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Abstract: Precipitation, as an important component of the Earth’s water cycle, plays a determinant
role in various socio-economic practices. Consequently, having access to high-quality and reliable
precipitation datasets is highly demanded. Although Gridded Precipitation Products (GPPs) have
been widely employed in different applications, the lack of quantitative assessment of GPPs is a
critical concern that should be addressed. This is because the inherent errors in GPPs would propagate
into any models in which precipitation values are incorporated, introducing uncertainties into the
final results. This paper aims to quantify the capability of six well-known GPPs (TMPA, CHIRPS,
PERSIANN, GSMaP, IMERG, and ERA5) at multiple time scales (daily, monthly, and yearly) using
in situ observations (over 1.7 million) throughout Iran over the past two decades (2000–2020). Both
continuous and categorical metrics were implemented for precipitation intensity and occurrence
assessment based on the point-to-pixel comparison approach. Although all metrics did not support
the superior performance of any specific GPP, taking all investigations into account, the findings
suggested the better performance of the Global Satellite Mapping of Precipitation (GSMaP) in
estimating daily precipitation (CC = 0.599, RMSE = 3.48 mm/day, and CSI = 0.454). Based on the
obtained continuous metrics, all the GPPs had better performances in dry months, while this did not
hold for the categorical metrics. The validation at the station level was also carried out to present the
spatial characteristics of errors throughout Iran, indicating higher overestimation/underestimation in
regions with higher precipitation rates. The validation analysis over the last two decades illustrated
that the GPPs had stable performances, and no improvement was seen, except for the GSMaP, in
which its bias error was significantly reduced. The comparisons on monthly and yearly time scales
suggested the higher accuracy of monthly and yearly averaged precipitation values than accumulated
values. Our study provides valuable guidance to the selection and application of GPPs in Iran and
also offers beneficial feedback for further improving these products.

Keywords: Gridded Precipitation Products (GPPs); evaluation; TMPA; CHIRPS; PERSIANN; GSMaP;
IMERG; ERA5; Iran

1. Introduction

Precipitation is a crucial component of the Earth’s water cycle, associated with at-
mospheric circulation in weather and climate studies [1]. Furthermore, precipitation is
an essential determinant of a variety of socio-economic practices, including hydrological
modeling [2,3], hydro-electric power generation [4], drought detection and monitoring [5],
flood prediction and modeling [6], and food security [7]. Consequently, the availability of
accurate and reliable precipitation data is of significant importance in supporting the suc-
cessful execution of these practices. Conventionally, precipitation data were only collected
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using in situ instruments, such as rain gauges, synoptic stations, and ground-based radar.
Although these observations, as the most intuitive method, provide the most accurate pre-
cipitation data due to their direct physical measurement, they include several limitations
that may hamper our understanding of various climate events [8]. In particular, in situ
measurements suffer from a sparse and uneven distribution, incomplete areal coverage,
and recording sequence discontinuities [9,10]. The aforementioned limitations could result
in an inadequate spatial and temporal representation of precipitation patterns, especially in
remote regions and areas with a complex terrain [11,12]. Additionally, the high cost associ-
ated with installing and consistently maintaining accurate ground stations makes it almost
impractical to establish a very high-density network with a suitable spatial distribution.
Accordingly, the utility of other technologies and datasets that could potentially address
these limitations should be on the agenda.

More recently, different Gridded Precipitation Products (GPPs) have emerged, sat-
isfying the requirements and resolving previous limitations that could suitably support
a variety of applications. These GPPs, covering regional and global scales with consis-
tent and various spatial and temporal resolutions, have been developed from (1) in situ
measurements, (2) numerical models, (3) satellite data, and (4) a combination of different
sources [13]. Among these data sources, the advancement of infrared and microwave
sensors onboard satellites has significantly contributed toward retrieving precipitation
estimates with homogenous spatial and temporal characteristics. For instance, the Tropical
Rainfall-Measuring Mission Multi-satellite Precipitation Analysis (TMPA) [14], the Global
Satellite Mapping of Precipitation (GSMaP) [15], and the Precipitation Estimation from Re-
motely Sensed Information using Artificial Neural Networks (PERSIANN) [16] are among
the widely used satellite-based GPPs. Additionally, the combination of various data sources,
such as the integration of satellite data with in situ measurements (i.e., for calibration and
adjustment) and data assimilation through the atmospheric reanalysis/modeling of climate
data, generally have enhanced the performance of the GPPs [17–19].

Due to their consistent spatial and temporal resolutions, these GPPs have been em-
ployed globally by a range of researchers for a wide variety of applications [20–22]. For
instance, GPPs were employed for drought monitoring [23,24], flood prediction and mod-
eling [6,25], water resource management [26], stream-flow estimation [27,28], and trend
analysis [29,30]. However, the discrepancies between different GPPs, affected by different
sensor types, algorithm principles, assimilation methods, and input data sources, ne-
cessitate the performance evaluation [9,31]. Performance evaluation is a prerequisite to
guarantee success in different studies as it notably depends on the accuracy of GPPs [9].
Therefore, many studies have been carried out to investigate the accuracy of different
GPPs in different time scales using in situ observations [6,13,32–42]. For instance, Tang
et al. [35] examined the performance of ten satellite-based and reanalysis GPPs throughout
China between 2000 and 2018 on different time scales. They reported that the GSMaP
precipitation products outperformed other GPPs, followed by the Integrated Multi-satellitE
Retrieval for Global Precipitation Measurement (IMERG). Moreover, Boluwade [6] assessed
the performance of four GPPs using in situ observations from the Trans-African Hydro-
Meteorological Observatory (TAHMO) over the eastern (i.e., Uganda) and western (i.e.,
Ghana) parts of Africa. The evaluations were conducted in various time scales, revealing
weak performances of all examined GPPs in capturing daily precipitation patterns, but
better performances on monthly and seasonal scales. Moreover, Sharma et al. [40] com-
pared the accuracy of four Global Precipitation Measurement (GPM)-based GPPs over the
southern slopes of the central Himalayas between March 2014 and December 2016. The
statistical analyses indicated that the GSMaP gauge-adjusted GPP obtained higher accu-
racy, and the gauge-adjusted GPPs in general performed consistently well at representing
seasonal dynamics.

As in other parts of the world, GPPs have been employed for different purposes in
Iran [24,43–46]. Consequently, several studies were devoted to comparing and evaluating
the accuracy of different GPPs in Iran [43,45,47–58]. For example, Moazami et al. [57]



Remote Sens. 2022, 14, 3783 3 of 27

investigated the performance of four high-resolution GPPs over six regions in Iran dur-
ing a 5-year period (2003–2008). Overall, they discovered that the TRMM Multi-sensor
Precipitation Analysis (TMPA) 3B42V7 led to better performance over three other GPPs
(i.e., PERSIANN, TMPA-3B42RT, and the Climate Prediction Center Morphing technique
(CMORPH)). In another study, Maghsood et al. [55] conducted a thorough accuracy analysis
of different IMERG GPPs over Iran between 2014 and 2017. The intercomparison with in
situ precipitation observations suggested a discrepant performance of IMERG products.
In particular, they reported that, on average, the performances improved from IMERG-
early to IMERG-final products, while it was recommended not to rely on IMERG-final
products for extreme precipitations. Likewise, Mosaffa et al. [58] explored the capabil-
ity of six GPPs, namely, Climate Hazards Group Infrared Precipitation with Station data
(CHIRPS), CMORPH, PERSIANN, PERSIANN Climate Data Record (PERSIANN-CDR),
TRMM 3B42V7, and Soil Moisture inversion to RAIN (SM2RAIN) in Karkheh Basin be-
tween 2003 and 2014. They incorporated in situ precipitation observations from 28 stations,
and both continuous and categorical analyses specified low variation in the performance of
all GPPs. However, considering all investigations, it was stated that the PERSIANN-CDR
and SM2RAIN showed the best performance as post-satellite precipitation estimates. Fur-
thermore, [51] employed in situ observations from 344 stations to assess the capability of
three GSMaP GPPs in Iran between 2014 and 2018. It was stated that all three versions of
GSMaP were capable of displaying the spatial pattern of precipitation. However, findings
demonstrated the higher accuracy of the GSMaP gauge-adjusted type at daily and monthly
time scales. Although different studies were carried out to evaluate the performance of
GPPs in Iran, each focused on a relatively small area (i.e., province or basin) or investigated
one or two different GPPs. The other studies incorporated a small number of stations or
considered a short period for comparisons and performance evaluation. These factors
make it impractical to compare GPPs when considering the entirety of Iran, necessitating a
consistent intercomparison of different well-known and recent GPPs.

