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Abstract: Deforestation and forest degradation from human land use, including primary forest
loss, are of growing concern. The conservation of old-growth and other forests with important
environmental values is central to many international initiatives aimed at protecting biodiversity,
mitigating climate change impacts, and supporting sustainable livelihoods. Current remote-sensing
products largely focus on deforestation rather than forest degradation and are dependent on machine
learning, calibrated with extensive field measurements. To help address this, we developed a novel
approach for mapping forest ecosystem stability, defined in terms of constancy, which is a key
characteristic of long-undisturbed (including primary) forests. Our approach categorizes forests
into stability classes based on satellite-data time series related to plant water–carbon relationships.
Specifically, we used long-term dynamics of the fraction of photosynthetically active radiation
intercepted by the canopy (fPAR) and shortwave infrared water stress index (SIWSI) derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS) for the period 2003–2018. We calculated a
set of variables from annual time series of fPAR and SIWSI for representative forest regions at opposite
ends of Earth’s climatic and latitudinal gradients: boreal forests of Siberia (southern taiga, Russia)
and tropical rainforests of the Amazon basin (Kayapó territory, Brazil). Independent validation drew
upon high-resolution Landsat imagery and forest cover change data. The results indicate that the
proposed approach is accurate and applicable across forest biomes and, thereby, provides a timely
and transferrable method to aid in the identification and conservation of stable forests. Information
on the location of less stable forests is equally relevant for ecological restoration, reforestation, and
proforestation activities.

Keywords: deforestation; forest degradation; time-series analysis; ecological stability; primary
forests; MODIS

1. Introduction

Deforestation and forest degradation from anthropogenic impacts are now understood
as a matter of global environmental concern [1]. Primary forests, which represent the
most natural end of the forest ecological condition gradient, are under particular threat.
According to the Food and Agriculture Organization (FAO) and the International Union for
Conservation of Nature (IUCN), primary forests are defined as naturally regenerated forests
of native species where there are no clearly visible indications of modern human land use
activities and ecological processes dominate [2,3]. Primary forests typically have larger
ecosystem carbon stocks, provide habitat for a wider range of species, yield cleaner water,
and are overall more stable and resilient to external stressor, as well as have higher natural
adaptive capacity, compared to degraded and secondary growth forest [4–11]. Therefore,
the degradation of primary forests due to human land use and related impacts can result in
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loss of valued ecosystem services for climate change mitigation, biodiversity conservation,
and sustainable livelihoods.

To date, deforestation (i.e., forest clearing) has been successfully monitored by using
remote-sensing approaches [12–14]. On the other hand, quantifying forest degradation
presents a major challenge because it typically results in subtler changes in structure,
composition, and function of forest ecosystems [15,16]. The main approaches to characterize
forest degradation include detection of changes in tree canopy cover and quantification of
losses in above ground biomass [4,17–20]. Although high-resolution forest cover maps are
now available globally (see Reference [21], for example) and provide spatial estimates of
key forest canopy structural characteristics, a number of problems in their application to
mapping forest degradation persist. First, these spatial layers are derived from machine
learning by using satellite data trained on extensive networks of field-based measurements,
which are expensive to obtain and represent a geographically limited sample of forest
conditions. Secondly, wet tropical forests that are logged or cleared can quickly recover a
closed canopy through pioneer and secondary successional growth. Thus, satellite-based
sensors and modeled forest cover data are often unable to distinguish regrown canopies
from those of primary forest [22]. A different issue arises in the temperate and boreal
biomes since these forests are naturally subject to recurrent disturbances, including wildfire
and insect outbreaks [23]. As a result, forest landscapes can comprise a rich mosaic of
stands in different successional stages [24]. Consequently, it is difficult to differentiate
between forests that have been disturbed by human land use, including logging from those
that are the result of natural disturbance regimes [25]. The challenge here is to first delineate
between undisturbed, degraded, and fully disturbed forests and then to attribute the latter
to natural or human-induced processes.

Another issue when mapping forest loss and degradation is related to the spatial
scale of analysis. Internationally recognized and used definitions of forest [3] are based on
minimalistic structural criteria (land area ≥ 0.5 ha, tree crown cover ≥ 10%, and canopy
height at maturity ≥ 5 m), and recent data products are available at 30 m, making use
of the Landsat satellites. However, naturally regenerating wet tropical forests, as distinct
from forest plantations (i.e., tree crops), represent dynamic landscape-scale phenomena
reflecting multiple physical, ecological, and biological processes [26] and more typically
have a canopy density ≥ 30% and tree height ≥ 20 m [27]. The landscape perspective
is equally important in the boreal biome given the spatially varying patterning of forest
ecosystem types and seral stages as the result of heterogeneity in topography, soil substrate,
and natural disturbance regimes [28,29].

