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Abstract: Hyperspectral image (HSI) classification has attracted widespread concern in recent years.
However, due to the complexity of the HSI gathering environment, it is difficult to obtain a great
number of HSI labeled samples. Therefore, how to effectively extract the spatial–spectral feature
with small-scale training samples is the crucial point of HSI classification. In this paper, a novel
fusion framework for small-sample HSI classification is proposed to fully combine the advantages of
multidimensional CNN and handcrafted features. Firstly, a 3D fuzzy histogram of oriented gradients
(3D-FHOG) descriptor is proposed to fully extract the handcrafted spatial–spectral feature of HSI pix-
els, which is suggested to be more robust by overcoming the local spatial–spectral feature uncertainty.
Secondly, a multidimensional Siamese network (MDSN), which is updated by minimizing both con-
trastive loss and classification loss, is designed to effectively exploit the CNN-based spatial–spectral
features from multiple dimensions. Finally, the proposed MDSN combined with 3D-FHOG is utilized
for small-sample HSI classification to verify the effectiveness of our proposed fusion framework.
The experimental results on three public data sets indicate that the proposed MDSN combined with
3D-FHOG is significantly better than the representative handcrafted feature-based and CNN-based
methods, which in turn demonstrates the superiority of the proposed fusion framework.

Keywords: small-sample hyperspectral image classification; spatial–spectral feature extraction;
multidimensional CNN; handcrafted feature

1. Introduction

Compared with gray-scale and RGB images, hyperspectral image (HSI) can provide
a rich amount of spatial and spectral information of objects. Since the additional spectral
information may help to overcome the existing difficulties of traditional image processing
technology, HSI has attracted widespread concern in recent years. HSI classification [1–4],
which is the focus of research in the field of HSI processing, has been widely applied in
various areas, such as scene understanding [5,6], disease examination [7,8], face recogni-
tion [9,10] and city planning [11,12]. Note that the feature extracted from HSI is the basis of
these applications, thus it is essential to obtain the more robust and effective spatial–spectral
feature for HSI classification. However, due to the complexity and potential fatalness of
the HSI acquisition environment, it is a laborious and time-consuming job to collect a huge
amount of labeled samples. Therefore, how to effectively extract the spatial–spectral feature
with small-scale training samples has become a hot spot of current research. Existing HSI
feature extraction methods can be divided into two types: handcrafted feature extraction
methods and deep feature extraction methods.

Before the development of deep learning, handcrafted feature extraction was the
mainstream approach in the field of image processing, and its effectiveness has been
verified in image matching and classification [13,14]. Lowe [13] designed an image feature
extraction method called the scale-invariant feature transform (SIFT), which shows its
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robustness in object recognition. Local binary pattern (LBP) proposed by Ojala et al. [14]
is a simple and efficient local feature descriptor, which is able to achieve gray-scale and
rotation invariant texture classification. Meanwhile, since HSI can be represented as the
3D-structure data, many 3D handcrafted feature descriptors have been presented for the
HSI feature extraction. Zhao et al. [15] designed the 3D-LBP operator to extract the dynamic
feature from the spatial–temporal domain, which is an extension of LBP. Inspired by [15],
Jia et al. [16] applied the 3D-LBP to the spatial–spectral domain of HSI, which exhibits
excellent performance in HSI classification. He et al. [17] presented a 3D Gabor filter-based
descriptor, which can be utilized to perform HSI classification in a computationally efficient
way. The 3D discrete wavelet transform (3D-DWT) proposed by Cao et al. [18] can fully
utilize the spatial–spectral information and improve the performance of HSI classification.
However, due to the simple structure and fixed calculation pattern, handcrafted features
are not robust when confronted with complex circumstances of HSI classification.

In recent years, with the development of hardware devices and the arrival of the big
data era, deep learning technique has made great progress. Especially, convolutional neural
network (CNN) is the most commonly used deep learning technique in the area of computer
vision. Because of its local connection and nonlinear characteristic, making it able to extract
the more discriminative feature, CNN is quite effective for image processing, including HSI
classification. Sharma et al. [19] combined the band selection with 2D CNN-based features
to enhance the performance of HSI classification, which outperforms the handcrafted
feature-based methods. Meanwhile, 1D CNN and 1D recurrent neural network (RNN)
features [20–22] were utilized to process HSI pixels as sequential data, which takes full
advantage of spectral correlation and band-to-band variability. To fully exploit the spatial
and spectral information, 3D CNN-based methods are also employed for HSI classification.
Lee et al. [23] designed a deeper CNN architecture that uses 3D fully convolutional layers
(FCN) to learn the more effective spatial–spectral feature. The semi-supervised 3D CNN-
based algorithm proposed by Liu et al. [24] can simultaneously minimize the sum of
supervised and unsupervised cost functions during training, which aims to solve the
problem of limited labeled samples. Luo et al. [25] presented a 3D CNN framework
for HSI classification, which exhibits a good trade-off between the number of training
samples and the complexity of the network. Roy et al. [26] proposed a hybrid spectral
CNN (HybridSN) for HSI classification, which combines advantages of both 3D CNN and
2D CNN. Although CNN-based methods can achieve state-of-the-art performance with
sufficient labeled samples, they cannot provide a strict mathematical explanation for its
decision making. In addition, HSI classification accuracy of CNN-based methods will
significantly decrease in the scenery of small-scale training samples.

As can be seen from the literature, the handcrafted feature-based methods can provide
a stricter mathematical explanation for the HSI feature extraction process, which makes it
more reliable to be utilized in some high-sensitive areas, such as biomedicine and military.
However, compared with CNN-based methods, the performance of handcrafted feature-
based methods is not robust in some complicated HSI classification tasks. On the other
hand, utilizing only the CNN-based feature causes the difficulty in achieving high accuracy
with limited labeled samples, and lacks the strict mathematical explanation for its decision
making. Therefore, it is essential to develop a HSI classification algorithm that combines
the advantages of both handcrafted and CNN-based feature.

Small-sample classification has become an important research topic in the area of
remote sensing. To tackle the challenge of small-scale training samples, the idea of transfer
learning has been introduced in remote sensing scene classification. Rostami et al. [27]
proposed a deep transfer learning-based algorithm for few-shot synthetic aperture radar
(SAR) image classification, which is effective on the problem of ship classification in
the SAR domain. Alajaji et al. [28] combined the prototypical network with pre-trained
CNN for image embedding, which obtains excellent classification results on two remote
sensing scene data set. To further extract the generalized features from source domain,
attention mechanism and multi-scale feature fusion strategy [29,30] are introduced in
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remote sensing few-shot scene classification. However, most of the transfer learning-based
algorithms utilize only the CNN-based feature, ignoring the superiority of handcrafted
feature. Moreover, since there may be a mismatch between the source and target domain
distributions, the performances of transfer learning-based algorithms are unpredictable.
As a special type of remote sensing image, HSI can provide additional spectral information
for feature extraction. It can be known that the handcrafted feature is more reliable and
easier to carry out without training. Therefore, our proposed algorithm mainly focuses on
how to utilize the handcrafted feature to enhance the performance of CNN-based models
in the scenery of small-sample supervised learning.

It can be known that fusing different types of spatial–spectral features may cause
the increase in computational cost. However, in terms of some special small-sample
HSI classification tasks, more accurate classification results need to be achieved without
considering the computational cost. To the best of our knowledge, there still lacks an in-
depth study concentrated on utilizing the handcrafted feature to enhance the performance
of CNN-based models in small-sample HSI classification. Therefore, we propose a fusion
framework of multidimensional CNN and handcrafted features for small-sample HSI
classification. Specifically, a multidimensional Siamese network (MDSN) combined with
the 3D fuzzy histogram of oriented gradients (3D-FHOG) features is introduced to verify
the effectiveness of our proposed fusion framework.

The main contribution of this paper includes the following three aspects.

