR ships. Based on Libra
R-CNN, Guo et al. [36] proposed a method that uses rotation Angle information balance
for ship position prediction with three levels of neural network, which refer to the sample
level, feature level and objective level. In addition, in our previous work [37], a new
multidimensional DL network model was proposed to improve detection performance by
utilizing complementary properties of spatial and frequency domains. In recent studies,
Yu et al. [38] proposed CR2A-NET to solve the problem of intensive ships in ship detection
tasks, which achieve high-precision detection of ships at any orientations through three
parts of rotating anchor assisted detection module, rotating alignment convolution layer,
and data preprocessing module. Lin et al. [39] proposed the squeeze and excitation rank
(SER) Faster R-CNN, which suppressed redundant sub-feature maps through SE mecha-
nism and rank modification to improve detection performance. In order to suppress the
false alarms and capture ship target features, attention mechanism is used in some studies
as well [40–43]. Cui et al. [44] proposed a new multi-scale ship detection method for SAR
images based on dense attention pyramid network (DAPN), which connects feature maps
from the top of the pyramid to the bottom to detect multi-scale SAR ships. Fu et al. [45]
introduced a feature balancing and refinement network (FBR-Net) to balance semantically
the multiple features across different levels. However, these methods do not adequately
consider the characteristics of SAR images in the ship detection tasks. Therefore, this article
proposes an attention-guided balanced feature pyramid network (A-BFPN).

2. Methods

In this section, the A-BFPN network for SAR ships detection is proposed, and the
detailed implementation procedures are also presented. First, the motivation and overall
architecture of the proposed A-BFPN are illustrated via analyzing the shortcomings of
existing BFPN network model. After this, each module of A-BFPN is introduced in detail.
At the end of this section, the loss function used in the training process is given.

2.1. Problem Formulation and Method Overview

It is important in SAR ship detection to solve problems such as the large proportion of
small object features, the imbalance of multi-scale features and the interference of complex
background. As shown in Figure 1, ships in SAR images are small in volume. Since
convolutional neural network is a multi-layer structure composed of several convolutional
layers, the feature information of small targets will become less rich with the increase of
network depth. Therefore, the performance of the detection network for small objects is
poor. In addition, due to the different resolutions and incident angles, SAR ships always
present multi-scale characteristics. However, some simple feature pyramid networks pay
more attention to the features of adjacent layers than to other layers, and the semantic
information contained in adjacent layers is diluted. Therefore, the multi-scale features of
ship targets are not fully utilized. Finally, the wide range of complex backgrounds in SAR
images can lead to some false positives, which contains background clutter and inland
facilities in the inshore. All these problems will lead to the limited performance of SAR
ship detection.

To solve the above problems, we adopt Resnet-101 as the backbone to construct the
neural network. A CNN network can extract the features of labeled data independently,
which effectively avoids the traditional complex feature design and has the advantages of
fast and efficient. Different from the BP neural network, the CNN network uses parameter
sharing mechanism, which can achieve the purpose of DL to train the deeper network.
In this work, we use deep residual network ResNet101 to extract SAR image features to
simplify the training process. In addition, the residual structure in the network is called
a bottleneck, as shown in Figure 2. The structure of ResNet101 extractor consists of five
convolutional stages, represented by {conv1, conv2, conv3, conv4, conv5}, each of which
contains several traditional convolutional layers or bottlenecks and outputs a feature of a
different scale from the other stages.
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Figure 2. The architecture of a residual bottleneck.

With the increase of convolutional step size and residual network hierarchy, the spatial
resolution of feature maps decreases gradually, while the number of channels increases
gradually. The low-level features contain accurate location information, but lack semantic
information, which is suitable for small-scale ship detection. In contrast, the high-level
feature contains abundant semantic information but poor location information, indicating
that it is suitable for detecting large ships. Therefore, FPN uses the information of different
layers in a CNN network to obtain the features of the final combination. As presented
in Figure 3, the structure of FPN can be divided into bottom-up path, top-down path,
and horizontal connection. In addition, several typical FPN and its extended versions
were designed to take advantage of multi-scale features, and they augment the features
of the pyramid with bottom-up or top-down information paths. Unlike other FPNs that
directly add and fuse features of different resolutions, BiFPN [46] improves detection
accuracy and efficiency by repeatedly utilizing each feature network layer composed of
top-down and bottom-up paths. However, they pay more attention to the features of
adjacent resolutions than to other resolutions in the integration process, and the semantic
information of adjacent layers will be diluted. Therefore, Pang et al. proposed the balanced
feature pyramid network (BFPN) to efficiently utilize multi-scale features, as shown in
Figure 4.
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Based on FPN (Faster -RCNN), BFPN conducts rescale, integrate, refine and fuse
on the features of the four levels. First, the hierarchical features extracted from FPN are
adjusted to the same size as C4 using interpolation and maximum pooling, respectively.
After that, the balanced semantic features can be obtained by integrating the features of all
levels through mean calculation, given by

