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Abstract: Abandoned cropland may lead to a series of issues regarding the environment, ecology,
and food security. In hilly areas, cropland is prone to be abandoned due to scattered planting,
relatively fewer sunlight hours, and a lower agricultural input–output ratio. Furthermore, the impact
of abandoned rainfed cropland differs from abandoned irrigated cropland; thus, the corresponding
land strategies vary accordingly. Unfortunately, monitoring abandoned cropland is still an enormous
challenge in hilly areas. In this study, a new approach was proposed by (1) improving the availability
of Sentinel-1 and Sentinel-2 images by a series of processes, (2) obtaining training samples from
multisource data overlay analysis and timeseries viewer tool, (3) mapping annual land cover from all
available Sentinel-1 and Sentinel-2 images, training samples, and the random forest classifier, and
(4) mapping the spatiotemporal distribution of abandoned rainfed cropland and irrigated cropland
in hilly areas by assessing land-cover trajectories along with time. The result showed that rainfed
cropland had lower F1 scores (0.759 to 0.8) compared to that irrigated cropland (0.836 to 0.879). High
overall accuracies of around 0.90 were achieved, with the kappa values ranging from 0.851 to 0.862,
which outperformed the existing products in accuracy and spatial detail. Our study provides a
reference for extracting the spatiotemporal distribution of abandoned rainfed cropland and irrigated
cropland in hilly areas.

Keywords: abandoned cropland; hilly areas; annual land-cover maps; Sentinel-1 and Sentinel-2
images; Google Earth Engine

1. Introduction

Cropland abandonment is a common type of land-cover change worldwide as a
result of a range of social, economic, environmental, and terrain factors [1]. For example,
the rapid development in developing countries, rural-to-urban immigration, advanced
social security system, and attenuated social insurance function of cropland have led
to cropland abandonment [2]. Similarly, environmental pollution, soil desertification,
and terrain fragmentation may also lead to cropland abandonment. Correspondingly,
cropland abandonment may cause a series of environmental and ecological problems. It
increases the occurrence of natural disasters [3], threatens water resources [4], deteriorates
the ecosystem, but improves soil stability [5], mitigates the pollution from agricultural
chemicals [6], and creates new habitats for wildlife [7]. Moreover, rainfed cropland and
irrigated cropland have different degrees of dependence on water resources, and their
abandonment has different effects on the environment and ecology, especially in hilly areas.
The spatiotemporal distribution of abandoned rainfed cropland and irrigated cropland

Remote Sens. 2022, 14, 3806. https://doi.org/10.3390/rs14153806 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153806
https://doi.org/10.3390/rs14153806
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8183-0297
https://doi.org/10.3390/rs14153806
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153806?type=check_update&version=1


Remote Sens. 2022, 14, 3806 2 of 17

is useful data for land management departments, whose land adjustment policies can be
carried out according to local conditions.

Remote sensing technology is a reliable scientific method for monitoring cropland aban-
donment [8]. It has been widely used to monitor large-scale cropland abandonment [9–11].
However, these methods are based on MODIS imagery, which is only applicable to monitor
homogenized cropland abandonment. Some researchers used Landsat imagery for long-term
monitoring of cropland abandonment, to increase the spatial resolution of classification results
and reduce errors caused by mixed pixels [12–14]. Nevertheless, Landsat imagery is generated
every 16 days at 30 m resolution, which may result in no available imagery for areas suffering
from extended cloud cover. These aforementioned studies provided fundamental knowledge
for the research on large-scale homogenized cropland abandonment. However, for the hilly
areas, i.e., transition areas between plains and mountains, remote sensing imagery with higher
temporal and spatial resolution is required. Previous studies illustrated that the extraction
of short-term abandoned farmland by Sentinel-2 imagery could minimize the error caused
by cloud interference and mixed pixels [15]. Our team also showed that a better spatial
distribution of cropland abandonment could be obtained by using the spatiotemporal fusion
of multisource optical imagery [8]. Unfortunately, large-scale extraction is limited with these
methods due to relatively low processing efficiency. In addition, Sentinel-1 combined with
Sentinel-2 was shown to improve the accuracy of land-cover classification [16].