(1) A 3D-FHOG descriptor is proposed to fully extract the handcrafted spatial–spectral
feature of HSI pixels. It calculates the HOG features from three orthogonal planes to
generate the final 3D-FHOG descriptor based on fuzzy fusion operation, which is able
to overcome the local spatial–spectral feature uncertainty;

(2) An effective Siamese network, i.e., MDSN is designed for further exploiting the multi-
dimensional CNN-based spatial–spectral feature in the scenery of small-scale labeled
samples. It mainly utilizes the hybrid 3D-2D-1D CNN to learn the spatial–spectral
feature from multiple dimensions and is updated by minimizing both contrastive loss
and classification loss. Compared with the single-dimensional CNN-based networks,
the performance of MDSN is significantly better in small-sample HSI classification;

(3) It provides a novel extensible fusion framework for the combination of hand- crafted
and multidimensional CNN-based spatial–spectral features. More importantly, exper-
imental results indicate that our proposed MDSN combined with 3D-FHOG features
can achieve better performance than the handcrafted features-based and CNN-based
algorithms, which in turn verifies the superiority of the proposed fusion framework.

The rest of this paper is organized as follows. Section 2 presents the related works of
this study. The proposed methodology is presented in Section 3. Then, Section 4 reports
the experimental results and discussions on three public data sets. Finally, a conclusion of
this study is presented in Section 5.

2. Related Works
2.1. Histogram of Oriented Gradients

Histogram of oriented gradients (HOG) proposed by Dalal et al. [31] is a classical
handcrafted feature descriptor, which is generated by computing the gradients of pixels in a
local area. Additionally, it not only provides the rotation invariance and under- standability,
but also has a strong capacity of shape feature expression, which makes it widely used in
image recognition. Surasak et al. [32] applied the HOG algorithm to human detection in
video, which is able to accurately obtain the number of people for each video frame. Mao
et al. [33] utilized the HOG-based method and support vector machine (SVM) classifier to
perform the preceding vehicle detection, which shows excellent performance in different
traffic scenarios. Qi et al. [34] designed a ship histogram of oriented gradient (S-HOG) to
characterize ship targets, which proved to be also effective when ship size varies. Since
each HSI pixel corresponds to a spectral curve with different changing patterns, it is sug-
gested that constructing the statistics histogram of local gradient change for HSI pixels is an
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effective solution for describing its local spatial–spectral features. Chen et al. [35] proposed
a novel algorithm for hyperspectral face recognition by extracting the HOG feature, which
outperforms several existing methods in the experiment. However, existing HOG-based
algorithms ignore the characteristics of HSI, such as strong correlation between bands, vast
amounts of redundant information and spatial–spectral feature uncertainty. Therefore, in
this study, by introducing the fuzzy logic theory, we design a novel handcrafted feature de-
scriptor named 3D-FHOG to fully exploit the spatial–spectral information and to overcome
the spatial–spectral feature uncertainty.

2.2. Siamese Network

For the problem of small-scale labeled samples, it is suggested that a model named
Siamese network [36,37] will be an effective solution for small-sample HSI classification.
Specifically, Siamese network consists of two branches with the same architecture, and the
image pairs are adopted as the input of Siamese network to minimize the contrastive loss.
Early research of Siamese network mainly focuses on the application for target tracking.
Tao et al. [38] first proposed to utilize the Siamese network in tracking tasks, which achieves
state-of-the-art performance. Bertinetto et al. [39] designed a fully convolutional Siamese
network to locate an exemplar image within a larger search image. Since the number
of labeled samples will be augmented by generating the image pairs, Siamese network
has been employed for few-shot classification tasks. Koch et al. [40] applied the Siamese
network to the one-shot image recognition task, which obtains promising results. With
respect to HSI classification, Zhao et al. [41] utilized the Siamese network to enlarge the
training set and extract the effective spatial–spectral features, which is able to improve the
classification performance. Liu et al. [42] proposed a Siamese network supervised with a
margin ranking loss function for HSI classification, which can obtain better classification
results than those of the conventional methods. Very recently, Cao et al. [43] designed a
hybrid Siamese network called 3DCSN to perform HSI classification, which is suggested
to be a robust and accurate classifier in the scenery of small-scale training samples. As
described in [44], it can be known that the spatial–spectral features extracted from different
CNN layers may contain the semantic information of objects with different scales. Therefore,
in this paper, an effective Siamese network named MDSN is proposed to fully exploit the
multidimensional CNN-based spatial–spectral feature. Moreover, we train the proposed
MDSN by using both the contrastive loss function and classification loss function. Especially,
our proposed MDSN is integrated with the idea of prototypical network in the testing
phase, which is suggested to be more effective for small-sample HSI classification.

3. Methodology

The fusion framework of multidimensional CNN-based and handcrafted features for
small-sample HSI classification is shown in Figure 1. In this study, to verify the effectiveness
of our proposed fusion framework, we design the 3D-FHOG and MDSN for the handcrafted
and multidimensional CNN-based feature extraction, respectively. As shown in Figure 1,
small-sample HSI classification of MDSN combined with 3D-FHOG features mainly consists
of three parts: firstly, principal component analysis (PCA) [45] algorithm is implemented
on HSI to extract the representative band data; next, 3D patches divided from HSI are
utilized to perform the 3D-FHOG feature extraction and the hybrid 3D-2D-1D CNN feature
extraction; finally, through the linear layers and the distance metric between labeled and
unlabeled samples with the 3D-FHOG and MDSN features, three class-score vectors are
obtained (i.e., P1, P2 and P3), which are fused to compute the probability of a HSI pixel
classified into a specific class.



Remote Sens. 2022, 14, 3796 5 of 24

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 25 
 

 

1D CNN feature extraction; finally, through the linear layers and the distance metric be-
tween labeled and unlabeled samples with the 3D-FHOG and MDSN features, three class-

score vectors are obtained (i.e., 1P , 2P  and 3P ), which are fused to compute the proba-
bility of a HSI pixel classified into a specific class. 

 
Figure 1. The fusion framework of multidimensional CNN and handcrafted features for small-sam-
ple HSI classification. Initially, 3D-FHOG is adopted as the handcrafted feature extraction method, 
and MDSN is utilized for multidimensional CNN-based feature extraction. 

3.1. The Proposed 3D-FHOG 
By introducing the fuzzy logic theory, the proposed 3D-FHOG is utilized to fully 

extract the handcrafted spatial–spectral feature and to overcome the spatial–spectral fea-
ture uncertainty. Figure 2 shows the schematic of 3D-FHOG feature extraction. 

 
Figure 2. The schematic of 3D-FHOG feature extraction. 
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HSI classification. Initially, 3D-FHOG is adopted as the handcrafted feature extraction method, and
MDSN is utilized for multidimensional CNN-based feature extraction.

3.1. The Proposed 3D-FHOG

By introducing the fuzzy logic theory, the proposed 3D-FHOG is utilized to fully
extract the handcrafted spatial–spectral feature and to overcome the spatial–spectral feature
uncertainty. Figure 2 shows the schematic of 3D-FHOG feature extraction.
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Let H be the HSI, thus the HSI pixel with a spatial coordinate of (x, y) and λ bands
can be represented as a λ-dimensional vector, as follows:

→
Hλ(x, y) = [H(x, y, z1), H(x, y, z2), . . . , H(x, y, zλ)] (1)
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where H(x, y, z) denotes the spectral response of HSI pixel, and z represents the spectral
domain coordinate. Then, the λ-dimensional vector of HSI pixel is converted into the
3D local spatial–spectral neighborhood for HOG feature extraction. It can be known that
the 3-D local spatial–spectral neighborhood of HSI pixels can be expressed as a group of
orthogonal planes, including XY, XZ and YZ planes. Therefore, HOG feature extraction is
implemented on XY, XZ and YZ planes, respectively. For the XY planes, assuming that
H(x, y, k) denotes the spectral response of HSI pixel with spatial coordinate (x, y) at kth
band, thus the x-axis oriented gradient and y-axis oriented gradient of H(x, y, k) can be
calculated as follows:

Gxy1(x, y, k) = H(x, y + 1, k)− H(x, y− 1, k) (2)

Gxy2(x, y, k) = H(x + 1, y, k)− H(x− 1, y, k) (3)

where Gxy1(x, y, k) and Gxy2(x, y, k) denote the y-axis and x-axis oriented gradient of
H(x, y, k), respectively. Therefore, the oriented gradient of HSI pixels in the kth XY plane
of 3-D local spatial–spectral neighborhood can be expressed as follows:

Gxy(x, y, k) =
√

Gxy1(x, y, k)2 + Gxy2(x, y, k)2 (4)

αxy(x, y, k) = tan−1
(

Gxy1(x, y, k)
Gxy2(x, y, k)