Here, we propose that the ecological concept of stability provides a useful theoretical
framework for mapping forest degradation in both wet tropical and boreal forest biomes.
Stability can be defined in terms of three properties: constancy (i.e., resistance), resilience,
and persistence [30]. When assessed over an appropriate period of time, a forest with a high
level of ecosystem stability will have a constant canopy condition (i.e., be resistant), recover
to the reference state after a temporary disturbance (i.e., be resilient), and persist in the
landscape through multiple disturbance cycles (i.e., be persistent). While constancy is the
most relevant of these properties in the wet tropics, resilience and persistence also play an
important role in the boreal ecosystems due to the inherit complexity of forest landscapes
caused by mosaicked patchwork of seral stages following natural disturbances. However,
given the natural extent of old-growth forests in the boreal biome [23], the constancy
property of stability is still a pertinent feature to characterize undisturbed areas since
long-lived trees respond slowly to transient changes in the system and maintain stability
via dynamic equilibrium within defined bounds [31,32]. It follows that mapping stability
requires the use of time-series data rather than a single ‘snapshot’ in time. Furthermore, the
time-series analysis should be undertaken at a spatial resolution commensurate with the
landscape-scale characteristics of tropical and boreal forest ecosystems. We also suggest
that the need for extensive field data can be avoided by using metrics based on readily
available satellite data which have a well-established ecological interpretation.
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Here we examine the constancy property of stability in tropical and boreal forests by
using a novel approach based on remote-sensing indices that are known to be correlated
with ecophysiological processes driving plant water–carbon relationships [33], which, in
turn, are related to vegetation structure [34]. Specifically, we use the fraction of photosyn-
thetically active radiation intercepted by the sunlit canopy (fPAR) [35,36] and the shortwave
infrared water stress index (SIWSI) derived from the Moderate Resolution Imaging Spec-
troradiometer (MODIS). Moreover, fPAR is related to both vegetation structure (leaf area
and orientation) and primary productivity [37,38], and SIWSI is a robust indicator of plant
water content in fine tissues [39], particularly in green leaves [40]. SIWSI time series can
therefore be indicative of water stress dynamics and the microclimate buffering capacity of
structurally intact forest canopies. The latter determines the extent to which below-canopy
climatic conditions deviate from the climate outside forests. We developed a set of variables
calculated from annual time series of fPAR and SIWSI for two representative forested
regions at opposite ends of Earth’s climatic and latitudinal gradient: the boreal forests
of Siberia (southern taiga, Russia) and tropical rainforests of the Amazon basin (Kayapó
territory, Brazil). We validated our results by comparing them with several independent
data sources (see Section 2.3 for more information) to ensure that our mapped stability
categories equated to known distributions of disturbance and intact forest canopies (noting
the inherent limitation of validating low stability forests, for which our method provides a
first estimate).

2. Materials and Methods
2.1. Study Regions

We focused on two case study regions in contrasting forest biomes from different con-
tinents: the boreal taiga (Eurasia) and the tropical rainforest (South America). Within these,
we targeted the southern taiga ecoregion of Siberia (Russia) and the Kayapó indigenous
territory within the Amazon basin (Brazil) (Figure 1). These regions are representative of
the aforementioned biomes and contain the full spectrum of forest ecosystem conditions:
significant areas of primary forests [3] and intact forest landscapes still exist [41], along
with forests that are heavily managed for commodity production and forests cleared for
agricultural use. Many areas within both regions have been heavily exploited since the mid-
20th century, resulting in substantial fragmentation and degradation. Fires and intensifying
industrial logging are major threats to the sustainability of these forests, with the majority
of fire ignitions in both regions caused by humans [42,43]. Moreover, human activities are
radically altering their natural fire dynamics owing to altered fuel loads, desiccation, and
flammability within or in proximity to human-altered landscapes [44–50].

Climate differs markedly between these regions, particularly with respect to thermal
regime, degree of seasonality and growing season length (Supplementary Table S1). Ex-
treme continentality is characteristic of the southern taiga, with large daily and seasonal
ranges of temperature, solar radiation, and day length. These fluctuations are far smaller
in tropical forests. Such differences have profound implications for forest composition,
structure, function, and dynamics.

For the southern taiga, we defined the study area based on ecoregion boundaries to
facilitate the identification of forest stability classes relative to a broad ecosystem type. In
this way, we controlled for the existing differences in vegetation structure and floristics
(e.g., dominant species, maximum canopy height and density) across boreal Russia, since
these are largely influenced by the predominant physical environmental conditions. We
used an ecoregion division for Russia from previous studies [51,52] that includes—from
west to east—the administrative territories of Sverdlovsk, Tyumen, Omsk, Novosibirsk and
Tomsk oblasts, Krasnoyarsk krai, and Irkutsk oblast. For the Amazon rainforest, the study
region coincided with the Kayapó indigenous territory in the Brazilian states of Pará and
Mato Grosso. This is an extensive area of largely primary tropical forest. We added a buffer
zone of 60 km around the perimeter of the Kayapó territory to include areas that have been
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disturbed, degraded, and cleared by modern land use. The total study area comprised 120
million ha and 22 million ha of southern taiga and tropical forest, respectively.
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Figure 1. Maps of the study regions: (a) southern taiga ecoregion (Siberia, Russia) and (b) Kayapó
territory (Amazon basin, Brazil). Percent tree cover, as estimated from Vegetation Continuous Fields
product (MOD44B V.6) for the year 2018, is shown for both regions. Red rectangle on panel (a) depicts
the location of the Angara region used to validate the final forest stability map for the southern taiga
ecoregion. Red outline on panel (b) depicts the perimeter of Kayapó indigenous territory.