Google Earth Engine (GEE) is a cloud platform that integrates massive remote sens-
ing data and existing classification products, as well as a large number of functions and
available algorithms, all of which facilitate the monitoring of large-scale land use and
land cover [17]. Currently, the GEE-based change feature extraction includes global for-
est spatiotemporal change monitoring [18], global surface water spatiotemporal change
monitoring [19], global land-cover mapping [20,21], global photovoltaic distribution map-
ping [22], and global urban spatiotemporal distribution mapping [23]. Using the GEE
platform to combine scientific algorithms and frameworks is an effective way to solve the
problems of monitoring cropland abandonment in hilly areas. Yin et al. [1] used timeseries
Landsat images on the GEE platform to analyze the mechanism of cropland abandonment
in China, Nepal, Iraq, Russia, and other countries. The results were satisfactory in most
of these areas. Furthermore, they pointed out that extraction of abandoned cropland re-
mains challenging for small-scale cropland and areas with strong heterogeneity. Wuyun
et al. [24] employed Sentinel-1 and Sentinel-2 on the GEE platform to map the fallow land
in the agro-pastoral mixed areas in northern China. The study showed that, for areas
with strong heterogeneity, the monthly scale synthetic image was favored in terms of
classification accuracy.

Generally speaking, the most peculiar characteristics of hilly areas include scattered
planting, relatively fewer sunlight hours, and lower agricultural input–output ratio, where
the cropland is more likely to be abandoned (especially in China). Using remote sensing
technology to extract abandoned cropland is often subject to serious cloud interference,
and temporal and spatial images with higher resolution become crucial. Therefore, remote
sensing images must be properly processed to achieve higher usability. For optical images,
spatiotemporal data fusion is the most advanced method to improve the availability of
image, including unmixing-based [25], weight function-based [26], Bayesian-based [27],
learning-based [28], and hybrid methods [29]. However, these algorithms are difficult
to be implemented on GEE due to its limitations. The fill-and-fit (FF) approach is the
most commonly used method to repair optical remote sensing images disturbed by clouds,
especially for land use and land cover [30–32]. Chen et al. [33] filled the Landsat timeseries
with MODIS interpolation and reconstructed the Landsat dataset with high timeseries using
Savitzky–Golay filtering. This method had good performance in the Coleambally irrigated
areas in Australia and the Taian cultivated areas in China. However, this method may not
be applicable due to the large differences in spectral and spatial resolution between MODIS
and Sentinel-2 [34]. Kong et al. [35] developed a MODIS-EVI image reconstruction method
using weighted Whittaker with dynamic parameter λ in the spatial domain (wWHd), but
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the λ of this method did not apply to Sentinel-2 imagery. Liu et al. [36] used gap filling
and Savitzky–Golay filtering with adjacent timeseries remote sensing imagery for good
collection, which allowed mapping the cropping intensity on GEE successfully. For SAR
backscatter imagery, the rugged terrain and side-looking SAR imaging geometry causes
radiometric distortion. To minimize the loss of information content and user freedom to
adapt, as well as to optimize the preprocessing to specific application needs, the processing
of the Sentinel-1 SAR backscatter data ingested in GEE is limited to thermal noise removal,
data calibration, multi-looking, and range-Doppler terrain correction. For a wider range of
monitoring and mapping needs, Adugna Mullissa et al. [37,38] upgraded the preprocessing
framework on GEE, including additional border noise correction, speckle filtering, and
radiometric terrain normalization. The framework has been successfully used in the studies
of land use and land cover [39,40].

Currently, monitoring the abandoned rainfed cropland and irrigated cropland remains
an enormous challenge in hilly areas. In response to the problem, a new approach was
proposed for extracting abandoned cropland using Sentinel-1 and Sentinel-2 imageries on
the GEE platform, including the following aspects: (1) performing a series of processing
on Sentinel-1 and Sentinel-2 imageries on the GEE platform to improve the availability of
imagery; (2) combining multisource data and the developed timeseries viewer tool of GEE
platform to obtain reliable samples; (3) using the processed imageries, the acquired samples,
and the random forest classifier to map the annual land-cover distribution; (4) constructing
the evaluation system of cropland abandonment and mapping the spatiotemporal distribu-
tion of abandoned rainfed cropland and irrigated cropland; (5) validating and evaluating
the distribution results concerning the cropland abandonment.

2. Materials and Methods
2.1. Study Area

Lizhou District is a municipal district under the jurisdiction of Guangyuan City,
Sichuan Province, China. It is located on the northern edge of the Sichuan Basin, on the
upper reaches of the Jialing River, at the intersection of Sichuan, Shaanxi, and Gansu
provinces, in the middle of Guangyuan City. It lies between 105◦27′ and 106◦04′ east
longitude and 32◦19′ and 32◦37′ north latitude, covering an area of 1538 square kilometers
(Figure 1). Crops are interspersed in this region, with the main types being rice, corn,
soybeans, peanuts, potatoes, winter wheat, and rape. The region is underdeveloped,
and its per capita GDP is far below the national average. According to the Guangyuan
Municipal Government’s 2021 sample survey, migrant workers accounted for 33.6% of
the total labor force in the first quarter and 36.5% in the second quarter (data available at:
https://www.cngy.gov.cn/artic/show/20210909102901371.html, accessed on 22 June 2022).
A high proportion of migrant workers no longer engage in agriculture work, which may
lead to unmanaged cropland, low activity, or even abandonment. Moreover, the area is
dominated by hills and basins with a fragmented terrain and complex planting situation,
labile climate, and frequent cloud interference, all of which are considerable barriers for
remote sensing monitoring.