In light of the preceding, the aim of this paper is to evaluate the performance and
capability of six satellite and reanalysis GPPs throughout Iran using in situ observations.
In particular, this paper aims to evaluate GPPs by considering: (1) widely used and recent
GPPs with demonstrated satisfactory accuracies (i.e., based on the literature) in a consistent
framework, (2) a large number of synoptic stations, as the source of in situ observations,
spreading throughout Iran, and (3) a long-term period (over two decades) for comparison,
which were not considered in the previous studies simultaneously. The evaluations were
performed using daily observations on daily, monthly (i.e., daily observations in each
month between 2000 and 2020), and annual (i.e., daily observations in each year between
2000 and 2020) time scales based on both continuous and categorical metrics. Furthermore,
daily data were aggregated to compute the accumulated and average monthly and annual
precipitation data, enabling the examinations of GPPs in capturing the monthly and an-
nual precipitation values. It is believed that these validations can elucidate the path for
many other researchers in different disciplines in Iran to have an applied overview of the
capability of the most recently used GPPs. Furthermore, these findings could also provide
practical implications for other researchers incorporating GPPs into their studies in other
parts of the world.

2. Study Area

Iran is the study area (see Figure 1a), which is located in the western part of Asia
between latitudes and longitudes of 24–40◦N and 44–64◦E, respectively. Iran is the sev-
enteenth largest country in the world, with an area of around 1.7 million km2. Iran is a
mountainous country with two main mountain ranges, Alborz and Zagros, located in the
country’s northern and western (spans from northwest to the southwest) parts, respectively.
The southern border of Iran is formed by the coastal frontiers of the Persian Gulf and the
Oman Sea, and the Caspian Sea is situated in the north of Iran. Moreover, the central parts
of the country are covered by barren areas [59], particularly formed by two deserts named
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Dasht-e-Lut and Dasht-e-Kavir. Due to the massive latitudinal range of Iran, its climate
varies from hyper-arid to very-humid climate zones with the dominant types of arid and
semi-arid climate zones [60,61]. The geographical characteristics (i.e., topographic and lati-
tudinal features) of Iran are the dominant factors of precipitation variations throughout the
country (see Figure 1b; [62,63]). For instance, the annual accumulated precipitation varied
between nearly 45 mm and 1950 mm for 2020 (calculated based on in situ data), representing
high precipitation dynamics throughout the country. It has been reported that the western
Mediterranean oscillation is the most influential source of precipitation in Iran [64]. Most
parts of the country, i.e., arid and semi-arid climate zones, are characterized by low precip-
itations and high potential evapotranspiration. Additionally, Iran has experienced many
climate extreme events, such as droughts and floods [65], emphasizing the significance of
identifying accurate and reliable precipitation products. In this regard, reliable GPPs can be
employed for monitoring and modeling tasks to promote informative management.

Remote Sens. 2022, 14, 3783 4 of 28 
 

 

2. Study Area 
Iran is the study area (see Figure 1a), which is located in the western part of Asia 

between latitudes and longitudes of 24–40°N and 44–64°E, respectively. Iran is the seven-
teenth largest country in the world, with an area of around 1.7 million km2. Iran is a moun-
tainous country with two main mountain ranges, Alborz and Zagros, located in the coun-
try’s northern and western (spans from northwest to the southwest) parts, respectively. 
The southern border of Iran is formed by the coastal frontiers of the Persian Gulf and the 
Oman Sea, and the Caspian Sea is situated in the north of Iran. Moreover, the central parts 
of the country are covered by barren areas [59], particularly formed by two deserts named 
Dasht-e-Lut and Dasht-e-Kavir. Due to the massive latitudinal range of Iran, its climate 
varies from hyper-arid to very-humid climate zones with the dominant types of arid and 
semi-arid climate zones [60,61]. The geographical characteristics (i.e., topographic and lat-
itudinal features) of Iran are the dominant factors of precipitation variations throughout 
the country (see Figure 1b; [62,63]). For instance, the annual accumulated precipitation 
varied between nearly 45 mm and 1950 mm for 2020 (calculated based on in situ data), 
representing high precipitation dynamics throughout the country. It has been reported 
that the western Mediterranean oscillation is the most influential source of precipitation 
in Iran [64]. Most parts of the country, i.e., arid and semi-arid climate zones, are charac-
terized by low precipitations and high potential evapotranspiration. Additionally, Iran 
has experienced many climate extreme events, such as droughts and floods [65], empha-
sizing the significance of identifying accurate and reliable precipitation products. In this 
regard, reliable GPPs can be employed for monitoring and modeling tasks to promote 
informative management.  

 
Figure 1. (a) Geographical location of Iran, along with spatial distribution of synoptic stations 
throughout the country in 2020, and (b) the annual accumulated precipitation in Iran produced us-
ing kriging interpolation and in situ measurements with a spatial resolution of 0.025°. 

3. Datasets 
3.1. Gridded Precipitation Products (GPPs) 

Six widely used and recent GPPs, including five satellite precipitation datasets and 
one reanalysis dataset, were considered to identify the most accurate GPPs over Iran. It is 
worth noting that all mentioned data were downloaded from Google’s cloud computing 
platform, Google Earth Engine [66,67]. A brief description of each GPP is provided in the 
succeeding subsections.  

3.1.1. Tropical Rainfall-Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 
The Tropical Rainfall-Measuring Mission (TRMM) Multi-satellite Precipitation Anal-

ysis (TMPA) is among the first satellite-based GPPs with fine spatial resolution covering 
the globe (i.e., 50°S–50°N). This dataset includes precipitation estimates at a 0.25° × 0.25° 
latitude/longitude spatial resolution in a sub-daily (i.e., three hourly) time scale [14]. The 
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3. Datasets
3.1. Gridded Precipitation Products (GPPs)

Six widely used and recent GPPs, including five satellite precipitation datasets and
one reanalysis dataset, were considered to identify the most accurate GPPs over Iran. It is
worth noting that all mentioned data were downloaded from Google’s cloud computing
platform, Google Earth Engine [66,67]. A brief description of each GPP is provided in the
succeeding subsections.

3.1.1. Tropical Rainfall-Measuring Mission Multi-Satellite Precipitation Analysis (TMPA)

The Tropical Rainfall-Measuring Mission (TRMM) Multi-satellite Precipitation Anal-
ysis (TMPA) is among the first satellite-based GPPs with fine spatial resolution covering
the globe (i.e., 50◦S–50◦N). This dataset includes precipitation estimates at a 0.25◦ × 0.25◦

latitude/longitude spatial resolution in a sub-daily (i.e., three hourly) time scale [14]. The
TMPA incorporates precipitation estimates from various satellites, as well as in situ obser-
vations. Precipitation estimates are derived from the TRMM Microwave Imager, Special
Sensor Microwave Imager, Advanced Microwave Scanning Radiometer-Earth Observing
System, Advanced Microwave Sounding Unit-B, Geostationary Operational Environmental
Satellite, and METEOSAT [14,68,69]. Precipitation estimates are then enhanced by the
TRMM Precipitation Radar and in situ rain gauges from the Global Precipitation Climato-
logical Center (GPCC). Further and detailed information about TMPA GPP can be found
in [14]. In this study, TMPA precipitation data from 2000 to the end of 2019 were considered
due to their unavailability in 2020.
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3.1.2. Climate Hazard Group Infrared Precipitation with Stations (CHIRPS)

The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) provides
quasi-global (50◦S–50◦N) daily precipitation estimates at a 0.05◦ × 0.05◦ latitude/longitude
spatial resolution [70]. The CHIRPS algorithm integrates three different sources of data,
including (1) the Climate Hazards group Precipitation climatology (CHPclim), (2) ther-
mal infrared-based precipitation estimates from geostationary satellite observations, and
(3) in situ rainfall observations generally from the Global Historical Climate Network
(GHCN; [71,72]), the Global Summary of the Day (GSD), and Global Telecommunication
System (GTS) datasets. With a latency of about three weeks, the final CHIRPS precipi-
tation values are initially calculated at pentad and then converted to daily and monthly
scales [70,73]. Further and detailed information about CHIRPS precipitation products can
be found in Funk et al. [70]. In this study, CHIRPS precipitation data from 2000 to the end
of 2020 were employed.