)
(5)

where Gxy(x, y, k) represents the gradient magnitude of H(x, y, k), αxy(x, y, k) is the gradi-
ent direction of H(x, y, k). Then, by setting the suitable block size and cell size of HOG
descriptor in 3-D local spatial–spectral neighborhood, the final expression of HOG descrip-
tor for XY planes is obtained. According to [31], the nine-bin histogram hk

xy is obtained
from each cell of HOG descriptor. Therefore, let the cell size of HOG descriptor be M× N,
the bin hk

xy(b) of hk
xy can be expressed as follows:

hk
xy(b) =

M

∑
m=1

N

∑
n=1

s
(
αxy(m, n, k), b

)
· Gxy(x, y, k) (6)

where s(a, b) is defined as:

s(x1, x2) =


0, x1 − x2 ≥ x2 + β
1, 0 ≤ x1 − x2 < x2 + β
0, x1 − x2 < 0

 (7)

Since the histogram channels are spread over 0 to 180 degrees, thus β is normally set
to be 20. In general, each block of HOG descriptor contains 2 × 2 cells, thus the HOG
descriptor for XY planes can be represented as:

HOGk
xy =

[(
hk

xy

)
1
,
(

hk
xy

)
2
, . . . ,

(
hk

xy

)
P

]
(8)

where
(
hxy
)

i =
[(

hk
xy1

)
i
,
(

hk
xy2

)
i
,
(

hk
xy3

)
i
,
(

hk
xy4

)
i

]
,
(

hk
xyj

)
i

denotes the jth nine-bin histo-
gram of the block, P denotes the number of blocks in the kth XY plane. Similarly, HOG
descriptors for the kth XZ and YZ planes (i.e., HOGk

xz and HOGk
yz) can be obtained. There-

fore, the kth 3D-HOG descriptor HOGk
3D can be expressed as follows:

HOGk
3D =

[
HOGk

xy, HOGk
xz, HOGk

yz

]
(9)

Because HSI has the characteristic of low spatial resolution and wide distribution of
ground objects, thus the 3D local spatial–spectral neighborhood of a HSI pixel that belongs
to a specific class may contain the spatial–spectral information of other classes. This leads to



Remote Sens. 2022, 14, 3796 7 of 24

the problem of spatial–spectral feature uncertainty in the process of spatial–spectral feature
extraction. Especially, when performing the feature fusion of three orthogonal planes, the
confidence of HOG feature extracted from each plane is uncertain. Therefore, fusing the
HOG feature of three orthogonal planes directly may result in the performance degradation
of small-sample HSI classification.

Fuzzy logic proposed by Zadeh [46] is a significant approach for overcoming the
uncertainties among the raw data. Inspired by this, we apply the theory of fuzzy integration
to the process of 3D-HOG feature extraction. According to [47,48], let SV represent the
fuzzy integration function, thus it can be expressed as follows:

SV [v1, v2, . . . , vn] =

[
1
n

n

∑
i=1

vq
i

] 1
q

(10)

where q denotes the fuzzy factor. Hence, by performing the fuzzy integration for the HOG
features extracted from three orthogonal planes, 3D-HOG descriptor is trans- formed into
the 3D-FHOG descriptor with strong robustness, as below:

FHOGk
3D = SV

[
HOGk

xy, HOGk
xz, HOGk

yz

]
(11)

where FHOGk
3D represents the kth 3D-FHOG descriptor. Let L be the step size of 3D-FHOG

feature, thus the final expression of 3D-FHOG descriptor for
→
Hλ(x, y) can be formulated as below:

FHOG3D =
{

SV

[
HOG1

xy, HOG1
xz, HOG1

yz

]
, SV

[
HOG1+L

xy , HOG1+L
xz , HOG1+L

yz

]
,

· · · , SV

[
HOGλ−L

xy , HOGλ−L
xz , HOGλ−L

yz

]
, SV

[
HOGλ

xy, HOGλ
xz, HOGλ

yz

]} (12)

As mentioned above, our proposed 3D-FHOG is able to provide a stricter mathemat-
ical explanation, which makes it more reliable to be utilized in the high sensitive areas.
Moreover, it can not only fully extract the handcrafted spatial–spectral feature of HSI pixels,
but also overcome the spatial–spectral feature uncertainty. Therefore, in this study, the
proposed 3D-FHOG feature is used to enhance the performance of multidimensional CNN.

3.2. The Proposed MDSN

The structure of the MDSN is presented in Figure 3. As shown in Figure 3, the
spatial–spectral features are first extracted by the 3D convolutional blocks from the input
patches. Secondly, the 2D convolutional block is performed to further enhance the spatial
feature. Then, spectral features are further extracted by the 1D convolutional block. Finally,
through the linear layer, the obtained MDSN feature is adopted to compute contrastive
loss, and the classification loss is calculated based on the class probability output from the
linear classifier.
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normalization layer and a ReLU nonlinearity corresponding to its convolutional dimension. When
performing the contrastive learning, two different patches are adopted at the same time. In the
classification phase, only one patch is used.

Let Ψ be the training set of N labeled samples, as follows:

Ψ = {(x1, y1), . . . , (xi, yi), . . . , (xN , yN)} (13)

where x = {x1, x2, . . . , xN}
(
xi ∈ RW1×W2×K) represents the 3D patches of HSI pixels di-

vided from HSI, y = {y1, y2, . . . , yN} denotes the corresponding label. Next, a pair of 3D
patches

(
xi, xj

)
is randomly selected from x, which is adopted as the input of MDSN. Let

yi,j be the label of
(

xi, xj
)
, the value of which is defined as below:

yi,j =

{
1, yi = yj
0, yi 6= yj

(14)

During the training process, our proposed MDSN is updated by minimizing both
contrastive loss and classification loss. When performing the contrastive learning, let θ be
the nonlinear parameters in MDSN. Thus, the formula of θ updated by contrastive loss can
be expressed as follows:

θ = argmin
θ

{
Lc
[
g1(xi), g1

(
xj
)
, yi,j; θ

]}
(15)

where g1(·) denotes the encoder function in the branch of MDSN utilized for computing
the contrastive loss, Lc represents the contrastive loss function, as below:

Lc =
1
2

[
yi,jd2

i,j + (1− yi,j)max
(
margin− di,j, 0

)2
]

(16)

di,j =
∥∥g1(xi)− g2

(
xj
)∥∥

2 (17)

where margin is a constant, and its typical value is 1.25. In the classification phase, we
adopt the cross-entropy loss function Ls to compute the classification loss. Besides, only
one patch xi is used at a time. Hence, the formula of θ updated by classification loss can be
represented as follows:

Ls = −
N

∑
i=1

yi ∗ log ŷi (18)

θ = argmin
θ

{Ls[h(g2(xi)), yi; θ]} (19)
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where g2(·) represents the encoder function in the branch of MDSN utilized for computing
the classification loss, h(·) denotes the class-score mapping function of linear layers, ŷi is
the predicted label of xi. In summary, by training with contrastive loss and classification
loss, our proposed MDSN can effectively exploit the multi-dimensional CNN-based spatial–
spectral feature. Compared with the single-dimensional CNN-based models, MDSN is able
to achieve better performance in small-sample HSI classification.

3.3. MDSN Combined with 3D-FHOG for Small-Sample HSI Classification

As described early, in some special HSI classification tasks with only a few labeled
samples, we need to achieve higher classification accuracy without considering the compu-
tational cost. However, the scarcity of labeled samples makes it difficult to train an effective
CNN-based classifier. In terms of the handcrafted feature, it can provide a stricter mathe-
matical explanation for its feature extraction process, but it is difficult to be applied in some
complex data processing tasks. Therefore, in this paper, we design a fusion framework of
multidimensional CNN and handcrafted features for small-sample HSI classification. Espe-
cially, our proposed MDSN combined with 3D-FHOG is utilized to verify the effectiveness
of our proposed fusion framework.