2.2. Datasets
2.2.1. Sentinel-1 and Sentinel-2 Imageries

Sentinel-1 and Sentinel-2 are free and publicly accessible imageries on GEE with the
used band information shown in Table 1. The Sentinel-1 mission provides data from a dual-
polarization C-band synthetic aperture radar (SAR) instrument at 5.405 GHz (C band). This
collection includes the S1 ground range detected (GRD) scenes, which were calibrated and
ortho-corrected in the Google Earth Engine (data available at: https://developers.google.
com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD, accessed on 21 July 2022).
The Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission supporting
Copernicus land monitoring studies. A single Sentinel satellite revisits every 10 days, while
the dual satellite constellations revisit every 5 days. The multispectral instrument (MSI)
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supports high-temporal-resolution data (data available at: https://developers.google.com/
earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED?hl=en, accessed
on 21 July 2022).
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Table 1. Band information of Sentinel-1 and Sentinel-2.

Satellite Bands Descriptions Resolution (d/m)

Sentinel-1
IW-VV 5.405 GHz

6/10IW-VH 5.405 GHz

Sentinel-2

Band 2—Blue 496.6 (A)/492.1 (B)

5/10
Band 3—Green 560 (A)/559 (B)
Band 4—Red 664.5 (A)/665 (B)
Band 8—NIR 835.1 (A)/833 (B)

Band 12—SWIR2 2202.4 (A)/2185.7 (B)
5/20SLC Scene classification map

MSK_CLDPRB Cloud probability map

MSK_SNWPRB Snow probability map 5/10

In this study, a total of 404 Sentinel-2 images with less than 85% cloud coverage were
used, as well as 371 Sentinel-1 images, with dates ranging from 1 January 2019 to 31 Decem-
ber 2021. For Sentinel-1 imagery, the vertical transmit/horizontal receive (VH) and vertical

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED?hl=en
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transmit/vertical receive (VV) bands were considered, which are widely used for classifica-
tion [41,42]. For Sentinel-2 imagery, the SWIR2 band with 20 m resolution was resampled
to 10 m with the nearest neighbor resampling method to match the blue/green/red/NIR
bands. The bands of SLC, MSK_CLDPRB, and MSK_SNWPRB were utilized to remove
distractions from clouds and shadows (Section 2.3.2).

2.2.2. Auxiliary Data

Auxiliary data used in this study included the Google image, the Global Forest Change
(GFC) land cover [18], the JRC annual water surface data [19], the ESA WorldCover 2020
land cover [20], and the global ESRI 2020 land cover [21], all of which are available on
GEE. Furthermore, the Global land cover product with a fine classification system at
30 m (GLC_FCS30) in 2020 [43] and China Land Cover Dataset (CLCD) in 2020 [44] were
used. Auxiliary data were used to select the training and validation samples for the pre-
classification and compared with the classification result of our method in the study area.

2.2.3. Ground Data and GF-2 for Verification of the Reliability of the Method

The ground-truth data contained samples of 752 irrigated cropland, 1237 rainfed
cropland, 1576 wood vegetation, and 623 herbaceous vegetation from 2019 to 2021. In
addition, cloudless GF-2 satellite imagery in July 2020 was obtained in the study area.
These data were used to verify the accuracy of the classification and spatial detail.

2.3. Method

The technical flowchart of the study included five steps (Figure 2). The purpose of
Step 1 was to extract the metrics of classification after Sentinel-1 and Sentinel-2 processing
(Section 2.3.2). Step 2 was to generate pre-classification samples by combining multisource
data and timeseries index curves (Section 2.3.3). Step 3 was to produce annual land-cover
maps using a random forest classifier (Section 2.3.4). Step 4 was to map cropland aban-
donment with different types and degrees according to the class definition (Sections 2.3.1
and 2.3.5). Step 5 was to quantify and evaluate the accuracies and reliability of the method
(Section 2.3.6).

2.3.1. Definition of Cropland Abandonment

At present, the definition of abandoned cropland remains controversial around the
world. The Food and Agriculture Organization of the United Nations (FAO) defines
abandoned cropland as that which has not been cultivated for at least 5 years [45]. In
Asia, abandoned cropland has a shorter time boundary due to more frequent land-cover
changes. In this study, abandoned cropland referred to areas that were cultivated in the first
year but no longer cultivated in the subsequent 2 years [46], which included abandoned
irrigated cropland and abandoned rainfed cropland. Correspondingly, active cropland was
designated as the areas cultivated for three consecutive years. Intermittent cropland was
designated as the areas cultivated for only 2 years among the three consecutive years, which
included intermittent irrigated cropland and intermittent rainfed cropland. Herbaceous
vegetation was defined as any unplowed area that was not dominated by shrubs or trees.
Wood vegetation was defined as areas where shrubs and trees were dominant. The annual
land-cover maps enabled the identification of abandoned rainfed cropland and irrigated
cropland by assessing land-cover trajectories along with time.