3.1.3. Precipitation Estimation from Remotely-Sensed Information Using Artificial Neural
Networks (PERSIANN)

Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Network (PERSIANN)—the Climate Data Record (CDR) is a version of PERSIANN GPPs
that provides daily quasi-global (60◦S–60◦N) observations at a 0.25◦ × 0.25◦ spatial resolu-
tion [16]. Hourly precipitation values are initially estimated by applying the PERSIANN
algorithm [74] to high spatial and temporal cloud infrared images of the GridSat-B1, com-
piled by the International Satellite Cloud Climatology Project (ISCCP; [75]). Afterward,
the hourly estimates are accumulated to generate monthly precipitation estimates at a
2.5◦ × 2.5◦ spatial resolution and then are enhanced through bias adjustment using the
monthly Global Precipitation Climatology Project (GPCP) data. Finally, the bias-adjusted
values are downscaled and converted to three hourly precipitation estimates. Additional
information about the PERSIANN series and also PERSIANN-CDR can be found in Ashouri
et al. [16]. In this study, PERSIANN-CDR (hereafter PERSIANN) precipitation data from
2000 to the end of 2020 were utilized for evaluation.

3.1.4. Global Satellite Mapping of Precipitation (GSMaP)

The Global Satellite Mapping of Precipitation (GSMaP) project, which began in 2002,
intended to provide precise high-resolution precipitation estimates for the entire globe [15].
The GSMaP project includes different precipitation datasets, and the gauge-adjusted GSMaP
product was employed herein. This GPP is initially produced using observations from
various microwave radiometers and sounders based on the 2-D radiative transfer model
and climatological precipitation type classification. Subsequent to that, cloud motion vector
analysis and the Kalman filtering algorithm were applied to combine previous estimates
with infrared data and produce a more accurate hourly dataset with a 0.1◦ × 0.1◦ spatial
resolution [19,76]. Finally, the daily unified Climate Prediction Center (CPC) datasets
are introduced to the GSMaP estimates for bias correction and enhancement. Additional
information can be found in Kubota et al. [15] and Mega et al. [19]. GSMaP precipitation
data from 2000 to the end of 2020 was considered for performance evaluation.

3.1.5. Integrated Multi-Satellite Retrieval for GPM (IMERG)

Integrated Multi-Satellite Retrieval for the GPM (IMERG) project intended to com-
bine all satellite microwave precipitation data, geosynchronous satellite Infrared data, and
gauge observations to generate precise precipitation estimates at a fine spatial resolution of
0.1◦ × 0.1◦ in half-hourly scales [77]. To this end, first, precipitation estimates from passive
microwave satellites are integrated using the morphing technique [78]. Subsequently, the
microwave passive precipitation estimates are supplemented with Infrared precipitation
estimates using the Kalman filtering approach for the regions where the passive precip-
itations estimates are sparse [79]. In the final step, monthly gauge-based precipitation
data from the Global Precipitation Climatology Center (GPCC) are included to regionalize
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and correct the inherent biases of satellite estimates. See Huffman et al. [77] for further
detail on the IMERG satellite precipitation products. In this study, gauge-adjusted IMERG
precipitation data between 2000 and 2020 was employed for evaluation.

3.1.6. Fifth Generation of ECMWF Reanalysis Precipitation Products (ERA5)

ERA5 is the fifth generation of the European Center for Medium-Range Weather Fore-
casts (ECMWF) that provides a global reanalysis of climate variables [17]. ERA5 reanalysis
data are based on the Integrated Forecasting System (IFS) and make use of the 4D-Var data
assimilation scheme [80]. Multiple sources of data (e.g., microwave radiances, humidity
sounder radiances, Infrared radiances, atmospheric motion vectors data, gauge-based data,
etc.) and a large number of observations (i.e., nearly 24 million per day as of January 2019)
were integrated to generate ERA5 datasets. Precipitation estimates are one of the climatologi-
cal variables by ERA5, which are generated at a 0.25◦ × 0.25◦ spatial resolution on an hourly
time scale. Comprehensive information about data and technical configurations of the ERA5
dataset is described in Hersbach et al. [17]. In this study, ERA5 reanalysis precipitation data
from 2000 to the end of 2020 was utilized for performance evaluation.

3.2. Synoptic Stations

Numerous precipitation observations from synoptic stations distributed throughout Iran
(see Figure 1a) were acquired from the Islamic Republic of Iran Meteorological Organization
(IRIMO) for over 20 years, from 2000 to the end of 2020, to evaluate the performance of
selected GPPs. On average, daily observations from 229 synoptic stations were employed
for validation, starting with 164 synoptic stations in 2000 and reaching 244 synoptic stations
in 2020 (see Figure 2). A notable effort was made to select the most appropriate stations by
considering the long-term and consistent daily observations. Consistency of the considered
in situ observations for GPP validation allows for a robust evaluation and comparison. As
is evident, a larger number of synoptic stations with consistent observations were available
in the central to the western parts of the country, where higher precipitation rates occurred.
On the other hand, relatively fewer synoptic stations were located in the central to the
eastern parts of the country with lower precipitation rates, where unvegetated planes and
deserts existed [59]. In total, over 1.7 million daily observations (see Figure 2) were employed
to evaluate the selected GPPs. These daily observations were also aggregated to generate
accumulated and average monthly and annual precipitation values for further investigations.
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Figure 2. The number of synoptic stations and the corresponding daily precipitation observations
between 2000 and 2020 that were used to validate and intercompare the selected Gridded Precipitation
Products (GPPs).

One crucial issue in evaluating the GPPs is incorporating enough independent in situ
observations [11]. In other words, the GPPs that have been subjected to calibration or bias
correction used interpolated precipitation data from in situ observations. Therefore, it is
necessary to determine the data independency rate to ensure an appropriate evaluation. In
this regard, the underlying in situ data of GPCC, GHCN, GSD, and GTS were examined,
and it was observed that, on average, over 81% (at least) of synoptic stations were not
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employed in the creation of these datasets, justifying the independent evaluation of the
current study. However, it should be noted that such precipitation products, used for
calibration and bias correction, are mostly monthly averaged interpolated values and are
not used in daily scales. Accordingly, their values are not identical to the used in situ
observations of this study, increasing the data independency rates.

4. Evaluation Methods

In situ observations from the synoptic stations were employed to validate and com-
pare the performance of six GPPs (see Section 3.2). Hereafter, the precipitation values of
GPPs and in situ observations are called target precipitation and reference precipitation,
respectively. Two types of statistical metrics, including continuous and categorical metrics,
were calculated to assess the performance of GPPs from two complementary perspectives.

Continuous metrics are used to determine the accurateness (i.e., how close) of the
target precipitation against the corresponding reference precipitation. In other words, con-
tinuous metrics are employed for precipitation intensity assessment. Pearson Correlation
Coefficient (CC), Mean Bias Error (MBE), Mean Absolute Error (MAE), and Root Mean
Square Error (RMSE) are among the continuous metrics that were employed in this study.
The CC (Equation (1)) is a unitless metric that describes how well the target precipitation
corresponds to the reference precipitation. Its optimal value (i.e., 1) indicates the high
representativeness of the target precipitation against the reference precipitation. The MBE
(Equation (2)), with the same unit as the input data, measures the average bias between the
target precipitation and reference precipitation, representing the systematic overestimation
or underestimation of the target precipitation. The MBE is a signed metric with an optimal
value of 0, meaning no bias between target and reference precipitation values. Accordingly,
the positive and negative values of MBE represent overestimation and underestimation
in the target precipitation when compared with the reference precipitation. Moreover, the
MAE (Equation (3)) measures the average magnitude difference between the corresponding
target and reference precipitation values without considering the direction and provides
a quantitative value with the same scale as the input data. The RMSE (Equation (4)) is a
standard scale-dependent metric representing the quadratic mean of error between target
and reference precipitation values. High values of RMSE denote a higher dispersion degree,
while theoretically, a zero RMSE indicates a perfect quantitative match.