M =
1
L

l=lmax

∑
l=lmin

Cl (1)

where the feature with resolution level l is represented as Cl . The number of multi-level
features is represented as L, and the lowest and highest-grade indexes involved are repre-
sented as lmin and lmax, respectively.

Finally, the balanced semantic features are further refined by non-local attention, and
the refined features are fused with the original features of each layer of C by direct addition.

For the complex background and the unsharp features of small objects in SAR ship
detection, it is of vital importance that the detection network can enhance or suppress dif-
ferent channels for different tasks. However, BFPN only considers the relationship between
features from the spatial dimension, and ignores the difference in each feature channel.
Therefore, to overcome this issue, we develop the enhanced refinement module (ERM)
to improve feature representation capabilities and make BFPN more discriminating. In
addition, BFPN fuses semantic features and original features through simple superposition,
resulting in serious aliasing effects and performance degradation of SAR ship detection. To
mitigate the negative effects of aliasing, a straightforward solution is to exploit an attention
module on a feature pyramid. We expect that attention mechanisms at different layers can
learn from information at other layers. Therefore, we propose a channel attention-guided
fusion network (CAFN) inspired by CBAM [40], which guides each layer of the pyramid
to mitigate aliasing effects. The proposed A-BFPN contains four main components. The
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backbone uses the ResNet-101, the neck includes enhanced refinement module (ERM) and
channel attention-guided fusion network (CAFN), the region proposal network (RPN) and
the head include classification and regression of bounding boxes, illustrated in Figure 5.
Details of the algorithm are described in the following.

Remote Sens. 2022, 14, 3829 7 of 20 
 

 

Finally, the balanced semantic features are further refined by non-local attention, 
and the refined features are fused with the original features of each layer of C by direct 
addition. 

For the complex background and the unsharp features of small objects in SAR ship 
detection, it is of vital importance that the detection network can enhance or suppress 
different channels for different tasks. However, BFPN only considers the relationship 
between features from the spatial dimension, and ignores the difference in each feature 
channel. Therefore, to overcome this issue, we develop the enhanced refinement module 
(ERM) to improve feature representation capabilities and make BFPN more discrimi-
nating. In addition, BFPN fuses semantic features and original features through simple 
superposition, resulting in serious aliasing effects and performance degradation of SAR 
ship detection. To mitigate the negative effects of aliasing, a straightforward solution is 
to exploit an attention module on a feature pyramid. We expect that attention mecha-
nisms at different layers can learn from information at other layers. Therefore, we pro-
pose a channel attention-guided fusion network (CAFN) inspired by CBAM [40], which 
guides each layer of the pyramid to mitigate aliasing effects. The proposed A-BFPN 
contains four main components. The backbone uses the ResNet-101, the neck includes 
enhanced refinement module (ERM) and channel attention-guided fusion network 
(CAFN), the region proposal network (RPN) and the head include classification and re-
gression of bounding boxes, illustrated in Figure 5. Details of the algorithm are de-
scribed in the following. 

 
Figure 5. The framework of the proposed attention-guided balanced feature pyramid network 
(A-BFPN). 

2.2. Enhanced Refinement Module 
For the SAR ship detection task, because ship objects and complex background 

clutter share similar scattering characteristics, it is likely to misunderstand this back-
ground interference as ship target. In order to solve this problem, shown in Figure 6, we 
developed a new enhanced refinement module (ERM) to learn the dependencies be-
tween different features from the channel and spatial direction, respectively, to generate 
more distinctiveness features about ship objects and its background. By doing so, we 
enhance the expressing ability of ship objects in the features, especially for small ship 
targets and also restrain the false detection caused by complex background clutter. 