2.3.2. Sentinel-1 and Sentinel-2 Imageries Processing

There is a need for more advanced timeseries analyses on short-term phenological
characteristics to extract cropland abandonment in hilly areas. The monthly interval
composition method is commonly used in land-cover classification and phenological
characteristic analysis. It can effectively utilize the cloudless pixels of the image during the
period and reduce interference of clouds and shadows [8,15,24]. Furthermore, we mapped
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the spatial distribution and calculated the number of available pixels each month in the
study area (Figure 3).
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Sentinel-1 imagery was preprocessed with thermal noise removal, data calibration,
multi-looking, and range-Doppler terrain correction to a resolution of 10 m before being
integrated into the GEE data pool. Even with such corrections applied, Sentinel-1 imagery
suffered from speckle noise and radiometric distortion. Speckle noise is unique to SAR
imagery and is caused by backscatter interferences between adjacent returns. Although
images affected by speckle noise show large-scale distinguishable features, they may be
seriously compromised at smaller scales. It has been shown that speckle noise may create
confusion in machine learning algorithms [47]. Radiometric distortions over rugged terrain
within the backscatter products on GEE originate from the side-looking SAR imaging
geometry. Such distortions are strong enough to exceed weaker differences of the signal
due to variation in land cover [48]. It is, therefore, necessary to account for these effects
during the generation of higher-level backscatter products to enable a variety of land
applications [49]. In this study, we processed Sentinel-1 on GEE by selecting instrument
mode (IW), transmitter–receiver polarization (VV, VH), and ascending orbits. Furthermore,
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the framework proposed by Adugna Mullissa was used to remove additional border
noise, reduce speckle noise, and normalize radiometric terrain (code available at: https:
//github.com/adugnag/gee_s1_ard, accessed on 22 June 2022).

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

2.3.2. Sentinel-1 and Sentinel-2 Imageries Processing 
There is a need for more advanced timeseries analyses on short-term phenological 

characteristics to extract cropland abandonment in hilly areas. The monthly interval 
composition method is commonly used in land-cover classification and phenological 
characteristic analysis. It can effectively utilize the cloudless pixels of the image during 
the period and reduce interference of clouds and shadows [8,15,24]. Furthermore, we 
mapped the spatial distribution and calculated the number of available pixels each month 
in the study area (Figure 3). 

Sentinel-1 imagery was preprocessed with thermal noise removal, data calibration, 
multi-looking, and range-Doppler terrain correction to a resolution of 10 m before being 
integrated into the GEE data pool. Even with such corrections applied, Sentinel-1 imagery 
suffered from speckle noise and radiometric distortion. Speckle noise is unique to SAR 
imagery and is caused by backscatter interferences between adjacent returns. Although 
images affected by speckle noise show large-scale distinguishable features, they may be 
seriously compromised at smaller scales. It has been shown that speckle noise may create 
confusion in machine learning algorithms [47]. Radiometric distortions over rugged 
terrain within the backscatter products on GEE originate from the side-looking SAR 
imaging geometry. Such distortions are strong enough to exceed weaker differences of the 
signal due to variation in land cover [48]. It is, therefore, necessary to account for these 
effects during the generation of higher-level backscatter products to enable a variety of 
land applications [49]. In this study, we processed Sentinel-1 on GEE by selecting 
instrument mode (IW), transmitter–receiver polarization (VV, VH), and ascending orbits. 
Furthermore, the framework proposed by Adugna Mullissa was used to remove 
additional border noise, reduce speckle noise, and normalize radiometric terrain (code 
available at: https://github.com/adugnag/gee_s1_ard, accessed on 22 June 2022). 

 
Figure 3. The numbers of cloudless pixels of Sentinel-2 image in the study area from 2019 to 2021. 
(a–c) The numbers of cloudless pixels in 2019 to 2021, respectively. (d) The monthly numbers of 
cloudless pixels from 2019 to 2021. 

Figure 3. The numbers of cloudless pixels of Sentinel-2 image in the study area from 2019 to 2021.
(a–c) The numbers of cloudless pixels in 2019 to 2021, respectively. (d) The monthly numbers of
cloudless pixels from 2019 to 2021.