CC =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ·
√

∑n
i=1(yi − y)2

(1)

MBE =
1
n

n

∑
i=1

(yi − xi) (2)

MAE =
1
n

n

∑
i=1
|yi − xi| (3)

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (4)

In the above Equations, xi is the reference precipitation (i.e., from synoptic stations),
x is the average value of reference precipitation, yi is the target precipitation (i.e., from the
GPPs), y is the average value of target precipitation, and n is the number of corresponding
reference and target precipitations.

In addition to continuous metrics that measure the accurateness of GPPs, it is essential
to investigate their capability of precipitation occurrence detection. Therefore, three cate-
gorical metrics, including the Probability of Detection (POD), False Alarm Ratio (FAR), and
Critical Success Index (CSI), with range values of 0 to 1 were calculated. The POD (Equation
(5)) specifies the ability of GPPs to capture actual precipitation occurrence with an optimal
value of 1. On the other hand, the FAR (Equation (6)) with an optimal value of 0 indicates
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the incorrect detection of actual precipitation occurrence (i.e., spurious events). Considering
the one-sided investigations of POD and FAR, the CSI (Equation (7)) comprehensively
illustrates the overall fraction of precipitation events correctly detected by GPPs [81]. Com-
monly, a fixed threshold value of 1 mm/day is adopted for precipitation/no-precipitation
day identification due to high uncertainties for light precipitations [33,82]. However, a fixed
threshold can either be small or large for humid and dry regions, respectively. Accordingly,
in this study, a smaller threshold value between 20% of average daily precipitation and 1
mm/day was set to determine precipitation/no-precipitation days [35]. This choice will
ensure more corresponding observations for GPPs’ capability assessment in regions with
lighter precipitations. This dynamic threshold could lead to a spatially non-uniform evalu-
ation; however, since the primary objective of this paper is to compare the performance
and capability of different GPPs, its influence on the results is negligible [35].

POD =
Hit

Hit + Miss
(5)

FAR =
False

Hit + False
(6)

CSI =
Hit

Hit + Miss + False
(7)

The first step to computing the above-mentioned categorical metrics is calculating
four elements of Hit, False, Miss, and Correct Negative. Table 1 shows the contingency
table between the target (GPP) and reference (synoptic station) precipitations, allowing the
calculation of the four elements. For instance, a corresponding observation is identified
as Hit if both sources (i.e., GPP and synoptic station) have recorded a rain event. Simi-
larly, if two sources have recorded a no-rain occurrence, the corresponding observation
is considered as Correct Negative. In conditions of different responses (i.e., capturing
non-identical precipitation/no-precipitation events) from two sources, the observations
will be categorized as Miss or False.

Table 1. The contingency table representing the agreement between Gridded Precipitation Products
(GPPs) and the in situ observations from the synoptic stations.

Grided Precipitation Product (GPP)
Synoptic Station

Yes No

Yes Hit False
No Miss Correct Negative

The point-to-pixel (i.e., reference precipitations as points and target precipitations as
pixels) approach was implemented to validate and compare the performance of GPPs using
in situ data [83–85]. In this regard, the target precipitation values were extracted at each
synoptic station location and then compared with reference precipitation values of the
corresponding synoptic station. Different time scales were considered for comprehensive
evaluation and comparison of GPPs. First, daily comparisons were performed between
target and reference precipitation values for the entire two decades (i.e., 2000–2020) of
observations. In this regard, first, the target precipitation values with sub-daily temporal
resolutions were accumulated to generate daily target precipitation values. The comparisons
were implemented on daily (i.e., considering all corresponding precipitation values at each
synoptic station), monthly (i.e., considering all corresponding precipitation values at each
synoptic station at each month), and yearly (i.e., considering all corresponding precipitation
values at each synoptic station at each year) time scales. Taylor Diagram [86], focusing
on precipitation intensity assessment using continuous metrics, and the Performance Dia-
gram [87], focusing on precipitation occurrence evaluation using categorical metrics, were
implemented to illustrate the monthly precision characteristics of GPPs. Later, monthly
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and yearly average and accumulated values were computed for both target and reference
precipitations to apply monthly and yearly comparisons. The last two time scales allow for
better comparison and validation of GPPs, especially targeting the needs of disciplines that
employ monthly or yearly precipitation values instead of daily precipitation values.

Daily observations were also used to validate the selected GPPs at each synoptic
station, considering their geographical coordinates. This analysis was conducted to ex-
plore the capability of GPPs in a spatial manner. In particular, GPPs might have varied
performances in different parts of the country, and thus, such analysis could illustrate these
spatial variabilities. In this regard, continuous and categorical metrics were computed
using over 7500 corresponding precipitation values for each synoptic station.

5. Results

As stated earlier, the comparisons and validation steps were carried out on different
time scales using daily, monthly, and yearly observations, the results of which are presented
in the following subsections.

5.1. Evaluation Using Daily Observations from 2000 to 2020

In this section, corresponding daily precipitation values from GPPs (target precipita-
tion) and synoptic stations (reference precipitation) were compared. These precipitation
values were compared for the whole study period on a daily basis, followed by the compar-
isons in each month and year from 2000 to 2020. Both continuous and categorical metrics
were employed in this section.

5.1.1. Daily Time Scale

All daily corresponding precipitation values (i.e., nearly 1.7 million observations)
were compared to achieve a general overview of the performance of the selected GPPs
(see Figure 3). This comparison considers no spatial or temporal characteristics, and in-
cludes all precipitation values, and thus, only provides merely a broad depiction of GPPs’
performance over the last two decades. Large scatterings indicate relatively imperfect
agreements between target and reference precipitations. Figure 3 shows that the precipi-
tation values were mainly low, especially less than 20 mm/day, as anticipated based on
the daily precipitation values in Iran. Visually, it can be seen that the TMPA precipitations
(Figure 3a) had the least variation (i.e., standard deviation), while the IMERG precipitation
values (Figure 3e) had the highest variation. Generally, Figure 3 shows that the target
and reference precipitation values were closer to the identical reference line for ERA5 and
GSMaP GPPs. In particular, ERA5 (Figure 3f) obtained the highest CC of 0.623, closely
followed by GSMaP with a CC of 0.599, and IMERG (CC = 0.483), PERSIANN (CC = 0.356),
CHIRPS (CC = 0.353), and TMPA (CC = 0.330) were in the subsequent ranks. Moreover,
Figure 3a–d illustrate that TMPA and GSMaP had an underestimation when retrieving the
precipitation values. These also are in agreement with the calculated MBE values, which
were −0.574 mm and −0.132 mm for TMPA and GSMaP. On the other hand, IMERG, ERA5,
CHIRPS, and PERSIANN overestimated the precipitation values with the MBE values
of 1.001 mm, 0.268 mm, 0.152 mm, and 0.094 mm, respectively. Table 2 summarizes the
quantitative values of both continuous and categorical metrics that support the perceptions
drawn from Figure 3. The GSMaP and TMPA achieved the first- and second-lowest MAE
values of 0.834 mm and 0.913 mm, while other GPPs with overestimation characteristics
obtained higher MAE values, with the highest value of 1.791 mm for IMERG. Considering
the RMSE metric, the GSMaP obtained the lowest value (3.48 mm), and the second most
accurate GPP was ERA5, with an RMSE value of 3.59 mm. IMERG and CHIRPS, on the
other hand, were less accurate by acquiring the RMSE values of 6.89 mm and 4.68 mm,
respectively.
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Table 2. The continuous and categorical metrics calculated from all corresponding precipitation
observations to provide a general overview of GPPs performance in Iran over the last two decades.

Precipitation Product CC RMSE
(mm)

MBE
(mm)

MAE
(mm) POD FAR CSI

TMPA 0.330 4.10 −0.574 0.913 0.368 0.564 0.249
CHIRPS 0.353 4.68 0.152 1.220 0.369 0.564 0.250

PERSIANN 0.356 4.25 0.094 1.262 0.742 0.668 0.297
GSMaP 0.599 3.48 −0.132 0.834 0.784 0.480 0.454
IMERG 0.483 6.89 1.001 1.791 0.693 0.621 0.324
ERA5 0.623 3.59 0.268 1.027 0.867 0.568 0.405

Furthermore, the POD values indicated that ERA5 (POD = 0.867) had the best perfor-
mance, followed by GSMaP (POD = 0.784), although the FAR metric suggested the exact
opposite. In particular, ERA5 and GSMaP obtained FAR values of 0.480 and 0.568, respec-
tively, indicating that GSMaP performed the best among the other GPPs. The obtained POD
values illustrated the weakest performance of TMPA and CHIRPS; while considering the
FAR metrics, their performances were second to GSMaP and closely similar to ERA5. With
respect to CSI, GSMaP was identified as the most accurate GPP in precipitation occurrence
identification, with a CSI value of 0.454, followed by ERA5, IMERG, PERSIANN, CHIRPS,
and TMPA. The findings support that GSMaP outperformed other GPPs, and both TMPA
and CHIRPS were identified as the least suitable GPPs in the last two decades.