2.2. Data Analysis
2.2.1. Input Parameters

For each region, we used 16-year monthly time series (2003–2018) of (i) the fraction
of photosynthetically active radiation intercepted by sunlit vegetation canopy (fPAR) and
(ii) the shortwave infrared water stress index (SIWSI). Both metrics were obtained from
MODIS satellite imagery at ~500 m (463 m) spatial resolution. Moreover, fPAR represents
the fraction of incoming solar radiation between 400 and 700 nm absorbed by plant canopies
and was taken from the MCD15A3H v6 Leaf Area Index/FPAR 4-day L4 global product [53].
SIWSI was derived from the near infrared (NIR; 841–876 nm) and the shortwave infrared
(SWIR; 1628–1652 nm) bands, using the MOD09A1 v6 Terra Surface Reflectance 8-Day
Global product, as follows [54]:

SIWSI = (SWIR − NIR)/(SWIR + NIR) (1)

For both products, we identified pixels that were affected by cloud contamination
or sensor errors, using quality flags provided with the MODIS imagery. Particularly, we
excluded pixels that contained high aerosol levels (bit 3), cirrus (bit 4), clouds (bit 5), or
cloud shadows (bit 6). We then generated a mean monthly time series of fPAR and SIWSI
from 2003 to 2018. We limited our analysis to June–August, which corresponds to the
growing season in the southern taiga and the dry season in the Amazon rainforest. For
the southern taiga, this procedure was useful to minimize variation related to seasonal
changes in ground cover (i.e., snow) and vegetation greenness (i.e., phenology of deciduous
trees). In contrast, the natural variation in satellite-derived vegetation indices over tropical
rainforests is relatively small throughout the year due to the presence of a dense evergreen
tree canopy. Therefore, inter-annual changes in forest greenness and canopy water content
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were expected to be particularly pronounced during the dry season (especially July and
August) in the Amazon rainforest [55]. Finally, we masked out non-vegetative pixels
corresponding to water, permanent wetlands, barren land, and urban areas, as well as
croplands and crop-natural vegetation mosaics, using the MCD12Q1 Land Cover Type
product corresponding to the year 2018 [56].

To assess forest-ecosystem stability, per-pixel metrics were generated from image
stacks of mean June–August fPAR and SIWSI values over the period 2003–2018. For each
variable, we first calculated the 16-year mean time-series value (fPARmean and SIWSImean)
and its coefficient of variation (fPARCV and SIWSICV). These metrics provide information
on the long-term average canopy greenness (fPAR), vegetation water stress (SIWSI), and
their inter-annual variability (for mean and CV, respectively). The minimum seasonal fPAR
(fPARmin) and maximum seasonal SIWSI (SIWSImax) values of the 16-year time series were
calculated to provide information about the poorest (e.g., most water-stressed) vegetation
condition attained by each pixel over the study period. In addition, we calculated linear
annual trends (slopes) of seasonal fPAR and SIWSI for each pixel, using nonparametric
Theil–Sen regression models. Slopes were obtained in order to characterize linear changes in
vegetation status. Here, we focused on absolute slope values, which were indicative of the
presence or absence of temporal trends but not of the direction of the trend (i.e., ‘greening’
or ‘browning’). We considered a change in slope of both metrics as the direct result of forest
disturbance due to either natural ecological processes, such as insect outbreaks, and/or
human disturbances, such as logging and clearing. During the observation period, large
positive slopes indicate forest succession following a prior disturbance, while large negative
slopes indicate a disturbance during the time series. Areas with essentially no change
were considered as those lacking alteration to surface features at the MODIS pixel scale (ca.
500 m).

2.2.1.1. k-Means Clustering of Pixels

Pixels with similar fPAR and SIWSI metric values were categorized into homogeneous
classes by means of k-means clustering, which is an unsupervised algorithm that forms
groups based on cluster centers. The use of an unsupervised algorithm has two main
advantages compared to other approaches. First, it eliminates the need for extensive field-
based observations to serve as training data for calibrating the remotely sensed metrics
against surface features of interest. Second, this method is independent of particular
environmental and forest characteristics, and, hence, it can be applied to any forested
region, allowing for the application of a common approach to both boreal and tropical
biomes. On the other hand, unsupervised algorithms require that great care is taken in
selecting an appropriate area of interest and remotely sensed metrics to define the clusters
since vague or inappropriate spectral grouping may not correspond to classes of interest.
In addition, it demands a good knowledge of the ecosystems under evaluation to interpret
unique classes produced during the classification, especially when they represent processes
and not features on the ground [57].

All input variables underwent a two-step transformation prior to clustering. First, we
tested whether the values of each variable were normally distributed through Shapiro–Wilk
tests. If needed, the data were transformed to a new scale that better conformed to a normal
distribution. The logarithmic transformation was used on all variables, except for slopes,
where a cubic root transformation was applied. We then standardized the data to a uniform
scale of 0–100, thereby allowing each variable to have the same weight in the clustering
procedure. These procedures were performed at a biome scale for each region separately.

For the application of k-means, we defined 30 clusters (k = 30) that captured the natural
variability at regional scales based on the previously defined parameters derived from
fPAR and SIWSI time series, i.e., mean, minimum or maximum, CV, and absolute slopes for
both fPAR and SIWSI. The k-value of 30 was chosen, as it provided a number of groups
similar to the number of vegetation types described by the MCD12Q1 Land Cover Type
product for both regions crossed with the three possible stability classes defined in our
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study (see details below). This number of groups was considered sufficient to distinguish
between forest ecological conditions ranging from stable (including primary) forests to
areas impacted by human land-use activities [11]. The clusters’ centers were obtained
separately for each region based on a sample of 10,000 random pixels (out of 6,332,993
pixels for the entire southern taiga ecoregion and 886,945 pixels for the Kayapó territory).
Afterwards, every pixel within a region was assigned to its closest centroid by using
Euclidean distances. The assignment was based on the highest probability of membership
to a particular group. For each input variable, we subsequently obtained the mean values
of the resultant clusters. Principal component analysis (PCA) was applied to the resulting
multivariate matrix of mean values in order to summarize the variability captured by
k-means clustering independently for each region.