Level-2A Sentinel-2 surface reflectance (SR) imagery was processed with calibration
and atmospheric correction before being integrated into the GEE data pool. In this study,
Sentinel-2 imagery was processed by the removal of the interference of cloud and shadow,
linear fit interpolation, and Savitzky–Golay filtering. Removing the interference of cloud
and shadow is an important step, and a reasonable method can greatly reduce the error in
cloudy areas. The bands of SCL, MSK_CLDPRB, and MSK_SNWPRB included in Sentinel-2
were used to remove cloud and shadow. Preliminary experiments informed that when the
thresholds of the MSK_CLDPRB band and MSK_SNWPRB band were larger than 20, the
removal of some clouds was poor (especially thin clouds). However, when the thresholds
of the MSK_CLDPRB band and MSK_SNWPRB band were larger than 10, some urban
areas were misidentified as clouds. In addition, the shadow and cirrus values of the SCL
band 3 three and 10. By comprehensively using the MSK_CLDPRB band, MSK_SNWPRB
band, and SCL band, the thresholds of the MSK_CLDPRB band and MSK_SNWPRB band
were set to 15. As a result, the value of the SCL band was no longer equal to 3 and 10,
and the optimal cloud removal was achieved. Linear fit interpolation was carried out
to fill missing values by properties of “system:time_start”. The code of removing cloud
and shadow, and the interpolating value linear fit was akin to the example provided by
the SpatialThoughts official website: https://spatialthoughts.com/2021/11/08/temporal-
interpolation-gee, accessed on 22 June 2022. The Savitzky–Golay filter is a digital filter
that can be applied to a set of images to smooth the image, i.e., to increase the precision
of the image without distorting the phenology tendency. This was achieved, in a process
known as convolution, by fitting successive subsets of adjacent data points with a low-
degree polynomial using the method of linear least squares [50]. Many articles have proven

https://github.com/adugnag/gee_s1_ard
https://github.com/adugnag/gee_s1_ard
https://spatialthoughts.com/2021/11/08/temporal-interpolation-gee
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the excellent efficiency of Savitzky–Golay (SG) filtering to reconstruct remote sensing
images, especially in areas seriously disturbed by clouds [30,33,51]. The Open Earth Engine
Library (OEEL) is an open-source SG filter library which can be easily applied on GEE;
an application example is given at https://code.earthengine.google.com/?scriptPath=
users/OEEL/examples:MODISFiltering, accessed on 22 June 2022. The moving window
of observation was set to three, with a filter order of two, as the growth period of most
crops exceeds 3 months [36]. After image processing, a set of commonly used indices were
composited by Sentinel-1 and Sentinel-2. A summary of the indices and their expressions
is reported in Table 2.

Table 2. Spectral indices and their expressions from Sentinel-1 and Sentinel-2.

Indicators Expressions References

GCVI ρNIR
ρGreen

− 1 [52–54]
NDVI ρNIR−ρRed

ρNIR+ρRed
[1,36,52,53,55–58]

EVI 2.5× ρNIR−ρRed
ρNIR+6.0ρRed−7.5ρBlue+1 [52,53,57,59]

LSWI ρNIR−ρSWIR2
ρNIR+ρSWIR2

[36,52,53,55,57]

BSI (ρSWIR2+ρRed)−(ρNIR −ρBlue)
(ρSWIR2+ρRed)+(ρNIR−ρBlue)

[1,52,60]

NBR ρNIR−ρSWIR2
ρNIR+ρSWIR2

[1,56,58]

NDWI ρGreen−ρNIR
ρGreen+ρNIR

[15,53,58,61]

VV Single co-polarization, vertical
transmit/vertical receive [53,62–64]

VH Dual-band cross-polarization, vertical
transmit/horizontal receive [53,62–64]

2.3.3. Training and Validation Samples Generation for Classification

The quality of the samples directly determines the reliability of the classification results.
On the one hand, the samples must be representative and must be able to represent the
characteristics of the features in the study area; on the other hand, the samples must be
independent to reduce errors caused by spatial correlation. Google imagery is an important
sample source for visual interpretation, where different types of land cover present different
shapes, textures, colors, etc. [65]. However, due to the limitation of surface changes and
the experience of visual interpreters, the interpretation may be far from accurate. Using
existing classification products to select samples has been recognized as a fast and effective
method in many articles [52,66,67]. Nevertheless, existing classification products may
not perform well in hilly areas, and they can only be used as a preliminary reference.
Phenological features are the most common and reliable features of vegetation, and the
use of high-temporal spectral changes can adequately characterize vegetation, in order to
achieve the goal of identification. However, the phenological feature may be deformed to
some extent due to cloud disturbance. In this study, Google imagery was used for visual
interpretation, and the GFC, JRC, ESA WorldCover 2020 land cover, global ESRI 2020 land
cover, CLCD in 2020, and GLC_FCS30 in 2020 datasets were used to select the same land
cover. The study area was divided into 3 km× 3 km grids, and 1–10 samples were obtained
in each grid [68,69]. Then, the multiple indices of GCVI, NDVI, EVI, LSWI, BSI, NBR,
NDWI, VV, and VH timeseries were used to match the phenological characteristics of the
land cover by applying the developed timeseries viewer tool of GEE [1]. With the two steps
above, a set of samples for pre-classification was obtained.