The daily comparisons were also adopted at each synoptic station individually. The
boxplots of six metrics, including CC, RMSE, MBE, POD, FAR, and CSI, are presented
in Figure 4. Figure 4a shows that GSMaP and ERA5 outperformed the other GPPs by
generally obtaining higher CC values at each station, while the TMPA presented the
weakest performance. Moreover, Figure 4b clearly illustrates that the IMERG achieved
higher RMSE values at each station, supporting the previous finding reported in Table 2.
Other GPPs manifested relatively similar performances when considering RMSE at each
station, with the best performance for GSMaP, followed by ERA5, TMPA, PERSIANN, and
CHIRPS. Likewise, Figure 4c presents MBE, indicating the existence of overestimation and
underestimation possibilities in all GPPs, except for TMPA, in which almost all stations had
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underestimations. Meanwhile, more considerable variation and magnitudes in MBE at all
stations are evident for IMERG, which agrees with the obtained results when considering
all corresponding precipitation values (MBE = 1.01 mm). Figure 4d shows that PERSIANN,
GSMaP, IMERG, and ERA5 had relatively similar behaviors when considering POD values
at the station level with the superiority of ERA5 and GSMaP, respectively, while TMPA and
CHIRPS had poor performances. On the other hand, the FAR boxplot (Figure 4e) shows
rather close performance patterns for all GPPs, with the best and worst performances for
GSMaP and PERSIANN. Finally, the CSI metric demonstrated that the GSMaP, followed by
ERA5, IMERG, and PERSIANN, had the best performances, respectively, while the two
other GPPs had similar weak performances (see Figure 4f).
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In addition to presenting the statistical metrics at the station level through boxplots,
they are also illustrated based on geographical coordinates. This analysis enables a more
profound investigation of the spatial variability of GPPs performance in Iran. Figure 5
shows the calculated continuous metrics, presenting the precipitation intensity accuracies
at each station. It is worth noting that the country’s second-level basins boundaries (in
black line) are also overlaid to benefit the individuals working on smaller-scale studies (i.e.,
one or more basins). In general, all GPPs had the best performances in the western part of
the country; however, GSMaP, ERA5, and IMERG presented considerably more applicable
performances throughout Iran. In terms of CC (Figure 5—left column), for TMPA, the best
performances were observed for 81 (33%) stations in CC ranges of 0.4–0.6. However, the
remnant (67%), mostly located in the northern parts of the country with higher precipitation
rates and central regions, were in lower CC value ranges. Relatively similar patterns were
also observed for CHIRPS and PERSIANN with slightly better performances, in which
38% and 40% of stations were assigned in the same CC range, and very few stations
obtained higher CC values. However, three other GPPs, i.e., GSMaP, ERA5, and IMERG,
manifested considerably better performances by including many stations with higher CC
values. Particularly, ERA5, with 127 (52%) stations in the CC range of 0.6–0.8, followed by
GSMaP and IMERG, with 106 (43%) and 55 (22%) stations in the same range, provided more
accurate precipitation. Likewise, Figure 5 (middle column) illustrates the spatial pattern of
the obtained RMSE values at each station for the GPPs. Considering the higher values of
RMSE as an adverse indicator of GPPs performance, IMERG included 161 (65%) stations
with RMSE values over 4 mm. In contrast, GSMaP provided more precise precipitation
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estimates since 194 stations (79%) had RMSE values of less than 4 mm. The performance
of GSMaP was followed by those of ERA5, TMPA, PERSIANN, and CHIRPS. Further
investigations revealed that stations with higher RMSE values were mainly located in
regions with higher precipitation rates. Figure 5 (right column) shows the spatial variability
of the average biases (MBE) at each station for the GPPs. On the whole, all GPPs presented
diverse performances and included stations with overestimation and underestimation,
except for TMPA and IMERG, with almost dominant behaviors in underestimating and
overestimating precipitation values, respectively. Underestimation at almost all stations
was obtained for TMPA, with dominant MBE values in the range of −1 to 0, indicating low
biases throughout the country. Conversely, IMERG exhibited a relatively much higher MBE
and included 241 (98%) stations with overestimation, of which the dominant number of
stations were fallen in MBE ranges of 0–1 mm (50%) and 1–2 mm (46%). Based on Figure 5
(right column), CHIRPS, PERSIANN, and ERA5 presented relatively similar patterns,
with, respectively, 167 (69%), 181 (74%), and 188 (77%) stations with overestimation and
the remnant underestimated precipitation values. For GSMaP, most of the stations were
assigned to MBE ranges of -1 mm and 1 mm, of which 158 (65%) and 77 (31%) stations had
underestimation and overestimation, resulting in the best performance among other GPPs
in total.
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Complementary to the spatial evaluation of the selected GPPs using continuous met-
rics, Figure 6 presents the obtained CSI values at the station level based on two decades of
daily observations. At a glance, Figure 6 shows that for all GPPs, the weakest performances
occurred in the central parts of the country. Furthermore, the findings indicate the superior
performance of GSMaP in comparison to other GPPs. In particular, over 34% and 61% of
stations fell in the CSI ranges of [0.2–0.4) and (0.4–0.6], respectively, for GSMaP, which
proved its potential capability to capture the precipitation occurrence. Meanwhile, ERA5
was identified as the second most accurate GPP, with approximately 50% and 47% of
stations in the CSI ranges of [0.2–0.4) and (0.4–0.6], respectively. For IMERG, as the third
most accurate GPP in terms of precipitation occurrence detection, the dominant proportion
(86%) of stations achieved CSI values in the range of [0.2–0.4), and a minority of stations
had upper and lower CSI values. For the other three GPPs, 77% (TMPA), 83% (CHIRPS),
and 85% (PERSIANN) of stations acquired CSI values between 0.2 and 0.4, and almost all of
the other stations obtained lower CSI values. Based on the results, these GPPs were ordered
as PERSIANN, CHIRPS, and TMPA, considering the accurateness in the precipitation
occurrence detection at the station level.
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5.1.2. Monthly Time Scale

In this subsection, the daily observations (i.e., target and reference precipitations)
are compared on monthly time scales. In other words, the continuous and categorical
metrics were computed for each month, including dry and wet months, using the daily
observations to investigate the performance of the GPPs. In addition to providing the
temporal accuracy characteristics of GPPs, the findings might benefit researchers working
in individual months. In this regard, the computed metrics are presented using the Taylor
Diagram [86] and Performance Diagram [87], through which the performance of the GPPs
in multi-metric methods can be compared.