Based on these mean values, the 30 groups were reclassified into the following three
main categories, using a hierarchical clustering approach (Ward method) [58]: (i) forests
with a high level of stability (HS), which would be representative of primary and mature
forests; (ii) forests with a low level of stability (LS), which would include early succession
and degraded stands; and (iii) non-forest (NF) areas, which would comprise deforested or
naturally treeless patches. Since the initial 30 clusters were defined based on a sample of
the total population, these categories represent areas (i.e., group of pixels) with the highest
probability of membership to a given class. We refer to them as high-stability, low-stability,
and non-forest areas for the sake of clarity. Overall, and based on previous evidence [55,59],
we expected the following:

• HS forests to be characterized by high fPAR and low SIWSI mean values over the time
series and fPAR minimum and SIWSI maximum values close to the means, with high
temporal stability of these metrics, i.e., low CV and slope;

• LS forests to be characterized by lower fPAR and higher SIWSI mean values, more
variable fPAR minimum and SIWSI maximum values, and less temporal stability, i.e.,
relatively high inter-annual fluctuation, high slope, or both; and

• NF areas to display the lowest fPAR and highest SIWSI mean values, and also highly
variable fPAR minimum and SIWSI maximum values, together with a large temporal
instability, i.e., high CV and/or slope.

Spatial analyses, including image processing, parameter calculation, and k-means
clustering, were performed by using Google Earth Engine (GEE) Javascript API [60]. Hier-
archical (Ward) clustering was performed by using the ‘stats’ package in R software [61].
A workflow of the methodological approach to mapping forest stability is provided in
Supplementary Figure S1a.

2.3. Validation Framework

We validated our forest ecosystem stability spatial data layer for each study region with
three independent sources of data and approaches. It is important to note, however, that
currently available data products did not allow us to directly validate the low-stability (LS)
class, precisely because our method is the first to categorize LS forests at landscape scales,
using remote-sensing time series. First, the accuracy of our product was visually assessed
against time series of remotely sensed reference imagery at randomly sampled locations
within the study regions [62]. The reference dataset consisted of Landsat TM/ETM+/OLI
imagery, which was used by an independent expert to establish whether a forest area within
a MODIS pixel footprint had been disturbed during the past several decades [63]. This
analysis covered the period from 1984 to 2018 and enabled tracking forest disturbances
before (1984–2002) and during the study period (2003–2018). Poor pixels with low image
quality or high cloud and shadow contaminations, which resulted in an insufficient level
of certainty given by the expert (<50%), were removed from the analysis. The validation
analysis focused on detecting changes in forest structure (i.e., tree canopy cover) to dif-
ferentiate stable forests from forests with altered conditions. Areas of stable or disturbed
forests were validated by using a probability-based stratified random sampling per biome.
Our forest stability maps were used to create two major sub-strata per biome: no change,
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which corresponded to high stability forests (HS); and change, which was defined as highly
disturbed, deforested, or non-forest (NF) areas. Low-stability (LS) forests were excluded
from this analysis since this class represents more subtle changes in remotely sensed metrics
of fPAR and SIWSI and often do not correspond to features that are visually detectable by
using optical imagery (hence emphasizing the benefit of our approach). In total, 545 and
320 pixels were evaluated for the Southern Siberian taiga and the Kayapó territory. Image
interpretation of time-series imagery was performed by using the Google Earth Timelapse
app (https://earthengine.google.com/timelapse/; accessed on 19 November 2021).

Next, we compared stability classes with stand-disturbance history retrieved from
a number of independent datasets over the period 2003–2018, as described below. For
the southern taiga, we manually digitized areas with substantial forest-cover change
corresponding to two major disturbances (fire and logging) over the period 2003–2018,
using high-resolution Landsat imagery (ca. 30 m spatial resolution). The geographic area
for validation comprised the Angara region, a deforestation hot spot in Siberia resulting
from timber harvest and recurrent fires [50] that covers 12.7 million ha (i.e., ~10% of the
study region). We used 30 m resolution data in order to retrieve information at a MODIS
sub-pixel level, with the purpose of characterizing the relatively small areas of cut blocks
and the heterogeneity of fire impacts. Fractions of MODIS pixels affected by either timber
harvest or fire were generated separately. Thresholds of 10% and 90% were applied to
these pixel fractions in order to identify areas with varying disturbance intensities: (i)
undisturbed areas (<10% of each pixel affected by fire or logging), (ii) moderately disturbed
areas (between 10% and 90%), and (iii) highly disturbed areas (>90%).

For the Kayapó territory, we used a recently updated deforestation spatial layer from
the Brazilian space agency (PRODES and INPE), which is based on analysis of the Landsat
archive (30 m spatial resolution) and provides information on the distribution of primary
forests, degraded forests (mainly due to logging) and non-forest areas [64]. Using these
data, we estimated the proportion of each of these categories within each MODIS pixel.

Finally, we evaluated the extent to which the mapped forest stability classes in both
regions were consistent with estimates of tree canopy cover change, as reported in Refer-
ence [65]. This dataset provides information on areas experiencing tree cover loss or gain
globally at ca. 30 m resolution. We evaluated the proportion of cumulative forest change
over the period 2003–2018 within each MODIS pixel across the study regions. We applied
the following threshold values: no change in tree cover (<10% of each pixel showing
tree cover change), moderate change (between 10% and 90%), and substantially altered
tree-cover areas (>90%). A summary of the datasets used for validation of the final forest
stability maps is provided in Supplementary Figure S1b.