According to Equations (12) and (13), let Ψk be the training set of N1 labeled samples
labeled with class k. After 3D-FHOG feature extraction, Ψk can be expressed as below:

Ψk =
{
(F(x1), y1), . . . , (F(xi), yi), . . . ,

(
F
(
xN1

)
, yN1

)}
(20)

where F(·) represents the 3D-FHOG feature embedding function. According to the idea
of prototypical network [49,50], 3D-FHOG prototype can be calculated through the mean
method, as follows:

ck =
1
|Ψk| ∑

(xi ,yi)∈Ψk

F(xi) (21)

Then, based on the distance metric with 3D-FHOG prototypes, the probability of pixel
x classified as class k can be formulated as below:

P1(y = k|x) = −d(F(xi), ck)
G
∑

j=1
(−d(F(xi), cj))

(22)

where d(·) denotes the distance function, G is the total number of classes. As mentioned
above, MDSN feature vector is extracted from the branch of MDSN utilized for computing
the contrastive loss. Therefore, class probability based on the distance metric with hybrid-
CNN prototypes can be formulated as follows:

P2(y = k|x) =
−d(g1(xi), c′k)

G
∑

j=1
(−d(g1(xi), c′j))

(23)

where c′k denotes the hybrid-CNN prototype labeled with class k. We assume that P3
denotes the class-score vector output from the linear layers. Hence, by performing the
fusion operation on P1, P2 and P3, the final class probability of HSI pixels, which is obtained
from the MDSN combined with 3D-FHOG features, can be expressed as below:

P = δ(P1, P2, P3) (24)

where δ(·) denotes the fusion function. Specifically, the fusion method for P1, P2 and P3,
such as concatenation and average, can be designed according to the needs of computational
cost. In our experiment, P1, P2 and P3 are fused by average. To sum up, by integrating with
the idea of prototype calculation, MDSN and 3D-FHOG features are effectively fused to
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calculate the class probability of HSI pixels, which is able to obtain more accurate results in
small-sample HSI classification.

The detailed process of MDSN combined with 3D-FHOG for small-sample HSI classi-
fication is described as follows (Algorithm 1).

Algorithm 1. MDSN combined with 3D-FHOG for small-sample HSI classification

Input: HSI pixels x.
Output: The fused class probability P.
Step 1. Generating the 3D patches x1 ∈ RW1×W1×K1 and x2 ∈ RW2×W2×K2 from the local
spatial–spectral neighborhood of x.
Step 2. Performing the 3D-FHOG feature extraction and MDSN feature extraction on x1 and x2,
respectively, by using F(·) and g1(·).
Step 3. Computing the distance metric between F(x1) and ck to obtain the class probability P1.
Step 4. Calculating the distance metric between g1(x2) and c′k to obtain the class probability P2.
Step 5. Getting the class probability P3 output from h(g2(x2)).
Step 6. Fusing the class probability P1, P2 and P3 by using Equation (24).

4. Experiments and Results
4.1. Data Sets

The Indian Pine (IP) data set which contains 16 classes and 10,249 samples was
captured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in north-
western Indiana. Its spatial size and resolution are 145 × 145 pixels and 20-m per pixel.
The number of bands is reduced to 200 by removing bands covering the region of water
absorption. The false-color image and corresponding ground-truth map of the IP data set
are shown in Figure 4. Table 1 lists the samples of the IP data set.
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Table 1. Land cover classes and the numbers of samples in the IP data set.

Class Name Samples Training Samples Testing Samples

1 Alfalfa 46 3 43
2 Corn-notill 1428 3 1425
3 Corn-mintill 830 3 827
4 Corn 237 3 234
5 Grass-pasture 483 3 480
6 Grass-trees 730 3 727
7 Grass-pasture-mowed 28 3 25
8 Hay-windrowed 478 3 475
9 Oats 20 3 17
10 Soybean-notill 972 3 969
11 Soybean-mintill 2455 3 2452
12 Soybean-clean 593 3 590
13 Wheat 205 3 202
14 Woods 1265 3 1262
15 Buildings-Grass-Trees-Drives 386 3 383
16 Stone-Steel-Towers 93 3 90

Total 10,249 48 10,201

The Pavia University (PU) data set contains 610 × 340 pixels. It has 103 spectral
bands that range from 430 to 860 nm. Its spatial resolution is 1.3-m per pixel. It was
collected by the Reflective Optics Spectrographic Image System (ROSIS). It contains nine
categories representing different types of land cover. Figure 5 shows the false-color image
and corresponding ground-truth map of the PU data set. The samples of the PU data set
are listed in Table 2.
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Table 2. Land cover classes and the numbers of samples in the PU data set.

Class Name Samples Training Samples Testing Samples

1 Asphalt 6631 3 6628
2 Meadows 18,649 3 18,646
3 Gravel 2099 3 2096
4 Trees 3064 3 3061
5 Sheets 1345 3 1342
6 Bare soil 5029 3 5026
7 Bitumen 1330 3 1327
8 Bricks 3682 3 3679
9 Shadow 947 3 944

Total 42,776 27 42,749

The Salinas Scene (SA) data set was gathered by the AVIRIS sensor over Salinas Valley,
California. It consists of 145 × 145 pixels with 204 spectral bands that range from 400 to
2500 nm. The data set contains 16 categories of objects, with a total of 54,129 samples. The
false-color image and corresponding ground-truth map of the SA data set are shown in
Figure 6. Table 3 lists the samples of the SA data set.
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Table 3. Land cover classes and the numbers of samples in the SA data set.

Class Name Samples Training Samples Testing Samples

1 Brocoli_green_weeds_1 2009 3 2006
2 Brocoli_green_weeds_2 3726 3 3723
3 Fallow 1976 3 1973
4 Fallow_rough_plow 1394 3 1391
5 Fallow_smooth 2678 3 2675
6 Stubble 3959 3 3956
7 Celery 3579 3 3576
8 Grapes_untrained 11,271 3 11,268
9 Soil_vinyard_develop 6203 3 6200
10 Corn_senesced_green_weeds 3278 3 3275
11 Lettuce_romaine_4wk 1068 3 1065
12 Lettuce_romaine_5wk 1927 3 1924
13 Lettuce_romaine_6wk 916 3 913
14 Lettuce_romaine_7wk 1070 3 1067
15 Vinyard_untrained 7268 3 7265
16 Vinyard_vertical_trellis 1807 3 1804

Total 54,129 48 54,081

4.2. Experimental Setup

In our experiment, we mainly perform the small-sample HSI classification to demon-
strate the effectiveness and robustness of the proposed fusion framework. Since HSI
contains a rich amount of redundant information, we need to preprocess the HSI data to
improve the efficiency of subsequent feature extraction. Accroding to [26], PCA algorithm,
which is a commonly used strategy for preprocessing the HSI data, is first employed for
the dimensionality reduction in HSI to extract the representative band data. After prepro-
cessing, different handcrafted feature-based and CNN-based methods are utilized for the
feature extraction of HSI pixels in the experiment.

At the first set of experiments, our proposed 3D-FHOG is mainly compared with
the handcrafted feature-based methods including the original spectral feature, extended
multi-attribute profile (EMAP) [51], HOG [31], SIFT [13], 3D-LBP [14], 3D-Gabor [17] and
3D-DWT [18], respectively. In our experiment, SVM [52] is applied to classify the feature
vectors of HSI pixels. Then, seven CNN-based methods are considered, i.e., semi-1D
CNN [21], 3D FCN [23], semi-3D CNN [24], 3D CNN [25], 1D RNN [22], HybridSN [26]
and 3DCSN [43], which are utilized to compare with MDSN and the fusion of 3D-FHOG
and MDSN (3D-FHOG + MDSN).

In the training process of MDSN, two phases are included. Firstly, the parameter of
our proposed model is updated by Adam optimizer [53] and contrastive loss when per-
forming the contrastive learning. Besides, we use an initial learning rate of 5 × 10−3, and
the weight decay is set to be 0 in contrastive learning phase. In the classification training
phase, we use another Adam optimizer and cross-entropy loss to update the parameters of
our model. Moreover, the learning rate is set to be 1 × 10−3, and the weight decay is set to
be 5 × 10−5 in this phase. According to [43], the input patch size of MDSN is empirically
set to be 25 × 25 × 30 for IP and 25 × 25 × 15 for PU and SA, respectively.

In order to compare the classification performance of the above different methods,
overall accuracy (OA), average accuracy (AA) and kappa coefficient (κ) are adopted as the
evaluation metric. Quantitatively, the greater the values of OA, AA, and κ are, the better
the classification result is. Moreover, the classification experiments of each method are
repeated 5 times to avoid the accidental phenomenon. Classification accuracy mean and
variance of each method are shown in the experimental statistical table.