The Taylor Diagram [86] focuses on precipitation intensity assessment metrics, i.e.,
RMSE, CC, and Standard Deviation (SD), for performance comparison, and the associated
results are illustrated in Figure 7. In these diagrams, the points (i.e., representing target
precipitations for GPPs) closer to the “Reference” (i.e., representing reference precipitations
from synoptic stations) point, illustrated on the horizontal axis, show better performances.
In other words, closer points to the “Reference” had lower RMSE values, higher CC values,
and similar SD values to the reference precipitations. In general, Figure 7 illustrates
that in drier months in Iran (i.e., June, July, August, and September), in which lower
precipitations occur, all GPPs are relatively closer to the “Reference” point, indicating their
better performances. This was because, in drier months, the obtained RMSE and SD values
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for all GPPs were closer to the ones obtained from reference precipitations. However, the
results indicated that all GPPs had their lowest CC values in drier months. Figure 7 shows
that TMPA and GSMaP always had lower SD values than reference precipitations, and
the exact reverse for IMERG, while the other GPPs did not have identical characteristics.
According to Figure 7, IMERG had the highest distance from the “Reference” point, mainly
due to its higher RMSE and SD values compared to other GPPs. The IMERG CC values were
mostly between 0.4 and 0.6 in wet months and lower than 0.4 in drier months, making it the
third most accurate GPP. The two other GPPs, namely GSMaP and ERA5, had comparable
performances since, in some months, GSMaP performed better and in the remnant, ERA5
had the highest accuracies, and no exact monthly pattern was seen. For these GPPs, the
CC values were between 0.4 and 0.7, both had relatively lower RMSE values, and their SD
values, especially ERA5, were much closer to the reference precipitations. The other GPPs,
i.e., TMPA, CHIRPS, and PERSIANN, had the weakest performance in nearly all months,
where low CC, relatively higher RMSE, and disparate SD values were obtained.
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The Performance Diagram [87] focuses on precipitation occurrence assessment metrics,
i.e., POD, success ratio (1 − FAR), CSI, and biases, to compare GPPs performances, and
related results are presented in Figure 8. In these diagrams, the points (i.e., representing
target precipitation for GPPs) closer to the right top corner had better precipitations oc-
currence detectability. In other words, closer points to the right top corner had high POD
and CSI values and low FAR and bias values. Figure 8 demonstrates that in nearly all
months, PERSIANN obtained higher biases, except for two months, in which ERA5 and
IMERG had higher values. Conversely, TMPA and CHIRPS, respectively, had the lowest
biases in all months. Additionally, ERA5 achieved the highest POD values monthly time
scale, which was most often followed by GSMaP. However, in a few months, higher POD
values were recorded for IMERG and PERSIANN than GSMaP. The Performance diagrams
indicate that in dry months CHIRPS achieved a higher success ratio (lower FAR) values,
while GSMaP was ranked first in the wet months. More general, the performance of all
GPPs declined in drier months compared to months with higher precipitation rates and
occurrences. Concerning CSI, the best performance was achieved by GSMaP, and ERA5
and IMERG were in the second and third ranks. TMPA and CHIRPS had the lowest CSI
values in five and seven months, respectively, suggesting the weakest performance of
TMPA. Taking all the metrics of the Performance Diagram into account, GSMaP remained
the most accurate GPP in all months, and the ERA5 was second to that, followed by IMERG,
PERSIANN, CHIRPS, and TMPA.
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5.1.3. Yearly Time Scale

In completing the previous two subsections, daily observations of each year were
also used to validate the GPPs based on CC, RMSE, MBE, and CSI (see Figure 9). This
analysis could provide supportive information to understand the temporal characteristics
of the selected GPPs, revealing whether they had stable performances in years over the last
two decades. Figure 9a displays the yearly CC values for the GPPs, clearly indicating that
before 2011, either GSMaP or ERA5 had the highest CC values, while after that, GSMaP
proved to be the most accurate GPP. The results also suggested the better performance of
IMERG in comparison to TMPA, CHIRPS, and PERSIANN, being the third most accurate
dataset after ERA5 and GSMaP. Moreover, the CC trend lines of GPPs remained stable
without a considerable and significant upward/downward trend throughout the time, with
the lowest and highest SD of 0.026 (ERA5) and 0.055 (PERSIANN). Likewise, Figure 9b
illustrates the RMSE dynamics for the GPPs, suggesting the higher RMSE values for IMERG.
In comparison, other GPPs had lower RMSE values with relatively monotonous trends
during the last two decades. The results also demonstrated that the GSMaP in almost
all time intervals was the GPP with the least RMSE values, closely followed by ERA5.
Additionally, the trends of MBE variations were also investigated (Figure 9c), and the
results show that TMPA and IMERG had extreme consistent behaviors during the study
period, having the highest underestimations and overestimations, respectively. The MBE
values for the other three GPPs, i.e., CHIRPS, PERSIANN, and ERA5, were stable between
2000 and 2020, varying between 0.0 and 0.5, indicating the stable overestimations of these
GPPs. However, the findings demonstrated that GSMaP MBE values had a significant
trend (p-value < 0.05), which was statistically confirmed by checking the randomness test.
This certified the improvement in the average bias of the GSMaP that roughly started from
nearly -0.5 and reached 0.04 over the last two decades. Finally, the yearly precipitation
occurrence detectability of GPPs was examined using the CSI metric. The results indicated
stable trends for all GPPs with low variations and the superior performance of GSMaP and
ERA5 as the two first accurate GPPs, respectively.
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5.2. Evaluation Using Monthly Observations from 2000 to 2020

Daily target and reference precipitation values were employed in the present section
to generate monthly accumulated and average precipitations. To this end, monthly ac-
cumulated and average precipitations were calculated for each synoptic station and the
corresponding GPPs for each month between 2000 and 2020, resulting in over 250 mutual
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observations at the station level. Later, these values were incorporated to compute three
continuous metrics of CC, RMSE, and MBE at the station level. Their average and SD values
were used to examine the capability of the six GPPs in capturing monthly accumulated and
average precipitations throughout Iran. Tables 3 and 4 summarize the computed continu-
ous metrics for the GPPs. It is evident that the CC values of all GPPs had improved as the
monthly accumulated and average data were used. In this regard, the most remarkable
improvement was observed for TMPA, in which its CC values increased from 0.330 (daily
observations) to 0.794 (monthly accumulated values). Furthermore, in terms of the CC
value when using monthly accumulated precipitations, IMERG obtained the highest value
of 0.857 ± 0.094, and ERA5 was the second most accurate GPP. The low SD of the CC value
for the IMERG suggested that the high CC value was recorded for most of the stations. On
the other hand, GSMaP and PERSIANN with 0.767 ± 0.137 and 0.752 ± 0.122 were two
GPPs with the weakest performances. The achieved MBE values suggested that the under-
estimation and overestimation behavior of GPPs remained similar to daily observations;
however, their magnitudes have notably increased. The MBE value of IMERG for monthly
accumulated data exceeded 30 mm/month on average, with a relatively high SD value,
indicating much higher recorded overestimations. Likewise, TMPA had an MBE value
of −17.65 mm/month with a greater SD value, identifying this GPP as the second-worst
GPP in terms of precipitation biases. Moderate overestimation was observed for ERA5,
and CHIRPS, GSMaP, and PERSIANN had more satisfactory performances. Based on the
RMSE values, the GPPs performance can be ranked as GSMaP, ERA5, CHIRPS, PERSIANN,
and IMERG, with the highest and lowest RMSE values of 22.73 mm/month and 50.89
mm/month. Furthermore, the findings revealed that when using monthly average precipi-
tations, IMERG and ERA5 are the two highest GPPs, while this does not hold for the other
two metrics. In fact, PERSIANN and GSMaP were recognized as the best-performing GPPs
in terms of MBE and RMSE, respectively.

Table 3. Continuous metrics calculated from monthly accumulated precipitations values of the GPPs
and synoptic stations at the station level.

GPPs
Continuous Metrics

CC MBE (mm) RMSE (mm)

TMPA 0.794 ± 0.0101 −17.34 ± 17.65 30.01 ± 24.09
CHIRPS 0.768 ± 0.116 4.94 ± 17.41 24.43 ± 21.24

PERSIANN 0.752 ± 0.122 2.84 ± 17.43 26.76 ± 18.19
GSMaP 0.767 ± 0.137 −3.73 ± 11.73 22.73 ± 15.87
IMERG 0.857 ± 0.094 30.34 ± 15.87 50.89 ± 22.06
ERA5 0.827 ± 0.095 8.28 ± 13.99 23.78 ± 15.06

Table 4. Continuous metrics calculated from monthly average precipitations values of the GPPs and
synoptic stations at the station level.