3. Results

The hierarchical clustering approach identified three classes based on MODIS time
series of fPAR and SIWSI metrics for the southern taiga in Siberia (Figure 2a) and the
Amazon rainforest in the Kayapó territory (Figure 3a). These classes captured 65% and 71%
of the total variability present in the 30 k-means groups for Siberia and Kayapó, respec-
tively. A PCA performed on the 30 k-means groups returned two principal components
(PCs), which accounted for 86% and 88% of the total variance for the Southern Siberian
taiga (Figure 2b) and the Kayapó territory (Figure 3b), respectively. These analyses un-
equivocally led to the definition of distinct classes of forest stability in both regions that
are well illustrated by the loadings of each classificatory variable in the biplots shown in
Figures 2b and 3b. Particularly, high-stability (HS) forests were characterized by conditions
representative of productive and stable forest ecosystems: high fPAR (mean and min), low
SIWSI (mean and max), low CVs, and low absolute slopes (Figures 2 and 3; Table 1). In
contrast, low-stability (LS) forests were characterized by conditions of lower productivity
and stability, including lower fPAR (mean and min), higher SIWSI (mean and max), higher
CVs, and higher slope magnitudes (moderately higher in Siberia and much higher in
Brazil; Figures 2 and 3; Table 1). Finally, non-forested (NF) areas displayed the lowest fPAR

https://earthengine.google.com/timelapse/


Remote Sens. 2022, 14, 3813 8 of 19

(mean and min), the highest SIWSI (mean and max), and were much less stable than HS
(higher CVs and slope magnitudes; Figures 2 and 3; Table 1). Examples of representative
time series of mean fPAR and SIWSI over the period 2003–2018 within each stability class
and region are shown in Supplementary Figure S2.
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bles based on fPAR and SIWSI metrics performed on mean values of 30 clusters (k-means) for the 
southern taiga ecoregion. (Upper panel) Scores of the 30 clusters classified in three ecosystem sta-
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Figure 2. (a) Dendrogram based on Ward’s hierarchical clustering showing the reclassification into
three forest stability classes of the k-means output (30 clusters) for the southern taiga ecoregion
(Siberia, Russia). The heat map shows normalized values for each classificatory variable based on
transformed data scaled in a 0–100 interval. Brown and green colors in the columns correspond to
low and high values, respectively. The horizontal scale on the dendrogram represents the distance or
dissimilarity between the clusters. (b) Principal component analysis of eight classificatory variables
based on fPAR and SIWSI metrics performed on mean values of 30 clusters (k-means) for the southern
taiga ecoregion. (Upper panel) Scores of the 30 clusters classified in three ecosystem stability groups,
where colors indicate different groups, as in (a). Bubble size is proportional to pixel number of each
cluster. (Lower panel) Biplot showing the loadings of the first and second principal components
(PC1 and PC2) for each variable; the circle denotes perfect representation of variables in the two-
dimensional space.

The resulting regional forest stability layers revealed distinct spatial patterns that were
consistent with other geospatial products, including higher-resolution imagery, digitized
disturbance data, regional and global land-cover maps, and layers of tree-cover changes
(see Section 2.3 for details). In particular, a visual comparison of forest stability maps
with higher-resolution satellite images revealed a high level of agreement between stable
forest canopies and areas clearly affected by human impacts (Figure 4c,d). The results of
the visual expert assessment of structural changes in tree canopy cover over the period
1984–2018 showed a high accuracy of characterization of forest stability classes in both
biomes (Table 2). In the southern taiga, the lowest user’s accuracy of 76%, reflecting
commission error, was found in NF areas, and the lowest producer’s accuracy of 91%,
reflecting omission error, was found for HS forests. In the Kayapó territory, both user’s
and producer’s accuracies were above 97%. The overall accuracy was 92% for the boreal
and 99% for the tropical biomes (Table 2). It is worth noting that our approach was able to
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capture the long-term effect of past disturbances occurring up to two decades before the
study period (i.e., 1984–2002 period).
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three forest stability classes of the k-means output (30 clusters) for Kayapó territory (Amazon basin,
Brazil). The heat map shows normalized values for each classificatory variable based on transformed
data scaled in a 0–100 interval. Brown and green colors in the columns correspond to low and high
values, respectively. The horizontal scale on the dendrogram represents the distance or dissimilarity
between the clusters. (b) Principal component analysis of eight classificatory variables based on fPAR
and SIWSI metrics performed on mean values of 30 clusters (k-means) for Kayapó territory. (Upper
panel) Scores of the 30 clusters classified in three ecosystem stability groups, where colors indicate
different groups, as in (a). Bubble size is proportional to pixel number of each cluster. (Lower panel)
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Table 1. Mean (±SD) values of variables derived from the fraction of photosynthetically active
radiation intercepted by sunlit vegetation canopy (fPAR) and the shortwave infrared water stress
index (SIWSI) across different forest stability classes for southern taiga ecoregion (Siberia, Russia)
and Kayapó territory (Amazon basin, Brazil). The values were obtained from mean June–August
fPAR and SIWSI values over the period 2003–2018. Slope (abs) denotes absolute slope values
indicative of the presence or absence of temporal trends for both metrics. HS = high-stability forests;
LS = low-stability forests; NF = non-forest areas.

fPAR * SIWSI

Mean Min CV Slope (abs) Mean Max CV Slope (abs)