2.3.4. Annual Land-Cover Classification

The samples were split randomly in the ratio of 7:3 for training and validation respec-
tively. The random forest (RF) classifier was selected to map both pre-classification and the
secondary classification, as it has been successfully used in a variety of satellite-based ap-
plications including crop type mapping, with the valuable advantage of being intrinsically
not prone to overfitting [70–72]. More importantly, the implementation of RF is available in

https://code.earthengine.google.com/?scriptPath=users/OEEL/examples:MODISFiltering
https://code.earthengine.google.com/?scriptPath=users/OEEL/examples:MODISFiltering
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GEE, allowing large-scale predictions at the pixel level. As with many other models, RF is
sensitive to the choice of hyperparameters and the training data used [73]. On the basis of
several fitting experiments, the number of random forest trees was set to 250 to achieve
better accuracy in this study. Following pre-classification for three consecutive years, the
spatial distribution of six categories of features was obtained, namely, irrigated cropland,
rainfed cropland, woody vegetation, herbaceous vegetation, water bodies, and impervious
surfaces. The total area of non-vegetation type cover (i.e., water bodies and impervious sur-
faces) for three consecutive years was masked so that only vegetation cover types remained.
The samples with consistent results from three consecutive years of pre-classification were
selected for secondary classification. During pre-classification, the non-vegetated areas of
the image were masked, and stable and reliable training samples were obtained. Using
the masked image and samples for classification, the spatial distribution of land cover was
obtained for each year for irrigated cropland, rainfed cropland, woody vegetation, and
herbaceous vegetation. Following pre-classification screening, accurate vegetation regions
were identified, while the stable pixels obtained from the results of pre-classification for
three consecutive years were expanded using the samples of secondary classification to
increase the reliability of the samples. Through the above steps, the spatial distribution of
the vegetation region in the study area was generated for three consecutive years.

2.3.5. Mapping Spatial Distribution of Cropland Abandonment

On the basis of the definition of abandoned cropland and annual land-cover classifica-
tion, the spatial distribution of cropland abandonment with rainfed cropland and irrigated
cropland was mapped. Abandoned cropland was considered for areas out of cultivation
for 2 years, and strong land policy support is required to improve the situation. Special at-
tention is required for the potential abandonment of intermittent cropland. Active cropland
represented areas always under cultivation, which serve as an important safeguard for food
production. According to the area and proportion of cropland abandonment, reasonable
adjustment and planning of the cropland will be carried out in future work.

2.3.6. Accuracy Assessment

The verification samples were divided into two categories; one was obtained using our
method (Sections 2.3.3 and 2.3.4), and the other constituted field samples (Section 2.2.3). On
the basis of the validation samples, confusion matrices were created, and the max, min, and
mean of producer accuracy (PA), user accuracy (UA), and overall accuracy (OA), as well as
the kappa coefficient, were calculated for the 3 years. The F1 score (F1 = 2 × UA × PA (UA
+ PA)), a harmonic mean of user and producer accuracy, was calculated. It ranges from 0 to
1 with a higher score indicating better classification performance, and it is advantageous
when learning from imbalanced data [74]. The classification results were compared with
existing classification products, highlighting the classification accuracy and spatial detail in
the study area.

3. Results
3.1. Usability Assessment of Imagery Processing

To ensure the imagery quality for accurate classification, the median value of NDVI
was chosen to assess the accuracy of the processed images. Next, the standard deviation
was calculated to assess the effect of cloud interference. It was expected that a larger
standard deviation would indicate more severe cloud interference.

The results showed that the median of NDVI showed good variation in phenological
characteristics, with no abrupt changes in standard deviation produced, indicating good
results from the processed image (Figure 4). These statistical results demonstrated that
the image quality was significantly improved after cloud interference removal, linear
interpolation, and SG filtering.
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3.2. Separability Assessment of Samples

The Jeffries–Matusita (JM) distance between a pair of probability functions is a measure
of the average distance between the two class density functions [75]. The JM distance
between the two classes was closer to 2, indicating a classification accuracy. All the samples
were generated in a grid-by-grid manner, whose spatial autocorrelation was reduced, and
whose reliability was improved. After calculation, the JM distances of different samples
were greater than 1.85 in this study, indicating that the reliability of sample quality was
enhanced.