GPPs
Continuous Metrics

CC MBE (mm) RMSE (mm)

TMPA 0.792 ± 0.0102 −0.58 ± 0.58 1.01 ± 0.80
CHIRPS 0.766 ± 0.116 0.16 ± 0.58 0.83 ± 0.71

PERSIANN 0.749 ± 0.122 0.09 ± 0.58 0.90 ± 0.60
GSMaP 0.771 ± 0.138 −0.13 ± 0.40 0.78 ± 0.55
IMERG 0.855 ± 0.095 1.01 ± 0.53 1.70 ± 0.75
ERA5 0.823 ± 0.097 0.28 ± 0.46 0.81 ± 0.51

5.3. Evaluation Using Yearly Observations from 2000 to 2020

Similar to using monthly observations, in this part, daily precipitation data of both
synoptic stations and GPPs were aggregated to generate yearly accumulated and average
precipitations. Afterward, three continuous metrics were computed using the generated
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yearly precipitations to assess the performance of the GPPs. The obtained average and SD
values of CC, RMSE, and MBE based on yearly observations at the station level are provided
in Tables 5 and 6. The findings suggest that the computed CC values increased for all GPPs
in comparison to using daily observations, except for GSMaP. Based on yearly observations,
IMERG and GSMaP were identified as the most and least accurate GPPs, and the second to
fifth ranks were for ERA5, TMPA, CHIRPS, and PERSIANN, respectively. However, when
considering MBE, PERSIANN and GSMaP had the two lowest average MBE magnitudes of
34.79 mm/year (overestimation) and 44.23 mm/year (underestimation), with the lowest
MBE SD for GSMaP, proving its more stable characteristics throughout the country. On the
other hand, TMPA and IMERG underestimated and overestimated the yearly precipitation
values by about 200 mm/year and 360 mm/year, respectively. In terms of the RMSE, the
lowest value was acquired by CHIRPS and was very closely followed by GSMaP; however,
considering their RMSE SD values, GSMaP had the capability of providing more consistent
precipitation estimates across the country. Conversely, IMERG with 389.29 mm/year and
TMPA with 223.23 mm/year obtained the two highest RMSE values, along with the two
highest RMSE SD values, representing their unsatisfactory performances in capturing
yearly precipitations.

Table 5. Continuous metrics calculated from yearly accumulated precipitations values of the GPPs
and synoptic stations at the station level.

GPPs
Continuous Metrics

CC MBE (mm) RMSE (mm)

TMPA 0.703 ± 0.166 −209.20 ± 211.57 223.23 ± 215.04
CHIRPS 0.660 ± 0.187 59.44 ± 208.95 137.78 ± 187.35

PERSIANN 0.581 ± 0.253 34.79 ± 209.54 173.25 ± 153.11
GSMaP 0.580 ± 0.212 −44.23 ± 140.09 139.06 ± 123.73
IMERG 0.797 ± 0.146 362.66 ± 188.97 389.29 ± 183.38
ERA5 0.733 ± 0.139 97.47 ± 164.13 151.28 ± 141.79

Table 6. Continuous metrics calculated from yearly average precipitations values of the GPPs and
synoptic stations at the station level.

GPPs
Continuous Metrics

CC MBE (mm) RMSE (mm)

TMPA 0.706 ± 0.171 −0.58 ± 0.58 0.63 ± 0.59
CHIRPS 0.662 ± 0.204 0.16 ± 0.57 0.39 ± 0.52

PERSIANN 0.582 ± 0.264 0.09 ± 0.58 0.48 ± 0.42
GSMaP 0.571 ± 0.238 −0.13 ± 0.40 0.40 ± 0.37
IMERG 0.781 ± 0.161 1.01 ± 0.53 1.11 ± 0.56
ERA5 0.762 ± 0.168 0.28 ± 0.46 0.44 ± 0.39

6. Discussion
6.1. General Remarks

The increasing availability of GPPs has attracted the interest of many scholars in a
wide range of academics. Accordingly, the developed GPPs have been widely employed
for different purposes worldwide [20,23,29,38,46,81,88]. However, the lack of quantitative
confidence in GPPs remained a critical concern that should be addressed appropriately [89].
This is due to the fact that any existing error in precipitation estimates, such as magnitude
errors, will propagate into the used models and final results, in which precipitation esti-
mates are incorporated [90–92]. For instance, studies reported the impact of bias error on
specific parameters in hydrological modeling, such as peak flow and catchment modeling,
as well as the effect of precipitation underestimation/overestimation on drought/wet
event detection and drought monitoring [24,93–95]. Additionally, the introduced error
may be amplified through the modulation, causing higher uncertainties and making the
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final results less reliable [91]. Therefore, the best practice as the prerequisite is to evaluate
GPPs in order to quantitate the magnitudes of errors and identify the error characteristics
adequately. This will allow one to choose a product with higher accuracy and make it
possible to model the error propagation for any specific goal, and thus, the final results
can be provided with associated uncertainties as auxiliary information. This may result
in better representations of the real-world situation when using GPPs and promoting in-
formed decision making. Additionally, the validation results in any specific region could be
considered an effective proxy to foster enhancements in GPPs globally or regionally [32].

It is essential to incorporate various metrics to evaluate the performance of GPPs
from different and complementary perspectives. In this regard, continuous and categorical
metrics focusing on precipitation intensity and occurrence evaluation could be used. Ac-
cordingly, comprehensive validation research should include both aspects to benefit the
research community. Furthermore, a critical reason that lies under the consideration of var-
ious metrics is that no single metric could manifest the performance of GPPs, and no single
perspective could satisfy the requirement of the whole research community. In other words,
one metric might be relatively more important for some researchers, while other metrics
are more influential in other disciplines. For instance, Camici et al. [96] investigated the
importance of continuous and categorical metrics for GPPs’ evaluation on river discharge
simulation. They reported that the categorical metrics and the continuous metric of CC did
not provide pertinent information, whereas biases (i.e., MBE) and the RMSE were reliable
metrics to select a GPP with superior performance for discharge simulation [96]. Con-
versely, for some other disciplines in which the number of precipitations/no-precipitations
is an influential factor, the categorical metrics, i.e., POD, FAR, and CSI, would be more
informative [97,98].

6.2. Discussing and Comparing the Results

This paper evaluated six GPPs using in situ observations of synoptic stations from
2000 to 2020 throughout Iran. Both continuous and categorical metrics were considered
for the validation process to benefit researchers in different disciplines. The findings, in
general, suggested a discrepant performance of all GPPs, which was anticipated since
each GPP was generated using multiple sources, different approaches and algorithm prin-
ciples for blending the sources, and different bias adjustment procedures. In total, the
findings pointed out that TMPA and GSMaP underestimated the precipitation values, while
other GPPs, i.e., PERSIANN, CHIRPS, ERA5, and IMERG, overestimated precipitation
values with spatial discrepancies across Iran (see Tables 2–6 and Figure 5). These were in
agreement with previous investigations globally and regionally [51,99–104]. Considering
daily data that contained over 1.7 million observations, GSMaP was identified as the first
accurate precipitation product in Iran over the last two decades, which was similar to
findings by Tang et al. [35] in China. In particular, GSMaP obtained the lowest RMSE
and MAE values with the highest CSI value, supporting the superior performance of this
GPP over others compared in this study. This may be traced back to the utility of both
infrared and microwave data sources, as well as daily bias adjustment to generate GSMaP
GPP [15,19]. ERA5 was identified as the second most accurate GPP, suggesting the accept-
able performance of this reanalysis precipitation product throughout Iran. Although both
IMERG and GSMaP are emerging GPPs from the GPM mission, the daily observations
indicated a higher overestimation and biases of IMERG. It could probably be associated
with the monthly bias adjustment of IMERG, while the GSMaP uses daily adjustments, and
this could be a prospect to improve IMERG performance. The daily observations at the
station level also supported the findings when using the whole time-series observations.
Furthermore, the station-level analysis revealed that overestimation/underestimation with
larger magnitudes occurred in regions with higher precipitation rates. Therefore, such
knowledge could be effectively incorporated when working on GPPs’ enhancement. In
other words, the precipitation rate (i.e., yearly) could be considered as an input factor, along
with other relevant factors, to apply recalibrations and improvements to GPPs using statis-
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tical and machine learning algorithms [105,106]. The investigations on the monthly time
scale using daily observations revealed the better performances of all GPPs in dry months
based on lower RMSE and SD values, which can also be related to lower precipitation
rates in these times. However, this did not hold for precipitation occurrence detectability
since all GPPs had their weakest performances in dry months based on categorical metrics.
This suggests that future studies could be shaped on improving the precipitation intensity
and occurrence enhancement of GPPs in wet and dry months, respectively. Categorical
metrics in all months suggested the premiere performance of GSMaP, while the continuous
metrics indicated the better performance of ERA5 in some months. The yearly time scale
comparisons (Section 5.1.3) illustrated that, in general, the quality of GPPs remained the
same over the past two decades in Iran. In particular, the consistent and stable CSI values
indicated no improvement in precipitation occurrence detectability for all GPPs, which was
in contrast with another study conducted in China [35]. The discrepancies may lie in the
geographical conditions of the study areas, the implemented frameworks, and the amount
of international collaboration of countries in sharing the in situ data for global datasets that
are employed for bias adjustments. In fact, the global GPPs that are used for calibration
and bias adjustment of other GPPs suffer from a lack of spatial density consistency, and
such limitations could lead to inconsistent results [107,108]. However, based on the MBE
metric, a notable trend was observed for GSMaP, indicating bias correction improvements
over the last two decades.