Southern taiga ecoregion (Russia)
HS 86.77 ± 2.40 81.41 ± 3.12 0.03 ± 0.01 0.11 ± 0.09 −0.35 ± 0.03 −0.28 ± 0.05 0.05 ± 0.02 0.002 ± 0.002
LS 79.42 ± 6.01 72.67 ± 6.33 0.04 ± 0.01 0.24 ± 0.16 −0.29 ± 0.05 −0.18 ± 0.06 0.07 ± 0.02 0.003 ± 0.003
NF 72.65 ± 8.78 60.53 ± 10.73 0.08 ± 0.03 0.61 ± 0.42 −0.21 ± 0.07 −0.05 ± 0.10 0.10 ± 0.03 0.008 ± 0.006

Kayapó territory (Brazil)
HS 89.83 ± 0.26 89.03 ± 0.75 0.004 ± 0.002 0.56 ± 0.51 −0.35 ± 0.02 −0.33 ± 0.02 −0.03 ± 0.01 0.014 ± 0.012
LS 87.82 ± 2.01 84.30 ± 5.27 0.02 ± 0.02 3.48 ± 6.53 −0.26 ± 0.07 −0.17 ± 0.10 −0.22 ± 0.23 0.077 ± 0.084
NF 65.15 ± 8.14 56.62 ± 8.72 0.08 ± 0.03 17.36 ± 20.43 −0.09 ± 0.09 −0.01 ± 0.10 −0.64 ± 1.35 0.178 ± 0.206

* Scale factor of 100 applied to fPAR values.
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Figure 4. Mapped forest stability classes for (a) southern taiga ecoregion (Siberia, Russia) and (b)
Kayapó territory (Amazon basin, Brazil). Satellite imagery exemplifying heterogeneous landscapes
in (c) southern taiga ecoregion and (d) Kayapó territory in comparison with the distribution of forest
stability classes as defined in this study. The imagery corresponds to true-color Sentinel-2 acquired
on 31 August 2018. Stars on panels (a,b) depict the location of the areas shown in panels (c,d).

Table 2. Estimated error matrix for expert validation of the resultant forest stability maps for southern
taiga ecoregion (Siberia, Russia) and Kayapó territory (Amazon basin, Brazil). The validation is based
on expert knowledge of the forested landscapes through the visual interpretation of changes in forest
cover by using high-resolution imagery over the period 1984–2018. Forest stability classes are in
rows, while the reference classes are in columns. This visual assessment was performed by using the
Google Earth Timelapse app. All pixels for which expert certainty was low (<50%) were removed
from the analysis. HS = high-stability forests; LS = low-stability forests; NF = non-forest areas.

Classified Data
Reference Data User’s

Accuracy (%)
Producer’s

Accuracy (%)
Overall

Accuracy (%)HS NF Total

Southern taiga ecoregion (Russia)
HS 381 3 384 99 91 92
NF 38 123 161 76 98

Total 419 126 545

Kayapó territory (Brazil)
HS 251 2 253 99 100 99
NF 1 66 67 99 97

Total 252 68 320

Importantly, a pixel-by-pixel comparison of our stability map to ten alternative runs
of our approach by using different seeds for the random pixels used to train the k-means
algorithm yielded consistent outputs (Supplementary Figure S3). Particularly, the lowest
probability of a pixel to be assigned to a particular stability class was above 60% in both
regions. Overall, the degree of agreement between our stability map and the alternative
maps was 93% and 98% in the southern taiga and the Kayapó territory, respectively. Among
the three stability classes, the highest degree of agreement was found for the high-stability
forests (HS; 96% in the southern taiga and 99% in the Kayapó territory), followed by
non-forest (NF) area (89% in the southern taiga and 100% in the Kayapó territory) and
low-stability (LS) forest (90% in both regions).

Validation data on known fire and logging disturbances further confirmed the accuracy
of the approach for the Angara region in Siberia (Figure 5). The majority of pixels classified
as HS corresponded to a total lack of disturbance by either fire (79%) or logging (92%) during
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the study period. Pixels with intermediate levels of disturbance (up to 90%) corresponded
mainly to LS (50%), and pixels showing high disturbance (>90%) were mainly represented
by NF (56%). In the Kayapó territory, the vast majority of area mapped as primary forests
according to the PRODES deforestation data was classified as HS (Figure 6), whereas areas
mapped as deforested, non-forest, and other were dominated by LS and NF stability classes.
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Figure 5. Spatial distribution of the major forest disturbances in Angara region (Southern Siberia,
Russia) digitized from Landsat imagery over the period 2003–2018. Major disturbances considered
in the validation procedure are (a) fire and (b) logging. (c) Frequency distribution of forest stability
classes depending on the relative area of each MODIS pixel (%) affected by fire, logging, and both fire
and logging (from top to bottom).

For additional validation, we compared our forest stability classes to a widely used
dataset of global changes in tree canopy cover [65]. Consistent with our other comparisons,
a majority of areas mapped as low forest loss or gain were classified as HS (58% and 72% for
the southern taiga and Kayapó territory, respectively), whereas areas mapped as substantial
forest loss or gain (change detected for >50% of a single MODIS pixel) were classified
primarily as LS (30% and 60%) or NF (54% and 40%) (Supplementary Figure S4).