Figure 5. The framework of the proposed attention-guided balanced feature pyramid network
(A-BFPN).

2.2. Enhanced Refinement Module

For the SAR ship detection task, because ship objects and complex background clutter
share similar scattering characteristics, it is likely to misunderstand this background inter-
ference as ship target. In order to solve this problem, shown in Figure 6, we developed a
new enhanced refinement module (ERM) to learn the dependencies between different fea-
tures from the channel and spatial direction, respectively, to generate more distinctiveness
features about ship objects and its background. By doing so, we enhance the expressing
ability of ship objects in the features, especially for small ship targets and also restrain the
false detection caused by complex background clutter.
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In order to quickly capture the dependence between long-distance features at dif-
ferent positions in the feature maps, E  is used as the input of non-local attention, 
which has higher computational efficiency and fewer stacking layers. The calculation is 
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Figure 6. The enhanced refinement module (ERM) architecture in the proposed A-BFPN.

We consider using global information to guide the network to selectively enhance
features that contain useful information and suppress those that are useless. First, the
global average pooling is calculated on the balanced semantic feature map to collect the
global feature at channel level. Then, we perform the fully connected layer ReLU on global
features to obtain the weights for different channels. Next, a sigmoid activation function is
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used. In addition, the channels of the original feature map are scored at last. The above
steps are calculated as follows:

g(1×1×C) = GAP
(

m(H×W×C)

)
(2)

g(1×1× C
r )

= FC
(

g(1×1×C)

)
(3)

y(1×1×C) = FC′
(

ReLU
(

g(1×1× C
r )

))
(4)

ϕ(1×1×C) = Sigmoid
(

y(1×1×C)

)
(5)

where m represents the balanced feature with H ×W × C dimensions obtained in Equa-
tion (1), GAP(·) represents a global average pooling function that transforms the dimension
to 1× 1× C, FC represents a fully connected layer that reduces channel dimension to C/r,
the tensor g

(
1× 1× C

r

)
passes through the ReLU function, and then the output tensor

y(1× 1× C) with channel size restored to C is obtained through another fully connected
layer FC′. As a result, we obtain the excitation value ϕ(1× 1× C) of the channel passes
through the sigmoid function of the balanced feature m(H ×W × C). Finally, the excitation
tensor ϕ(1× 1× C) is broadcast and multiplied by the balanced feature m(H ×W × C) to
adjust its channel:

E(H×W×C) = m(H×W×C) × ϕ(1×1×C) (6)

In order to quickly capture the dependence between long-distance features at different
positions in the feature maps, E is used as the input of non-local attention, which has higher
computational efficiency and fewer stacking layers. The calculation is

R = h1×1{so f t max[h1×1(E)⊗ h1×1(E)]⊗ h1×1(E)} ⊕ E⊕m(H×W×C) (7)

where E represents balanced semantic features, R represents refined balanced semantic
features, h1×1(·) represents the convolution operation with a convolution kernel size of
1× 1, ⊗ and ⊕ represent matrix multiplication and addition operations, respectively.

The final refinement integration feature is obtained by R. The differences between
integration features are increased by refining the balanced semantic features. It is of vital
importance to distinguish targets and background in ships detection.

2.3. Channel Attention-Guided Fusion Network

The cross-scale fusion and the skip connection are widely used to improve the perfor-
mance of object detection, and the intuitive connectivity enables a full use of functionality
at each level. However, there are semantic differences at all levels of feature maps. In this
case, direct fusion after interpolation leads to aliasing effect, and repeated feature fusion
will not only lead to more serious aliasing effect, but also bring unnecessary computational
burden. Inspired by CBAM, attention mechanisms can be used to optimize the aliasing
feature of fusion. Therefore, we developed a channel attention-guided fusion network
(CAFN), which adaptively integrates feature information of different channels according to
channel weights, illustrated in Figure 7.
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On one hand, we first use the same interpolation and maximum pooling methods for
the integrated features R to recover the original feature size, and then add and fuse the
original feature C respectively to obtain the preliminary fusion feature layers F′, given by

F′ = C⊕ F (8)

On the other hand, considering the high computational cost of performing indepen-
dent attention learning at each level, and the expectation that attention mechanisms at
each level can learn from information at other levels, we only extract channel weights by
integrating feature map R:

F′′ = σ(FC(MaxPool(R)) + FC(AvgPool(R))) (9)

where the global maximum pool MaxPool(·) and global average pool AvgPool(·) are used
to obtain two different spatial context information, respectively. Later, two descriptors
are sent separately to the fully connected layer FC(·). As a result, the eigenvectors F′′ are
combined by element-by-element addition and sigmoid function σ.