3.3. Spatial Distribution and Statistics of Cropland Abandonment

Visually, the cropland was mainly located near rivers and residential areas, with
a greater concentration in urban centers and greater dispersion in remote areas. Small
cropland fields (<1 ha) and small-holder agriculture were prevalent in the study area
(Figure 5).

The areas and percentages of active cropland, intermittent irrigated cropland, intermit-
tent rainfed cropland, abandoned irrigated cropland, and abandoned rainfed cropland were
calculated (Table 3). In general, the area of abandoned cropland had a high proportion, and
the abandoned rainfed cropland was the most obvious. In addition, the intermittently aban-
doned cropland had a high proportion, indicating that the area of cropland abandonment
tended to expand in the study area.

Table 3. The area and percentage of active cropland, intermittent cropland, and abandoned cropland.

Area (km2) Percentage (%)

Active cropland 137.4 77.8
Intermittent irrigated cropland 3.0 1.7
Intermittent rainfed cropland 19.8 11.2

Abandoned irrigated cropland 0.9 0.5
Abandoned rainfed cropland 15.5 8.8

Total 176.6 100
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Figure 5. Spatial distribution map of cropland abandonment, using GF-2 imagery as the background.
Abandoned irrigated cropland/abandoned rainfed cropland, intermittent irrigated cropland, inter-
mittent rainfed cropland, and active cropland were the classes considered. (a) Spatial distribution
map of rules including active cropland, intermittent irrigated cropland, intermittent rainfed crop-
land, abandoned irrigated cropland, and abandoned rainfed cropland in the study area. (b) Partial
enlargement of (a). (c–f) Corresponding partial enlargements of the ESA WorldCover 2020 land cover
product, the global ESRI 2020 land cover product, the GLC_FCS30 in 2020, and the CLCD in 2020;
yellow represents the spatial distribution of cropland.

3.4. Accuracy Assessment of Annual Land-Cover Maps

The accuracies of annual land-cover maps were quantified from 2019 to 2021. Firstly,
the classification result was validated using the samples obtained by our method. The result
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showed that the overall accuracies ranged from 0.895 to 0.902, with the kappa ranged from
0.851 to 0.862. The F1 scores of irrigated cropland, rainfed cropland, woody vegetation,
and herbaceous vegetation ranged from 0.836 to 0.879, 0.759 to 0.8, 0.964 to 0.981, and 0.958
to 0.978, respectively. Then, some field samples were selected to validate the classification
results. The results show that the overall accuracy and kappa accuracy ranged from 0.902
to 0.921 and from 0.87 to 0.895, respectively. The F1 score of irrigated cropland, rainfed
cropland, woody vegetation, and herbaceous vegetation ranged from 0.863 to 0.902, from
0.781 to 0.813, from 0.971 to 0.990, and from 0.961 to 0.980, respectively (Figure 6). By
comparing the classification accuracy of the samples obtained using our method with field
samples, the results showed good agreement, thus affirming the reliability of our method
in terms of classification accuracy.

Figure 6. The mean of F1 score, overall accuracy, and kappa from 2019 to 2021. Error bars indicate
the min and max intervals.

4. Discussion
4.1. Comparison of Classification Accuracy with Existing Products

Through field survey collection and statistics, the cropland area of the field data in
the study area was determined. The total area of cropland was calculated by merging
abandoned, intermittent, and active cropland, which was compared with the area of
cropland in the existing classification products. The results of different products were
compared with the field data as a reference, as shown in Table 4. The results showed
that the cropland areas of our method had the lowest deviation from the field data. The
ESA WorldCover 2020 and the ESRI land cover 2020 underestimated the areas of cropland
in the study area. By superimposing with the GF-2 imagery, it can be found that many
small farmlands were missed, and the ESRI land cover still had obvious misclassification
(Figure 5c,d). In contrast, the GLCF_FCS30 and the CLCD in 2020 overestimated the areas
of cropland in the study area. The results showed that some of the woodland areas were
misclassified as cropland areas (Figure 5e,f). In our method, irrigated cropland F1 scores
exceeded 0.836 and rainfed cropland F1 scores exceeded 0.759, which outperformed the
existing products.

Table 4. Cropland area statistics of different products.

Area (km2) Field Data Our Method ESA ESRI GLC_FCS30 CLCD

Cropland 180.2 176.6 80.8 46.3 337.2 377.5
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4.2. The Spatial Distribution, Attribution, and Policy Recommendations for Cropland
Abandonment

As shown in Table 3, the rainfed cropland occupied around 94% of the abandoned
cropland, while the irrigated cropland accounted for only a small portion. Furthermore,
most of the abandoned irrigated cropland fields were small, and there was no large-
scale abandonment, whilst the abandoned rainfed cropland exhibited a certain degree
of aggregation. The intermittent cropland was often distributed adjacent to abandoned
cropland, with the possibility of abandonment. Intermittent cropland and abandoned
cropland aggravated the spatial distribution of agglomeration, which posed a hidden
danger to food security. Active cropland had the highest concentration, usually located
around rivers and near settlements (Figure 5).