Overall, the HS class corresponded to forest patches having a relatively high tree
canopy cover with minimal disturbance, which was the most prevalent category in Southern
Siberia (54% of total land; Figure 4a) and in the Kayapó territory (63% of total land;
Figure 4b). LS encompassed both degraded forests impacted by fires and human activity
(e.g., logging, mining, or agricultural practices) over the study period (Figures 5 and 6 and
Supplementary Figure S3), as well as areas with naturally sparse vegetation cover. The
latter was the case for the rear (i.e., southernmost) edge of the Southern Siberian taiga,
which was characterized by a relatively low tree-cover density in the ecotone between the
southernmost taiga and the forest steppe (Supplementary Figure S5a,c). LS accounted for
30% of the area in Southern Siberia and 19% in Kayapó. NF targeted areas with very low tree-
cover density (Figure 1). These included natural treeless patches (e.g., grasslands or rocky
areas) or, alternatively, deforested zones resulting from land conversion to agricultural
fields, clear-cut or severe fires (Figures 5 and 6 and Supplementary Figures S3 and S4),
resulting in significant temporal (e.g., fires or logging) or permanent losses of tree cover
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(e.g., infrastructure development or agriculture). NF pixels accounted for 16% of the total
area in Southern Siberia (Figure 4a) and 18% in Kayapó (Figure 4b).
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4. Discussion

Here we defined forest stability classes derived from remote-sensing time-series data
related to photosynthetic activity (fPAR) and water stress (SIWSI). These metrics are closely
associated with ecophysiological processes that are indicative of photosynthetic activity
and vegetation structure at the forest-stand and landscape levels [55,59], and the source
data are readily available globally. The selection and interpretation of the metrics are
informed by ecological theories of resource optimization, microclimate buffering, biological
redundancy, and adaptive capacity [66,67]. We focused on representative regions of boreal
and tropical forest because the majority of remaining primary forests are located in these
biomes [68,69].

A large-scale validation dataset against which to measure the accuracy of our stability
maps is not yet available, and particularly based on long-term ground truth data. Thus, to
evaluate the accuracy of our approach, a few comparisons were made with other existing
regional or global datasets which employed high-resolution data sources. Although these
cannot fully substitute for validation data, they help to characterize the maps by yielding a
degree of agreement between products that were derived entirely independently from one
another. The results of the validation analyses suggest that our approach is applicable and
sufficiently accurate to map forest stability (in terms of constancy) within boreal and tropical
forest ecoregions. Both spatial and temporal assessments of forest stability classes showed
consistent performance of our approach. The distinction between high-stability forests and
non-forest areas showed a high level of agreement with other sources. On the other hand,
the low stability class is, by its nature, difficult if not impossible to independently verify
using existing products and optical imagery. This forest class is not necessarily subject to
large-scale or intense disturbance but is, instead, more variant in time and susceptible to
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changing environmental conditions. Such dynamics can only be detected using long-term
time series, a benefit of our approach compared to existing methods focused on distinct
periods in time. It should also be noted that our digitized fire polygons in Siberia may
represent either stand-replacing or non-stand-replacing fires, and that future work could
further explore the impact of different fire severity levels on forest stability.

Our approach complements other approaches to assessing forest conditions globally.
These include mapping intact forest landscapes [41], human pressure indicators [70–73],
habitat fragmentation [74], tropical hinterland forests [22,75], and vegetation structural
condition [76,77]. Each of these mapping techniques has its own advantages and limitations.
For example, existing intact forest landscape layers provide information on globally consis-
tent forested landscapes with little to no human interference [41], but they are intended
to identify large forest masses (i.e., the associated patch size thresholds exclude valuable
primary forests smaller than 50,000 ha), and the identified patches include non-forest land
cover. Global evaluations of forest loss using standardized definitions can be used at a pixel
level and can be useful for a wide variety of applications [65]. However, such definitions,
based on tree canopy cover without complementary analysis of forest ecological condi-
tions, equate heavily managed forests and tree plantations with primary forests, leading to
potential misinterpretations and misuse [78].

Our approach to mapping forest stability bypasses some of these limitations by not
relying on proxies of human influence, not requiring intensive machine-learning parame-
terization and training, and integrating multi-year information on time-series dynamics.
It is also applicable across forest biomes and allows for the mapping of both large tracts
and small patches of stable forests at any scale down to a minimum area consistent with
that found necessary to maintain forest interior micro-environmental conditions (generally
500–2000 m) [79,80]. Smaller areas of stable forest constitute a substantial proportion of the
natural forest cover in many regions [81], which are of considerable conservation value,
including refugia habitat, biodiversity, and source populations for landscape restoration,
among other ecosystem services [82–86].

While MODIS satellite imagery has coarser spatial resolution as compared with widely
used Landsat data, we argue that this scale is appropriate for a landscape-level analysis of
forest stability. By mapping the constancy property at a 500 m pixel resolution (~25 ha), we
capture gradients in stability caused by edge effects, which have been estimated at over 1000
m for wet tropical forests (suggesting an absolute minimum area for a patch of undisturbed
forest to be around 100 ha) [13,55] and 100–400 m for boreal and temperate forests (and a
minimum patch of undisturbed forest being 1–16 ha) [87–89]. Boreal forest landscapes are
naturally characterized by patches of different forest ecosystem types, including multiple
seral stages following wildfire [90] which have been found to range in size from 2 to 650
ha. The spatial resolution of our analysis, therefore, is commensurate with the scaling
of forests with a high level of stability in tropical biomes and for larger sized patches in
boreal biomes. Likewise, by leveraging multi-year time series, we were able to capture the
temporal dimension of forest degradation, which can take several years to manifest [91].