The channel weight F′′ is multiplied by each preliminary fusion feature layer F′ to
obtain the final fusion feature layer P, given by

P = F′′ ⊗ F′ (10)

In this process, the aliasing effect of feature fusion is reduced, and the levels of feature
pyramid are optimized. Finally, the output features of CAFN are sent to RPN for subsequent
objects detection.

2.4. Loss Function

Similar to other classical two-stage object detectors, both RPN and detection networks
are optimized by using multitask loss, which is given by

L{pi, ti} =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (11)

where Ncls and Nreg are the numbers of minibatch samples in the training stage, pi refer to
the prediction probability of the i-th anchor, p∗i refer to the corresponding ground truth label
and it is 1 when the anchor is positive, or else p∗i is 0, λ represents the weighting parameter.
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ti refer to the parameterized coordinate vectors, which is defined as ti =
{

tx, ty, tw, th
}

,
where tx, ty are the coordinates of the center point of the prediction box and tw, th are
the width and height of the prediction box, and t∗i refer to the coordinate vector of the
corresponding ground truth, Lcls and Lreg refer to classification and regression losses,
respectively. Cross Entropy (CE) is utilized as the classification loss, which is given by

Lcls(pi, p∗i ) = − log(p∗i pi + (1− p∗i )(1− pi)) (12)

The regression network loss is given by

Lreg(ti, t∗i ) = S(ti − t∗i ) (13)

where S represents the Smooth L1 loss, which is defined by

SmoothL1(x) =

{
0.5x2, |x| ≤ 1
|x| − 0.5, otherwise.

(14)

3. Results
3.1. Dataset Description and Settings

The ship target images in SSDD have multiple polarization modes, multiple resolu-
tions, and rich scenes. The SSDD data were mainly obtained from TerraSAR-X, Sentinel-1,
and Radarsat-2 sensors, including VH, HV, VV, and HH polarization modes. In addition,
the resolution of SAR images ranges from 1 m to 15 m. The detailed summary of the data
information is described in Table 1. SSDD dataset contains 1160 SAR images of 2358 ships,
each containing an average of 2.12 ship targets. Figure 8a,b respectively represent the
distribution of the height-width and height-width ratio distribution of each ship object.

Table 1. Information regarding the SSDD dataset.

Sensors Polarization Resolution Position

TerraSAR-X

Sentinel-1 VH, HV
VV, HH 1–15 m offshore

inshore
RadarSat-2
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The LS-SSDD-V1.0 dataset consists of Sentinel-1 images in the interferometric wide
swath mode and contains 15 large-scale SAR images with 24,000 × 16,000 pixels. The pub-
lisher of the dataset cut these 15 large-scale images into 9000 sub-images with 800 × 800 pixel.
SAR ships in LS-SSDD-V1.0 are provided with various resolutions around 5 m, and VV and
VH polarizations. According to the setting of the original reports in [16], there are 6000 SAR
images in the training set and 3000 SAR images in the test set.

In this work, all experiments were carried out under PyTorch1.1.0 framework, and
network training was carried out on computers using NVIDIA GTX1660s GPU with
Ubuntu16.04 and Cuda9 and Cudn7. In order to standardize the research benchmark
of SSDD, serial number SAR images ending in 0 and 9 in SSDD are unified as the test set
of result analysis, and the number of samples of training set and test set are 928 and 232
respectively. The learning rate was set as 0.02, and the maximum number of iterations
was 12 epochs on SSDD. Moreover, the learning rate was set as 0.002, and the maximum
number of iterations was 32 epochs on LS-SSDD-V1.0. In addition, ResNet101 pre-trained
on ImageNet was adopted as the initialization model.