4.3. Experimental Result and Analysis

In this section, the classification results of different feature extraction methods on three
public HSI data sets are analyzed visually and quantitatively.
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4.3.1. Influence of the Input Patch Size for 3D-FHOG

First, influence of the input patch size for our proposed 3D-FHOG is examined. Specif-
ically, the size of input patch for 3D-FHOG is set to be 7 × 7 × 7, 9 × 9 × 9, 11 × 11 × 11,
13 × 13 × 13, 15 × 15 × 15 and 17 × 17 × 17 for analysis. Table 4 shows the classification
perfor- mance of 3D-FHOG with different input patch sizes on IP data set. It can be concluded
that when the size of input patch increases, the values of OA, AA and κ of 3D-FHOG show
a trend of increasing first and then decreasing. When input patch size is 15 × 15 × 15, the
classification performance of 3D-FHOG is the best. The reason for the decrease in classi-
fication performance is the redundant information contained in the local spatial–spectral
neighborhood. Therefore, in the following experiment, the input patch size is fixedly set to be
15 × 15 × 15 for 3D-FHOG.

Table 4. Classification performance of 3D-FHOG with different input patch sizes on IP data set.

Evaluation Metric
Input Patch Size

7 × 7 × 7 9 × 9 × 9 11 × 11 × 11 13 × 13 × 13 15 × 15 × 15 17 × 17 × 17

OA 36.30 ± 0.15 39.70 ± 0.04 42.66 ± 0.03 48.71 ± 0.02 51.89 ± 0.01 50.97 ± 0.01
AA 42.27 ± 0.07 46.56 ± 0.05 49.23 ± 0.09 54.23 ± 0.09 57.61 ± 0.05 57.12 ± 0.06
κ 28.49 ± 0.17 32.39 ± 0.05 35.70 ± 0.04 42.02 ± 0.03 45.71 ± 0.01 44.81 ± 0.01

4.3.2. Compared with Handcrafted Feature-Based Methods

In order to verify the effectiveness of 3D-FHOG in small-sample HSI classification, the
proposed 3D-FHOG is compared with seven handcrafted feature-based methods. When
three labeled samples per class are adopted as the training set, detail classification results
with different handcrafted feature-based methods are listed in Tables 5–7 for IP, PU and SA
data sets, respectively. As observed from Tables 5–7, we can make four observations, which
are described as follows.

Table 5. Classification results (%) for Spectral, EMAP, HOG, SIFT, 3D-LBP, 3D-Gabor, 3D-DWT, and
3D-FHOG on the test set of IP data set, with three labeled samples per class as training set.

Class
Spectral EMAP HOG SIFT 3D-LBP 3D-Gabor 3D-DWT 3D-FHOG

Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var

1 78.60 2.04 73.02 4.29 67.44 4.82 99.53 0.01 100.00 0.00 36.28 2.91 59.53 6.70 73.95 3.19
2 24.60 0.59 11.84 2.15 20.39 0.31 31.90 2.00 27.37 2.07 39.26 3.59 23.24 2.24 28.69 0.40
3 21.69 2.59 34.32 3.42 17.34 0.68 25.92 1.22 23.70 0.85 24.93 1.54 23.43 3.30 23.53 1.15
4 20.85 2.70 33.85 0.91 23.42 0.16 55.47 1.57 44.87 8.25 37.26 5.11 25.30 0.38 31.54 0.95
5 40.92 4.54 34.08 4.10 36.54 0.67 36.75 1.72 15.12 0.50 19.46 5.71 12.79 8.18 58.42 0.30
6 27.54 1.41 69.52 1.36 36.73 1.79 54.22 4.07 49.57 0.92 29.32 2.91 49.90 2.52 67.98 0.94
7 93.60 0.05 89.60 0.37 66.40 3.11 100.00 0.00 100.00 0.00 100.00 0.00 76.00 0.88 72.00 4.35
8 49.39 2.33 38.19 1.13 28.21 1.05 64.21 2.87 71.62 2.74 91.96 0.13 66.90 4.38 63.49 3.59
9 71.76 0.76 64.70 0.69 87.38 1.34 100.00 0.00 100.00 0.00 75.29 1.80 100.00 0.00 94.44 1.23
10 37.21 1.12 36.62 4.73 21.63 0.21 32.57 4.61 34.08 3.93 17.87 7.04 50.18 2.16 46.81 0.92
11 32.28 1.46 37.75 4.18 14.69 0.21 17.35 0.94 26.66 5.48 26.32 10.73 18.67 3.28 67.11 0.16
12 12.27 2.31 11.97 0.38 19.56 0.24 24.54 1.96 31.93 1.12 14.81 1.46 22.85 2.53 28.95 1.45
13 94.36 0.18 92.97 0.30 67.03 1.38 73.66 3.38 96.44 0.09 75.74 0.51 53.17 11.96 74.26 1.71
14 59.30 5.30 59.49 9.23 18.49 0.29 45.91 8.80 62.98 1.61 67.84 8.33 88.73 2.74 63.72 2.45
15 12.64 0.63 28.41 1.36 28.82 0.75 57.18 2.32 36.55 1.91 27.36 0.61 12.74 0.49 46.42 1.74
16 82.00 1.16 91.11 0.07 50.67 3.11 86.67 2.03 96.44 0.39 93.33 0.44 81.33 0.49 80.44 2.62

OA 34.95 0.08 38.50 0.51 22.90 0.02 35.98 0.15 38.60 0.21 36.80 0.32 37.41 0.16 51.89 0.01
AA 47.44 0.05 50.46 0.07 37.80 0.05 56.62 0.14 57.33 0.05 48.57 0.05 47.80 0.09 57.61 0.05
κ 27.48 0.07 31.79 0.46 15.82 0.01 29.28 0.17 33.77 0.20 29.89 0.24 30.68 0.18 45.71 0.01
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Table 6. Classification results (%) for Spectral, EMAP, HOG, SIFT, 3D-LBP, 3D-Gabor, 3D-DWT, and
3D-FHOG on the test set of PU data set, with three labeled samples per class as training set.

Class
Spectral EMAP HOG SIFT 3D-LBP 3D-Gabor 3D-DWT 3D-FHOG

Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var

1 38.97 10.24 49.72 0.90 24.34 2.03 56.90 1.91 35.26 13.03 17.06 1.93 34.06 3.05 58.95 0.83
2 30.82 10.07 44.82 4.46 21.17 0.18 24.07 4.58 44.38 11.18 29.50 2.82 46.16 3.51 44.84 3.00
3 31.14 0.64 73.39 0.76 38.27 1.60 29.37 0.95 50.13 6.87 25.53 5.45 76.81 1.25 71.87 1.47
4 75.48 2.30 76.67 0.74 54.13 0.66 28.35 3.07 49.63 7.55 56.37 4.45 96.49 0.01 75.51 0.76
5 71.47 0.08 99.15 0.00 55.75 2.11 64.59 2.94 93.02 0.34 99.40 0.01 100.00 0.00 77.03 1.48
6 40.17 11.70 57.73 4.51 26.43 0.79 33.97 1.48 54.91 2.95 77.59 2.68 44.16 9.67 49.71 2.76
7 88.45 0.81 69.15 3.63 30.25 1.02 25.64 0.62 82.14 0.56 80.47 1.02 77.27 10.03 79.74 3.67
8 73.11 0.39 32.06 2.06 57.73 0.47 31.22 2.64 85.67 1.12 50.43 3.94 22.23 0.69 79.36 1.28
9 99.89 0.00 95.05 0.05 85.93 0.48 43.28 2.27 30.95 3.66 33.11 6.88 65.42 0.93 76.52 0.94

OA 44.63 0.63 53.25 0.80 31.42 0.02 33.25 0.43 50.82 3.49 40.61 0.64 50.18 0.42 56.89 0.57
AA 61.06 0.18 66.41 0.14 43.78 0.03 37.49 0.08 58.46 0.42 52.16 0.11 62.51 0.09 68.17 0.20
κ 35.29 0.42 44.5 0.73 21.64 0.02 21.20 0.11 42.52 3.12 31.16 0.51 40.26 0.33 48.13 0.56

Table 7. Classification results (%) for Spectral, EMAP, HOG, SIFT, 3D-LBP, 3D-Gabor, 3D-DWT, and
3D-FHOG on the test set of SA data set, with three labeled samples per class as training set.