Our approach is limited in a number of important aspects that require further attention.
The stability metric used was designed to address only the constancy property of stability,
defined here as no major changes in forest canopy condition over a 16-year period (2003–
2018). To evaluate the other two stability properties of resilience and persistence [30],
consideration needs to be given to analyzing multi-patch dynamics and landscape-level
metrics over a longer time series. For example, the available data are unable to represent
resilience following state-altering disturbances and the potential for ecosystems to return to
their pre-disturbed state or the optimum operating point given prevailing conditions (see
Reference [92], for example). This is particularly relevant to boreal forests, where recurrent
wildfires are part of their natural disturbance regime, and resilience needs to be considered
from a landscape-wide perspective to take into account the shifting mosaic of seral stages
over time. This is in contrast to tropical forests, which are characterized by a continuous
closed canopy (i.e., projected foliage cover >70%) [93]. Thus, an expanse of structurally
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intact boreal forest canopy is unequivocally a stable forest, but patches of disturbed seral
stages may be the result of either natural disturbances, especially wildfire, or human land-
use impacts. On the other hand, loss of a structurally intact canopy in the wet tropics is a
more reliable indicator of human rather than natural disturbance (notwithstanding impacts
from large blowdowns [94] and tropical storms [95]).

Our stability metric did not distinguish between natural and anthropogenic distur-
bances. These contrasting dynamics could potentially be characterized by broken-line
(segmented) regression methods [96], especially if progressively long time series of re-
motely sensed data are available. Uptrends and downtrends can also be used to help
differentiate between vegetation greening and browning. In the tropics, longer series
may particularly aid in disturbance detection since wet forests can reach a closed tree
canopy within a few decades after disturbance. In the boreal, however, a second stage of
analysis using finer spatial resolution satellite data and object-based image classification
techniques [97] could potentially tease out human land-use impacts based upon their
characteristic spatial patterning compared to those arising from natural disturbances [98].
Therefore, our approach is a first step towards mapping all three stability properties at a
landscape scale [99].

Within a given ecoregion, our method also tends to classify naturally low-canopy-
cover ecosystems as low stability compared with neighboring, relatively closed-canopy
forests. The high-stability class is oriented, therefore, towards the more closed-canopy
forests at an ecoregion level. Although the total area of lower-canopy ecosystems is minor
in the southern taiga, possible variants of this methodology could employ metrics of
habitat quality tailored to specific ecological units (e.g., land cover types), decouple fPAR
magnitudes from stability metrics, or be mapped at a higher spatial resolution relevant
to local-scale assessments, including through fusing of MODIS data with higher-spatial-
resolution imagery, such as Landsat and Sentinel-2 (see Reference [100], for example).
Finally, we note that this work has focused on two case-study forests that are typical of
boreal and wet tropical forest ecosystems. Thus, further testing of the approach is needed
in temperate and seasonally dry tropical forests.

Information on stable forests—including the constancy metric applied here—is rel-
evant to national and international policies concerning biodiversity conservation and
climate-change mitigation. At a national level, information about high-stability forests
can be used to inform systematic conservation planning [101]. Information on the lo-
cation of less stable forests is also relevant for ecological restoration, reforestation, and
proforestation activities [102–106], or forestry intensification to alleviate logging pressure
on primary forests [7,8,105]. Moreover, from a spatial ecology perspective, patches of dis-
turbed forests are an inherent component of most temperate and boreal forest landscapes
(see Reference [107], for example) and are valuable for biodiversity and the persistence of
particular species dependent on early successional communities. In general, as long as
enough of the surrounding forests are stable (i.e., resilient to disturbances—be they natural
or anthropogenic), such ecosystems are sustainable [108].

5. Conclusions

Our methodology represents an ecophysiologically based approach to monitor and
map ecosystem stability, as showcased for two contrasting forest biomes with the potential
to be applied elsewhere. If upscaled and implemented globally, it would provide a uniform,
objective source of information on a key property of forest ecosystems that is consistent with
widely accepted definitions of primary forests. Recognizing the limitations of the approach,
the data generated could be used as an independent source to cross-validate other local
or global forest assessments. Because it is designed to be repeatable based on objective
statistics with minimal expert intervention, assessments of global forest stability could
be regularly updated by extending the time series as new satellite data become available.
The information could be used to inform national and international policy settings that
aim to prioritize conservation investments targeting stable forest ecosystems to maximize
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outcomes for biodiversity conservation, carbon storage, and other ecosystem services.
Ecoregions that are still relatively free from the damaging impacts of large-scale human
activities are rapidly disappearing, yet they provide valuable ecosystem service benefits to
people. Because effective restoration can be costly and requires long-term management,
identifying actions that can retain stable forests, including primary forests and intact forest
landscapes, is a recommended strategy for advancing international commitments for con-
servation, biodiversity, and climate mitigation. Our approach, which maps the ecosystem
stability of forests in terms of their constancy, contributes to the growing information based
on the condition of forest ecosystems that remains an underassessed component of current
global data layers.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs14153813/s1. Figure S1: Methodology flowchart and validation
procedure for mapping and accuracy assessment of forest ecosystem stability within major biomes.
Figure S2: Representative time series of mean fPAR and SIWSI for southern taiga ecoregion (Siberia,
Russia) and Kayapó territory (Amazon basin, Brazil) over the period 2003–2018. Figure S3: Spatial
constancy analysis for southern taiga ecoregion (Siberia, Russia) and Kayapó territory (Amazon basin,
Brazil). Figure S4: Spatial distribution of forest cover changes for southern taiga ecoregion (Siberia,
Russia) and Kayapó territory (Amazon basin, Brazil). Figure S5: Spatial distribution of vegetation
types from the Land Cover Type product corresponding to the year 2018 for southern taiga ecoregion
(Siberia, Russia) and Kayapó territory (Amazon basin, Brazil). Table S1: Major climate characteristics
of southern taiga ecoregion (Siberia, Russia) and Kayapó territory (Amazon basin, Brazil).
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