3.2. Evaluation Criteria

Several evaluation criteria are used to quantitatively evaluate and compare the detec-
tion performance of different ship detection methods on SSDD, including the precision rate,
recall rate, F1-score, and mean average precision (mAP). These criteria are obtained by four
well-established components in information retrieval, true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). In this article, TP and TN represent the number
of correctly detected ships and the number of correctly detected backgrounds, respectively.
FP refers to the number of false positives, and FN represents the number of ships that have
not been detected.

The precision rate refers to the proportion of correctly detected ships in all detected
objects, which represents the correctness of detected objects. It is calculated as

Precision =
TP

TP + FP
(15)

The recall rate refers to the proportion of correctly detected ships in all ground truths,
which represents the coverage of ground truths. It is calculated as

Recall =
TP

TP + FN
(16)

Since the precision rate and the recall rate are mutually affecting, the F1-score and the
mAP are used to evaluate the overall performance of detection methods. The F1-score is
given by

F1-score = 2× Precision · Recall
Precision + Recall

(17)

and the mAP is computed as

mAP =
∫ 1

0
P(R)dR (18)

where P and R represent the single point values of the precision rate and recall rate,
respectively. PASCAL VOC’s mAP is based on an intersection over union (IoU) threshold
of 0.5. In contrast, mAP in MS COCO is based on IoU thresholds ranging from 0.5 to 0.95
with 0.05 intervals. APS, APM, and APL are used for evaluation, and these three indexes
represent small, medium, and large-scale objects. They correspond to objects whose area
ranges are (0, 322), (322, 962), and (962, +∞).
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3.3. Results on SSDD

This section evaluates the validity of the proposed method, using Faster RCNN as the
baseline. Our previous work [41] has demonstrated that the detection performance of a
backbone network using ResNet101 is superior to VGG16 and ResNet50. Therefore, the
following experimental analyses are based on ResNet101. In addition, in order to analyze
the detection performance of the proposed method in different scenes, experiments are
conducted in inshore and offshore scenes respectively.

To verify the influence of different modules in this network, we conducted ablation
experiments on inshore ships and offshore ships, respectively, and the results are presented
in Tables 2 and 3. As shown in Table 2, due to the relatively simple background of offshore
vessels and small interference, the detection performance of all methods is roughly similar,
with little difference in each detection indicator. This is because the detection performance
of each one has been excellent in the simple background, and only limited improvement
can be achieved.

Table 2. The results of ablation studies on offshore ships.

Method ERM CAFN mAP F1-Score P R

BFPN 0.994 0.988 0.989 0.987
BFPN with ERM

√
0.996 0.985 0.984 0.987

BFPN with CAFN
√

0.993 0.987 0.991 0.983
Proposed method with

ERM and CAFN
√ √

0.995 0.988 0.989 0.987

Table 3. The results of ablation studies on inshore ships.

Method ERM CAFN mAP F1-Score P R

BFPN 0.835 0.796 0.778 0.814
BFPN with ERM

√
0.867 0.834 0.969 0.732

BFPN with CAFN
√

0.865 0.815 0.868 0.767
Proposed method with

ERM and CAFN
√ √

0.883 0.836 0.935 0.756

The background clutter of inshore ships is more complex than that of offshore. In ad-
dition, the wharfs and buildings on the shore cause great interference to the detections, and
SAR ship detection performance generally degrades. As shown in Table 3, the indicators of
different approaches significantly declined. However, by enhancing the feature representa-
tion capability and reducing the aliasing effect of fusion features, the detection performance
is significantly improved. As can be seen from Table 3, the mAP, F1-score, precision rate,
and recall rate are 88.3%, 83.6%, 93.5% and 75.6%, respectively, by using ERM and CAFN.
Compared with the BFPN method, the mAP and the precision rate of the method are
improved by about 5% and 15.7%, respectively. Compared with BFPN network, the mAP
and F1-score of the network using only ERM improved by 3.2% and 3.8% respectively, and
the mAP and F1-score of those using only CAFN improved by 3% and 2%, respectively. The
results show that learning the dependencies between different features from the channel
and spatial direction respectively obtains a more accurate distinction between target and
background in the feature maps. By optimizing the fusion aliasing feature according to
channel weights, the network can inhibit the false detection of background clutter, which
improves the performance of ship detection under complicated background. However, due
to the dense distribution of inshore ships and the close arrangement of ships, it is easy for
the network to identify multiple targets as a single target, reducing the recall rate.