Our study found that the causes of cropland abandonment were influenced by both the
impact of human activities and the natural environment. Firstly, rural–urban migration led
to a shortage of labor for agricultural activities, especially in economically underdeveloped
areas, which was the main reason for cropland abandonment. Secondly, the abandonment
rate of rainfed cropland was much higher than that of irrigated cropland, which indicated
that some arid areas were not suitable for cultivation. Lastly, the fragmentation of arable
plots inhibited large-scale cultivation; thus, the agricultural input-output ratio was low.

Given the distribution of abandoned cropland in the study area, the government
should take targeted measures to improve the use of cropland. Firstly, the government
should further increase the subsidies for rural farming and narrow the income gap be-
tween urban migrant workers and agricultural laborers. Secondly, appropriate land-use
conversion should be carried out for the rainfed cropland unsuitable for cultivation. Lastly,
the government should establish a corresponding system of cropland transfer to reduce
the fragmentation of cropland caused by human factors, strengthen the agglomeration of
scattered cropland, and improve the farming input–output ratio.

4.3. The Effect of Terrain Correction on Classification Results

For hilly areas, variations in topographic relief can cause differences in backscatter
coefficients and affect the accuracy of land-cover classification. Many studies have shown
that topographic correction is the key to Sentinel-1 imagery processing [76–78]. In this study,
we used the Sentinel-1 data processing process developed based on GEE, which included
topographic correction [37]. The method depended on the angular relationships between
the SAR imagery and the terrain geometry. We selected the NASA SRTM Digital Elevation
30 m as auxiliary data for terrain correction (data available at: https://developers.google.
com/earth-engine/datasets/catalog/USGS_SRTMGL1_003?hl=en, accessed on 22 June
2022). The topography-corrected Sentinel-1 imagery improved the classification results
by 0.006 to 0.024 in overall accuracy. For the coverage category, the extraction was most
pronounced for irrigated cropland, where the Sentinel-1 responding to water bodies was
most significant during the irrigation period.

4.4. Method Transferability and Improvement

Our approach provided a large degree of improvement in solving the problem of
abandoned cropland in hilly areas. On the one hand, we obtained good available images at
a monthly scale through cloudy interference removal, interpolation, and SG filtering. On
the other hand, we improved efficiency by obtaining reliable samples through multisource
data filtering and developed a visualization tool for GEE. The annual land-cover results
were obtained by pre-classification and secondary classification, and then the definition
was used to generate the final spatial distribution of cropland abandonment. However,
additional adjustment may be needed according to local phenological characteristics, as
also applied in other regions. For example, in this study, the abandoned cropland refers to
areas not cultivated for two consecutive years, while the FAO defines it as cropland that
has not been cultivated for more than 5 years. In addition, the timeseries window of the SG
filter can be modified according to the degree of the impact image. There is still some room

https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003?hl=en
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003?hl=en
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for improvement in our method. When a single optical remote sensing image is disturbed
by clouds for a long period, the fill-and-fit (FF) approach may not be sufficient for surface
phenology monitoring. It is necessary to use other images for filling in and to ensure a
sufficient number of observations to effectively extract surface coverage changes. With
the successful launch of Landsat-9, remote sensing images of each scene for 8 days can be
jointly acquired with Landsat-8. Combining the timeseries of Landsat and Sentinel will
increase the availability of remote sensing imagery in hilly areas. Furthermore, with the
further development of the GEE platform, more reliable algorithms and data with higher
precision will be available to improve the accuracy of cropland abandonment. In the future,
free and publicly accessible images with a higher spatial resolution can reduce the influence
of mixed pixels in hilly areas, as well as ameliorate the reliability of classification results.

5. Conclusions

The monitoring of cropland abandonment in hilly areas is a key but difficult task
in the land-cover change field, and there is a lack of reliable and efficient approaches to
monitor cropland abandonment in hilly areas on large scale. In this study, we presented an
approach combining Sentinel-1 and Sentinel-2 imageries and incorporating them into the
GEE platform to determine cropland abandonment on the basis of annual classification.
Firstly, cloud interference removal, linear interpolation, and SG filtering were applied to
synthesize the eligible indices with monthly intervals. Secondly, high-quality samples
were generated using superimposed Google imagery, existing classification products, and
developed visualization tools of GEE. Then, the RF classifier was used to perform pre-
classification and secondary classification, resulting in annual land-cover distribution maps.
Lastly, cropland abandonment of rainfed cropland and irrigated cropland was mapped in
the study area as per the designated definition of cropland abandonment. Our work sheds
some light on mapping the cropland abandonment in hilly areas on a global scale.
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