Class
Spectral EMAP HOG SIFT 3D-LBP 3D-Gabor 3D-DWT 3D-FHOG

Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var

1 98.28 0.02 97.90 0.05 49.29 0.84 41.40 0.78 57.43 10.06 68.32 11.18 95.65 0.05 96.96 0.08
2 70.20 4.32 96.10 0.14 36.37 0.76 37.82 4.48 63.12 0.64 76.93 7.91 85.01 0.12 92.46 0.34
3 49.98 0.40 76.34 2.26 31.42 1.21 26.34 2.72 49.49 4.18 21.28 1.00 50.85 7.75 93.36 0.68
4 98.13 0.02 92.38 0.34 69.89 1.89 85.74 0.73 95.87 0.01 77.94 6.14 97.44 0.01 84.02 2.35
5 97.70 0.00 81.14 4.44 50.31 2.77 31.50 2.25 93.81 0.05 60.26 5.94 79.58 10.32 78.65 8.17
6 96.67 0.02 99.59 0.00 50.69 1.76 51.69 2.30 56.15 10.42 90.36 0.02 77.50 17.58 97.56 0.04
7 97.75 0.05 99.61 0.00 40.75 1.07 18.79 0.23 85.70 0.05 32.38 6.32 64.80 1.68 95.22 0.05
8 45.40 1.86 44.12 4.26 25.96 1.05 28.69 10.42 39.31 10.00 32.26 11.49 46.18 13.01 68.29 0.41
9 75.46 7.87 90.75 1.64 35.71 1.04 14.99 0.71 75.41 3.07 97.64 0.01 75.34 17.42 100.00 0.01
10 29.34 6.40 63.81 3.48 36.71 4.02 18.04 1.09 64.05 1.06 22.00 4.32 25.95 6.86 64.18 5.06
11 77.35 0.18 80.02 2.14 63.83 3.27 89.56 0.06 92.60 0.00 61.67 7.09 78.33 4.84 76.73 2.54
12 73.79 0.40 75.55 1.79 62.85 3.87 60.57 9.16 61.23 13.09 54.07 4.06 65.97 1.20 81.05 0.43
13 95.64 0.36 76.12 3.00 64.82 2.13 39.01 6.72 36.17 16.42 95.44 0.06 89.18 0.02 89.35 0.90
14 76.94 3.91 75.35 6.23 75.00 2.57 77.56 0.76 74.13 1.31 62.38 10.54 66.64 1.66 82.19 2.28
15 66.34 2.49 73.11 3.68 18.79 0.43 45.66 10.26 77.79 1.12 63.14 8.10 40.54 8.41 38.67 1.68
16 20.45 0.95 72.66 1.57 26.53 1.46 24.70 0.98 41.35 4.88 52.93 0.37 21.44 4.00 57.35 0.66

OA 67.96 0.19 76.03 0.14 37.37 0.02 35.74 0.17 63.78 0.18 57.82 0.10 60.35 0.71 76.95 0.03
AA 73.09 0.05 80.91 0.16 46.18 0.09 43.25 0.06 66.48 0.16 60.56 0.12 66.27 0.54 80.94 0.08
κ 64.59 0.23 73.51 0.16 31.49 0.04 29.70 0.14 60.14 0.19 53.64 0.10 56.35 0.84 74.46 0.04

Firstly, compared with the 2D handcrafted feature descriptors, spectral feature and 3D
handcrafted feature descriptors can achieve better classification performance. For instance,
the OA of 3D-LBP is 15.70% higher than that of HOG on the IP data set. This indicates that
only extracting the spatial information will destroy the correlation between spectral bands.

Secondly, the classification performance of 3D handcrafted feature descriptors is
always superior to the spectral feature. Because 3D handcrafted feature descriptors can
exploit both spatial and spectral information, which makes them more effective in HSI
classification.

Thirdly, EMAP feature descriptor shows more excellent classification performance
on PU and SA data sets. Since EMAP is based on morphological attribute filters and
multi-level analysis, it is suggested that combining the features with different dimensions
or scales is an effective solution for small-sample HSI classification.
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Finally, by comparing with spectral, 2D handcrafted and 3D handcrafted feature
descriptors, we can observe that our proposed 3D-FHOG feature descriptor obtains the
best classification results in three public data sets. By integrating with fuzzy logic, 3D-
FHOG is able to overcome the local spatial–spectral feature uncertainty and extract more
discriminative spatial–spectral features.

4.3.3. Compared with CNN-Based Methods

To further demonstrate the effectiveness and robustness of the proposed fusion frame-
work, 3D-FHOG + MDSN method is compared with eight representative CNN- based
methods. These CNN-based methods include Semi-1D CNN, 3D FCN, Semi-3D CNN,
3D CNN, 1D RNN, HybridSN, 3DCSN and MDSN. Table 8 reports the OA, AA, κ and
the classification accuracy of each class for HSI classification with three labeled samples
per class on the IP data set. The statistical results suggest that HybridSN, 3DCSN and
MDSN methods, which incorporate the multidimensional CNN feature, are superior to the
single-dimensional CNN-based methods. Additionally, both Semi-3D CNN and 1D RNN
can achieve excellent classification performance. This verifies that 3D CNN combined with
semi-supervised learning is effective for small-sample HSI classification, and 1D RNN is
able to take full advantage of spectral correlation and band-to-band variability. Moreover,
MDSN and 3DCSN, which are based on the learning mechanism of Siamese network,
can obtain more accurate results. Especially, 3D-FHOG + MDSN method has the best
classification results on the IP data set, which indicates that our proposed fusion framework
can fully combine the advantage of multidimensional CNN and handcrafted features.

Table 8. Classification results (%) for eight different CNN-based methods and 3D-FHOG + MDSN on
the test set of IP data set, with three labeled samples per class as training set.

Class
Semi-1D

CNN 3D FCN Semi-3D
CNN 3D CNN 1D RNN HybridSN 3DCSN MDSN

3D-FHOG
+MDSN

Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var

1 3.22 0.09 4.74 0.22 42.14 2.70 7.80 0.57 24.69 1.00 73.49 1.35 100.00 0.00 100.00 0.00 99.53 0.01
2 6.36 0.68 4.96 0.55 28.22 1.21 10.85 1.98 24.71 0.22 19.87 1.14 46.29 0.03 53.38 0.22 51.21 0.10
3 8.33 0.95 10.88 1.58 20.13 0.48 5.09 0.40 23.73 0.52 27.64 0.65 53.01 1.49 59.54 0.19 63.41 0.22
4 3.81 0.11 12.17 0.79 22.93 0.86 12.16 1.00 18.54 0.70 17.61 0.80 50.60 0.54 57.52 0.38 55.13 0.52
5 11.33 2.96 6.91 1.20 42.58 0.33 15.32 1.15 46.47 0.15 58.46 1.55 55.50 0.04 54.58 0.02 57.54 0.02
6 7.14 2.04 3.03 0.29 69.21 0.94 15.00 4.01 55.14 2.00 70.84 2.34 88.09 0.21 90.76 0.02 91.77 0.02
7 7.99 0.49 4.00 0.05 40.29 2.39 0.75 0.02 29.69 1.08 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
8 8.80 0.69 7.49 2.24 78.91 2.95 15.47 9.57 63.07 3.37 89.39 0.19 99.12 0.02 98.36 0.01 99.49 0.00
9 2.14 0.03 4.66 0.06 25.82 0.29 4.67 0.34 23.85 3.75 95.29 0.33 100.00 0.00 100.00 0.00 100.00 0.00
10 5.87 0.52 11.50 1.42 32.52 0.13 8.41 2.34 29.13 0.44 24.99 3.59 58.39 0.13 58.02 0.10 59.86 0.09
11 25.22 2.83 10.57 4.47 38.19 3.38 20.45 3.52 26.45 1.59 17.19 1.99 49.35 0.63 45.53 0.11 53.60 0.08
12 9.83 0.71 5.14 0.31 20.00 0.07 7.79 1.45 17.44 0.18 30.61 1.00 60.10 0.31 55.05 0.27 62.14 0.02
13 24.44 2.92 18.83 1.93 65.11 0.26 25.52 7.23 65.46 2.49 81.88 7.62 81.78 0.87 87.23 0.11 83.56 0.16
14 7.16 1.59 34.84 13.17 74.91 1.32 46.28 14.50 66.19 0.34 65.55 0.38 83.00 0.35 85.48 0.22 85.86 0.25
15 9.03 0.46 7.72 0.65 24.92 0.23 8.04 0.68 27.61 0.45 50.39 2.92 76.60 0.00 76.66 0.00 76.76 0.00
16 11.64 4.40 46.29 6.65 74.71 3.11 7.09 0.23 52.40 2.57 59.56 0.92 72.67 0.05 72.00 0.16 55.56 0.05