Table 4 shows the detection speeds and the number of model parameters for different
network models, where t is the consuming time, FPS presents frames per second of detecting
images, and parameters is network parameter number. As can be seen from the table,
compared with BFPN, the proposed method only brings a slight computational burden.
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This is because we use simple structure in ERM and CAFN rather than heavy structure.
Therefore, the proposed network model can achieve the improvement of SAR ship detection
performance at a small computational cost.

Table 4. Detection speeds and model information.

Method t (s) FPS Parameters (M)

BFPN 0.123 8.13 60.40
BFPN with ERM 0.128 7.81 60.43

BFPN with CAFN 0.131 7.63 60.43
Proposed method

with ERM and CAFN 0.133 7.52 60.46

Figure 9 depicts the comparison results of P-R curves of different methods, where
Figure 9a,b respectively represents the results of offshore and inshore tests. In Figure 9a,
the P-R curves of these methods show little difference, indicating satisfactory performance
in offshore ship detection. In Figure 9b, when the background becomes complex, there are
obvious differences between these methods. ERM and CAFN are used to achieve the best
detection performance, because we take full advantage of multi-scale features and reduce
the aliasing effect of fusion investment. This reflects the validity of the proposed method.
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Finally, in Table 5, we provide the ship detection statistics generated by bounding box
AP on SSDD. Through statistical comparison, the performance of the proposed method on
bounding box AP is generally better than that of the two baseline methods. For multi-scale
ships detection, the bounding box AP of detector is 57.9% in the detection of small ships in
our network, which exceeds FPN and BFPN by about 3.4% and 1.6%, respectively. However,
due to the relatively strict definition of large-scale SAR ships in the MS COCO evaluation
index, when detecting large ships, the bounding box AP is slightly improved compared
with BFPN when detecting large ships. This indicates that the proposed method is more
effective in improving the detection performance of small ships.
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Table 5. Ship detection statistics generated by bounding box AP on SSDD.

Method AP AP50 AP75 APS APM APL

FPN 0.584 0.945 0.659 0.545 0.637 0.519
BFPN 0.594 0.954 0.662 0.563 0.647 0.584

Proposed method 0.596 0.968 0.699 0.579 0.654 0.591

4. Discussion
4.1. Detection Results of Different Methods

The detection results of offshore and inshore ships in SSDD based on Faster RCNN
and other methods are presented in Figures 10 and 11, respectively. In Figure 10a, the pink
rectangles represent the corresponding ground truths of the SAR images. Figure 10b shows
the visualized detection results of the Faster RCNN network, where detected ship targets
are marked with red rectangles. In addition, we also performed experiments on the Faster
RCNN with FPN network, and the detection results are shown in the purple rectangle
marked in Figure 10c. Finally, Figure 10d describes the detection results of Faster RCNN
using BFPN. Figure 10e displays the visualized detection results of the proposed method.
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From Figure 10, both compact small ships and single ships can be detected by the
proposed method. Among them, in the first row, the former three methods all mistakenly
detect the prominent part in the background as the target, while the detection result of
the proposed method is the same as that of ground truth. In the second row, the former
two methods miss dense and unsharp ships, which are effectively detected by the method
using BFPN. In the last two rows, compared with BFPN method, the proposed method
can effectively reduce the number of false detections. In general, compared with other
approaches, the proposed method reduces the false positives and missed detection of ships
in SAR ship images.

The visualized detection results of different methods on inshore ships are shown in
Figure 11. Similar to Figures 10 and 11a refers to the corresponding ground truths, and
Figure 11b–e presents the ships detection results of different approaches. For the inshore
ships, as the environment of the ships becomes more complex, the problem of missed
detection and false positives becomes more obvious. In the first row, small ships in the
inshore scene can also be detected by the proposed method. In the second row, due to
the great similarity between inshore buildings and ship targets, false positives are easy to
occur. However, compared with the BFPN method, the proposed method correctly detects
all real ship objects. As can be observed in the last two rows, even though the SAR ship
target has a high similarity with the background clutter such as the inshore buildings, it
can still obtain accurate detection results compared with the ground truth. Therefore, the
proposed method achieves superior performance of SAR ship detection in both offshore
scenes and inshore.

4.2. Comparison with the Existing Methods

We compared the proposed A-BFPN with several state-of-the-art CNN-based SAR
ship detection methods on SSDD: HR-SDNet [47], DAPN [44], Quad-FPN [48], SER Faster
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R-CNN [39], RIF [37], and Faster RCNN [12], FPN [17], BFPN [26]. The comparison results
are shown in Table 6. It is clear from the table that A-BFPN achieves the highest detection
accuracy of 96.8% in the entire scenes. In particular, in the inshore scenes, excellent
performance was achieved with 88.3% mAP. By the development of ERM and CAFN, the
proposed deep network model not only emphasizes the features of object areas we want to
focus on and restrains unnecessary background clutter, but also enhances the representation
of multi-scale semantic information. Therefore, the robust detection performance of SAR
ship target is obtained.

Table 6. Comparison results of the other state-of-the-art CNN-based methods on SSDD.

Methods
Entire Scenes Offshore Scenes Inshore Scenes

mAP P R mAP P R mAP P R

Faster RCNN [12] 0.908 0.934 0.887 0.984 0.976 0.986 0.718 0.823 0.703
FPN [17] 0.945 0.955 0.876 0.988 0.976 0.981 0.810 0.869 0.697

BFPN [26] 0.954 0.962 0.893 0.994 0.989 0.987 0.835 0.778 0.814
HR-SDNet [47] 0.908 0.964 0.909 0.985 0.986 0.986 0.736 0.907 0.744

DAPN [44] 0.905 0.855 0.913 0.974 0.975 0.975 0.732 0.641 0.779
Quad-FPN [48] 0.952 0.895 0.857 0.993 0.973 0.994 0.846 0.747 0.877

SER Faster R-CNN [39] 0.915 0.861 0.922 0.982 0.968 0.983 0.745 0.663 0.790
RIF [37] 0.962 0.946 0.932 0.992 0.985 0.982 0.852 0.903 0.762

Proposed method 0.968 0.975 0.944 0.995 0.989 0.987 0.883 0.935 0.756

Finally, we verified the proposed method on the large-scale background SAR ship
detection dataset LS-SSDD-V1.0. The experimental results are shown in Table 7. In the
offshore scene, our method achieved the best 92.1% mAP. In the inshore scene, the proposed
method achieves the best 47.1% mAP. Compared with SSDD, LS-SSDD-V1.0 is richer
in background and contains a wealth of pure background images, which increases the
difficulty of detection. However, for SSDD, the most studied dataset in the field of SAR
image detection, the proposed method achieves the best detection results, which indicates
that the proposed method has excellent robustness and generalization ability.

Table 7. Comparison results of the other state-of-the-art CNN-based methods on LS-SSDD-v1.0.

Methods
Entire Scenes Offshore Scenes Inshore Scenes

mAP P R mAP P R mAP P R

Faster RCNN [12] 0.630 0.735 0.658 0.846 0.815 0.874 0.253 0.491 0.291
FPN [17] 0.748 0.737 0.777 0.899 0.828 0.919 0.467 0.559 0.536

BFPN [26] 0.736 0.735 0.767 0.901 0.815 0.920 0.383 0.778 0.419
HR-SDNet [47] 0.688 0.849 0.705 0.883 0.875 0.899 0.348 0.760 0.378
MTL-Det [49] 0.717 - - 0.887 - - 0.387 - -
SII-Net [43] 0.761 0.682 0.793 0.916 0.819 0.934 0.469 0.461 0.554

Proposed method 0.766 0.850 0.736 0.921 0.921 0.889 0.471 0.770 0.545

5. Conclusions

In this article, we propose a robust SAR ship target detection network A-BFPN for
complex background clutter, multi-scale variation, and small objects. First, ERM is de-
veloped to reduce channel information loss and emphasize the features of the region of
interest while reducing the weight of invalid features, which greatly alleviates the effects of
complex background clutter and noise. To take full advantage of the semantic features of
multi-scale context and reduce the aliasing effect of fusion features, CAFN is introduced
to optimize the feature fusion network, which adaptively filters feature information of
different levels according to channel weights, improving the detection performance of
multi-scale ships. Experiments using SSDD and LS-SSDD-v1.0 datasets and comparisons
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with the state-of-the-art methods show that the proposed A-BFPN demonstrates superior
performance in SAR ship detection tasks.
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