OA 13.98 0.25 15.22 1.68 42.95 0.12 20.80 1.02 35.67 0.10 38.52 0.50 62.55 0.06 63.51 0.01 66.08 0.00
AA 9.52 0.06 12.11 0.58 43.79 0.04 13.17 0.69 37.16 0.15 55.17 0.25 73.40 0.02 74.63 0.00 74.72 0.01
κ 7.62 0.12 10.62 1.07 36.23 0.08 14.92 0.84 29.13 0.08 33.76 0.45 58.09 0.07 59.32 0.01 62.07 0.00

As for the PU data set, detail classification results with nine different methods are
listed in Table 9. As observed in Table 9, the performance of MDSN, 3DCSN and HybridSN
is significantly higher than that of the Semi-1D CNN, 3D FCN, Semi-3D CNN, 3D CNN
and 1D RNN on the PU data set, which further demonstrates the superiority of multidimen-
sional CNN features and learning mechanism of Siamese network in small- sample HSI
classification. Furthermore, 3D-FHOG + MDSN consistently provides the best classification
results on PU data set.
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Table 9. Classification results (%) for eight different CNN-based methods and 3D-FHOG + MDSN on
the test set of PU data set, with three labeled samples per class as training set.

Class
Semi-1D

CNN 3D FCN Semi-3D
CNN 3D CNN 1D RNN HybridSN 3DCSN MDSN

3D-FHOG
+MDSN

Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var

1 1.00 0.02 33.05 4.85 61.66 1.80 75.39 0.31 42.33 9.42 53.59 1.17 52.58 0.50 63.63 0.35 67.44 0.24
2 11.90 0.86 39.22 5.49 41.14 4.97 55.24 1.37 44.65 1.35 67.38 2.70 65.48 0.27 63.51 0.33 64.01 0.23
3 11.07 1.05 18.40 1.35 33.01 0.27 17.02 1.86 19.47 5.48 76.12 1.22 87.97 0.78 87.36 0.27 89.83 0.11
4 11.93 1.04 49.64 1.66 41.05 0.87 48.31 5.91 58.79 0.54 18.63 0.11 34.45 1.93 37.84 0.56 41.80 0.58
5 23.68 8.97 80.47 6.07 73.99 2.68 99.39 0.00 73.57 2.84 100.00 0.00 99.73 0.00 99.97 0.00 99.79 0.00
6 10.74 1.74 34.57 0.06 34.79 0.17 36.20 0.09 25.79 0.03 77.96 0.92 74.46 2.07 78.12 0.86 79.32 0.81
7 13.05 2.12 26.46 1.90 33.64 0.78 22.89 3.03 21.71 0.85 74.35 1.33 94.06 0.52 91.94 0.54 97.66 0.08
8 10.35 3.32 32.58 0.56 50.49 0.74 30.97 8.60 38.20 5.41 47.12 1.78 61.66 0.20 69.22 0.34 70.55 0.20
9 1.55 0.04 61.04 11.43 62.02 1.84 97.49 0.08 54.68 1.19 46.46 1.26 71.48 0.18 69.56 0.06 74.02 0.11

OA 13.88 0.32 39.43 0.60 44.47 0.42 53.76 0.54 41.66 0.72 62.46 0.59 65.18 0.09 67.23 0.11 68.97 0.09
AA 10.58 0.04 41.71 0.30 47.98 0.13 53.66 0.39 42.13 0.37 62.40 0.10 71.32 0.08 73.46 0.03 76.05 0.04
κ 5.63 0.06 29.30 0.46 35.81 0.24 43.91 0.57 32.86 0.62 53.73 0.61 56.97 0.12 59.58 0.13 61.62 0.11

With respect to the SA data set, for three labeled samples per class, the OA, AA and κ

measure for each class using different approaches are shown in Table 10. From Table 10, it is
found that OA and κ of the proposed 3D-FHOG + MDSN are 92.06% and 91.16, respectively,
in comparison with the OA and κ of 24.31% and 19.30, 32.38% and 28.11, 64.79% and 60.91,
32.34% and 27.07, 67.42% and 63.99, 84.07% and 82.29, 91.69% and 90.74, 91.72% and 90.78
for Semi-1D CNN, 3D FCN, Semi-3D CNN, 3D CNN, 1D RNN, HybridSN, 3DCSN and
MDSN, respectively. The same conclusion can be drawn that classification accuracies
obtained by 3D-FHOG + MDSN are better than others, which in turn demonstrates the
effectiveness of our proposed fusion framework.

Table 10. Classification results (%) for eight different CNN-based methods and 3D-FHOG + MDSN
on the test set of SA data set, with three labeled samples per class as training set.

Class
Semi-1D

CNN 3D FCN Semi-3D
CNN 3D CNN 1D RNN HybridSN 3DCSN MDSN

3D-FHOG
+MDSN

Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var Mean Var

1 0.00 0.00 27.60 5.49 29.38 5.77 19.72 2.59 44.33 5.10 98.99 0.01 99.97 0.00 99.79 0.00 99.78 0.00
2 21.46 3.46 34.09 4.30 32.76 12.28 21.44 6.90 38.63 13.56 98.30 0.08 99.40 0.00 99.30 0.01 99.54 0.00
3 13.73 1.40 2.15 0.11 51.79 1.21 8.15 0.69 46.95 6.78 81.88 1.01 99.83 0.00 99.91 0.01 99.94 0.00
4 30.45 10.00 60.99 12.46 92.24 0.34 32.08 10.37 91.74 0.12 66.77 7.51 99.15 0.00 99.08 0.01 99.61 0.00
5 14.05 7.90 16.52 3.68 68.87 3.20 28.87 11.02 58.39 15.68 57.70 4.99 94.88 0.34 94.49 0.15 95.24 0.16
6 30.00 8.63 65.66 9.94 98.60 0.00 76.07 3.42 98.96 0.00 99.42 0.00 98.59 0.02 99.14 0.01 99.67 0.00
7 26.15 7.92 8.12 2.64 93.31 0.03 0.03 0.00 93.07 0.22 96.26 0.10 98.90 0.01 99.08 0.01 99.50 0.00
8 12.54 5.76 11.91 2.25 60.37 3.67 30.07 7.50 59.36 3.60 76.19 0.85 85.97 0.01 84.86 0.03 84.47 0.02
9 33.27 6.81 29.99 7.45 81.87 0.34 41.37 13.06 72.43 13.37 95.95 0.09 96.61 0.21 97.12 0.26 99.30 0.01
10 10.73 0.90 8.20 0.75 38.28 0.39 15.78 4.98 58.19 5.03 87.66 0.13 95.47 0.02 94.54 0.02 94.52 0.01
11 2.13 0.18 27.21 5.42 37.03 0.68 10.97 2.49 36.12 6.11 97.39 0.01 99.66 0.00 99.59 0.00 99.91 0.00
12 30.11 6.40 31.57 2.50 60.37 11.17 23.35 5.02 72.69 7.13 80.83 0.40 98.34 0.02 98.40 0.02 98.11 0.01
13 15.41 1.88 17.41 4.81 80.12 1.26 42.65 8.33 89.82 0.54 95.60 0.67 99.87 0.00 99.96 0.00 99.96 0.00
14 41.57 13.93 13.52 0.13 70.73 4.34 26.72 10.96 86.54 0.38 87.52 1.69 98.67 0.00 98.74 0.01 99.02 0.00
15 6.36 0.96 34.87 3.76 44.37 2.95 2.28 0.20 39.59 3.99 65.97 2.80 71.67 0.29 72.73 0.52 72.82 0.45
16 13.11 1.00 43.96 0.21 49.94 6.54 11.81 4.48 79.97 0.15 97.55 0.10 90.30 0.42 93.10 0.22 93.72 0.11

OA 24.31 0.40 32.38 0.45 64.79 0.08 32.34 2.52 67.42 0.34 84.07 0.01 91.69 0.00 91.72 0.01 92.06 0.01
AA 18.82 0.36 27.11 0.08 61.88 0.23 24.46 2.03 66.67 0.48 86.50 0.02 95.45 0.01 95.61 0.00 95.94 0.01
κ 19.30 0.32 28.11 0.34 60.91 0.10 27.07 2.48 63.99 0.38 82.29 0.01 90.74 0.00 90.78 0.01 91.16 0.01

4.3.4. Classification Maps

Furthermore, classification performances of nine different methods are visually in-
vestigated on three public HSI data sets. Figure 7 shows the classification maps of Semi-
1D CNN, 3D FCN, Semi-3D CNN, 3D CNN, 1D RNN, HybridSN, 3DCSN, MDSN and
3D-FHOG + MDSN on the IP data set with three labeled samples per class. Comparing the
classification maps of each method in Figure 7, the maps of HybridSN, 3DCSN, MDSN and
3D-FHOG + MDSN are obviously more similar to the ground map than those of other methods.
Especially, the map of 3D-FHOG + MDSN, which effectively combines the multidimensional
CNN and handcrafted features, is the most similar. Additionally, the classification maps on
the PU data set using nine different methods with three labeled samples per class are shown



Remote Sens. 2022, 14, 3796 18 of 24

in Figure 8. It can be seen from Figure 8 that more query samples are obviously assigned to the
correct class on the maps of multidimensional CNN-based methods than others, and the map
of 3D-FHOG + MDSN is more consistent with the ground-truth map, which indicates that the
performance of MDSN is effectively enhanced with the 3D-FHOG feature. In terms of the SA
data set, Figure 9 displays the classification maps resulting from nine different methods for
the SA data set with three labeled samples per class. The same conclusion can be drawn that
the map of 3D-FHOG + MDSN is more similar to the ground-truth map than other methods,
which further shows its robustness in small-sample HSI classification.
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4.3.5. Influence of Training Sample Size

To further illustrate the superiority of 3D-FHOG + MDSN with different numbers
of labeled samples, we take 3, 5, 7, 9, and 11 labeled samples for each class to build the
training data set. Specifically, we have conducted three groups of experiment on three
public HSI data sets. Then, the curve change of nine methods is obtained. It can be
seen from Figure 10 that the OA of each method generally rises as the number of labeled
samples increases. However, single-dimensional CNN-based methods are unstable in the
scenery of small-scale training samples, which may result in the sharp decrease in classifi-
cation accuracy when the number of labeled samples increases. Especially, the proposed
3D-FHOG + MDSN method outperforms other methods in most cases, which demonstrates
its adaptability to the variance of the number of labeled samples. Additionally, Figures 11
and 12 display the AA and κ measure as functions of the number of labeled samples per
class. The same conclusion can be drawn that the AA and κ of our proposed 3D-FHOG
+ MDSN method is always the best in terms of different training sample sizes. Besides,
we also find that the gap between the classification accuracy of various methods increases
when the number of training samples is fewer. This indicates that the performance of
CNN-based method will be enhanced with the increase in labeled samples, which in turns
minimizes the contribution of handcrafted features. Meanwhile, incorporating the hand-
crafted feature with the CNN-based method will not cause a decrease in classification
accuracy, but will improve the reliability of classification result. Hence, it is suggested that
our proposed 3D-FHOG + MDSN method is more robust and reliable in the scenery of
small-scale training samples.
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In summary, the performance of MDSN enhanced with 3D-FHOG feature in small-
sample HSI classification is better than those of representative handcrafted and CNN-based
spatial–spectral feature extraction methods, especially when the training sample size is
smaller. This in turn verifies the effectiveness of the proposed fusion framework.

4.3.6. Time Consumption

In this section, the running time of different methods is analyzed to evaluate their
computational efficiency. Table 11 reports the running time of different methods on the
three HSI data sets with three labeled samples per class. All the experiments are conducted
on a computer with an Intel Core i3-4160 processor with 3.6 GHz, 8 GB of DDR3 RAM, an
NVIDIA Geforce RTX 1060 graphical processing unit (GPU). For the higher computational
cost methods including Semi-1D CNN, 3D FCN and Semi-3D CNN, the processing time
is long. In terms of 3D CNN, it has a relatively short training time, but achieves poor
classification performance. In addition, for the lightweight networks (i.e., 1D RNN and
HybridSN), the running time is short, and these methods can obtain better classification
results. Additionally, for the 3DCSN, MDSN and 3D-FHOG+ MDSN, since these methods
are based on the idea of Siamese network and composed of CNN blocks with multiple
dimensions, more time is consumed by learning the multi- dimensional CNN features
from the HSI pixel pairs. Meanwhile, the classification performances of these methods are
effectively improved.

Table 11. Running time of different methods on the three HSI data sets with three labeled samples
per class.

Model Semi-1D CNN 3D FCN Semi-3D CNN 3D CNN 1D RNN HybridSN 3D CSN MDSN 3D-FHOG + MDSN

IP
Training Time (s) 449.72 197.29 500.10 21.56 9.76 4.09 295.81 314.16 314.17
Testing time (s) 0.44 15.04 3.91 4.81 1.46 10.36 10.58 12.58 15.50

PU
Training Time (s) 3659.20 735.33 3710.15 37.50 23.03 1.77 34.64 38.66 38.58
Testing time (s) 3.53 140.01 23.22 19.21 7.88 19.98 20.46 26.58 41.78

SA
Training Time (s) 2443.70 990.52 2893.45 95.27 39.32 2.18 102.17 114.46 115.28
Testing time (s) 2.37 83.36 29.18 27.51 7.78 24.91 25.54 34.93 64.84

Especially, our proposed 3D-FHOG + MDSN contains the additional time of hand-
crafted feature extraction (HFE). Table 12 reports the HFE time of 3D-FHOG + MDSN on the
three HSI data sets with three labeled samples per class. Note that the HFE time represents
the time of HFE for all HSI samples in the data set. Hence, the more samples the data set
contains, the more time it takes for 3D-FHOG feature extraction. In some high-sensitive
areas, we can spend more time to obtain the more reliable and accurate results. Note that
HFE time for each pixel is 0.07s. In real military applications, a military target contained in
the HSI is generally composed of about 100 pixels, which only takes 7s for HFE. Therefore,
the increase in time is acceptable. To sum up, in terms of some special small-sample HSI
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classification tasks without considering the computational cost, our proposed method will
be an effective solution to achieve more accurate and reliable classification results.

Table 12. Handcrafted feature extraction (HFE) time of 3D-FHOG + MDSN on the three HSI data sets
with three labeled samples per class.

Model 3D-FHOG + MDSN

IP
HFE time (s) 722.57

HFE time for each pixel (s) 0.07

PU
HFE time (s) 3040.99

HFE time for each pixel (s) 0.07

SA
HFE time (s) 3815.43

HFE time for each pixel (s) 0.07

5. Conclusions

In this paper, a fusion framework of multidimensional CNN and handcrafted features
is proposed for small-sample HSI classification. Specifically, we design the 3D-FHOG
descriptor to extract the handcrafted spatial–spectral feature, which is suggested to be
more robust by overcoming the local spatial–spectral feature uncertainty. Then, to further
extract the CNN-based spatial–spectral feature, an effective Siamese network, i.e., MDSN
is proposed, which can effectively achieve the integration of CNN-based spatial–spectral
features from multiple dimensions. Finally, our proposed MDSN combined with 3D-FHOG
is employed for small-sample HSI classification to verify the effectiveness of our proposed
fusion framework. Experiment results on three public HSI data sets indicate that our
proposed MDSN combined with 3D-FHOG is superior to the representative handcrafted
and CNN-based spatial–spectral feature extraction methods, which in turn demonstrates
the effectiveness of the proposed fusion framework. More importantly, our proposed fusion
framework has the advantage of expandability. In the future work, we will continue to
explore the more discriminative and efficient spatial–spectral feature extraction methods,
and integrate them into our proposed fusion framework, which helps to improve the
small-sample HSI classification accuracy.
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