Moving toward monthly observations, the CC values of all GPPs improved consider-
ably; however, this was not true for two other metrics. The increase of CC values, while
other metrics were not generally enhanced, probably suggests that CC would not be a
reliable metric to present the best performing GPP (see Tables 3 and 4), which was also
stated by Camici et al. [96] for discharge modeling. In fact, the obtained MBE and RMSE
values were relatively higher when compared to daily values multiplied by the number of
days. This suggests applying more robust bias correction procedures since this amount of
bias and RMSE value could lead to unreliable results. Although, one alternative solution
could be the use of monthly estimates of GPPs instead of generating monthly estimates
from daily estimations, in case their monthly estimations are available and had been gen-
erated separately. For instance, the PERSIANN daily estimates are the disaggregation
of monthly estimates [16], and thus, the original monthly estimates might have better
accuracies. Furthermore, the average monthly data were found to be more accurate than
the monthly accumulated data, suggesting the usage of monthly average data instead of
accumulated data for different applications if applicable. Finally, the validation of GPPs
based on yearly (12 months) observations, either in average or accumulation, showed
that the CC values for some GPPs were improved, while some remained relatively the
same with respect to the daily comparison. However, even for GPPs whose CC values had
improved, other metrics, i.e., MBE and RMSE, generally showed reverse trends. High MBE
and RMSE values, along with their high SD values, suggest using yearly accumulated data
with high caution. The yearly observations also implied that CHIRPS data had the lowest
RMSE values and, in this term, were the most accurate GPP, and GSMaP was second to that.
In summary, the comparison in different time scales indicated that in longer time intervals
(monthly or yearly), the accumulated estimates had larger errors than the average estimates
and may lead to higher uncertainties in any task. For instance, it can be suggested that
yearly average data could provide more accurate results (i.e., than yearly accumulated)
for applications in which annual precipitation data are required, such as trend analysis.
This is because yearly accumulated data are associated with more significant errors, and
consequently, these errors would propagate and amplify into the models [91], making the
final result unreliable. Consequently, the results could not present the real-world situation
properly and may bias the final understandings and conclusions.
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6.3. Sources of Uncertainties

In this paper, the point-to-pixel comparison method was implemented to assess the
performance of the GPPs throughout Iran [83–85]. Accordingly, the results may undervalue
the exact accuracies of the GPPs due to mismatches between point measurements (i.e.,
synoptic stations) and pixel measurements (i.e., GPPs), which is acceptable for any in
situ based validation studies [35]. This issue may also be a source of uncertainty as the
spatial resolution of GPPs differ, and the limited representativeness of point observations
could affect the results. For instance, the temporal inconsistency between the Coordinated
Universal Time (UTC) and local time of recording in situ could probably introduce some
uncertainties into the daily validations [109]. Furthermore, the inherent spatial mismatch
between in situ data and GPPs, as well as the precipitation under-catch of in situ instru-
ments due to the wind effect, are other sources of uncertainties [110,111]. However, it is
worth noting that the point-to-pixel and pixel-to-pixel comparisons would provide similar
statistical results and may be negligible for the inter-comparison and ranking of GPPs [112].
Therefore, it is expected that the actual accuracy of GPPs would be higher than the ones
reported in this study and also other validation studies. Although, the current state of
GPPs required further modifications and enhancement to provide more accurate data.

6.4. Criteria beyond Accuracy

In addition to the discussed criteria for measuring the accuracy of GPPs, some other
criteria might be considered simultaneously to select the most appropriate GPP. For instance,
the spatial resolution of GPPs might be a constraint in some applications, and accordingly,
GPPs with a higher spatial resolution should be employed [113]. Among the GPPs, CHIRPS
provides precipitation estimates with the highest spatial resolution (0.05◦ × 0.05◦), and thus,
could be of use for the application needing more data for a particular region. Additionally,
some other applications which require simulating the diurnal cycles need GPPs with sub-
daily estimates that also limit the choices considering the original GPPs. However, another
solution might be to use the most accurate GPP and apply downscaling approaches to have
the most accurate GPP with higher spatial and temporal resolutions [114,115]. Moreover,
the necessity of having precipitation data for a more extended period, i.e., before 2000,
could also introduce another factor that limits the choices to fewer GPPs, such as CHIRPS,
PERSIANN, and ERA5.

6.5. Current State and Future Perspectives

Iran’s climate is dominated by arid and semi-arid climate zones, which are charac-
terized by low precipitation and high evapotranspiration rates. The country has faced
many climate hazards, such as drought and floods [65]. Meanwhile, the events are cou-
pled with the over-abstraction of groundwater and over-reliance on non-renewable water
sources that have escalated the water resource condition into crisis [116,117]. Accordingly,
to reduce and reverse the current water resource trend in Iran, in addition to effective
legislation to stop aggressive water demands, having access to high-quality data, such
as accurate precipitation estimates, is a prime need. In particular, the availability of reli-
able and long-term precipitation data allows for the better monitoring of water resource
conditions and the adoption of more sophisticated strategies to mitigate the water crisis.
The findings of this paper, on the whole, indicate that the current state of GPPs requires
further modifications and enhancements to provide more precise and accurate estimates of
precipitation over Iran. Although these GPPs have been widely employed globally, and
also in Iran, more accurate GPPs are needed with respect to the current state of Iran. In fact,
the more accurate GPPs allow the more accurate monitoring of relevant phenomena, such
as drought, and managing water resources. Beyond the validation analyses in the present
study, other scholars reported just satisfactory accuracies and flaws of GPPs across Iran
and globally [35,56,57,109,118]. Although they have identified the best-performing GPP
in their region, the common implications in the most relevant studies were the acceptable
accuracy of GPPs, not the highly potential precipitation estimates overall. Therefore, this
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is a critical need to enhance such GPPs for the entirety of Iran. The common practices
may include applying the further regional (i.e., country/basin level) bias correction and
calibration of a GPP, with potential performance, enhancing its capabilities, as with other
regions [98]. An alternative solution could be to generate a precipitation platform, similar
to the Canadian Precipitation Analysis [119], to combine all available data sources, GPPs
and in situ data, and generate a unified and accurate GPP for Iran. This platform can have
the sub-country level extension based on the precipitation rate, climate zones, or basins to
develop the unified GPP with higher accuracy. This platform could provide high-quality
precipitation data to help scholars conduct more accurate research and governors make
informative decisions for water resource monitoring and management.

Although Iran was considered the case study here, the aforementioned points are
not only associated with Iran. Accordingly, other countries with a high demand for
accurate precipitation datasets require such platforms to deepen their understanding of
relevant phenomena and future forecasts [13]. There are currently several global and
regional GPPs and platforms; nevertheless, the diversity of climates and other influential
factors hamper the full potential of these GPPs for detailed regional or country-level
studies [6]. Consequently, the generation of national precipitation platforms can be a
prospective solution for a better understanding of precipitation patterns, promoting better
water resource management, and achieving Sustainable Development Goals (SDGs). In the
last point, these national platforms could be merged through international collaborations
to make a consolidated precipitation platform that better fits the national, regional, and
global scales.

7. Conclusions

In this paper, six well-known Gridded Precipitation Products (GPPs) were evaluated
using two decades of in situ observations (over 1.7 million) throughout Iran. The initial
examinations revealed that over 81% of synoptic stations were independent of those incor-
porated for the calibration or bias correction of GPPs. The evaluation results based on daily
observations suggested the better overall performance of GSMaP in the last two decades.
Considering the whole time series, TMPA and GSMaP had underestimation, while the
other GPPs overestimated the precipitation values. However, the further spatial analysis
at the station level revealed that all GPPs, except TMPA, had diverse error characteristics
throughout Iran. In other words, the GPPs include both underestimations and overestima-
tions in different regions, with the dominance of one. It was also observed that for all GPPs,
the overestimation and underestimation magnitudes were linked to the precipitation rates
with the same behavior. Furthermore, the daily observations at the monthly time scale
illustrated that all GPPs obtained better quantitative values in dry months based on contin-
uous metrics, while the categorical metrics suggested the reverse. The yearly comparisons
demonstrated that the GPPs’ capability, in general, remained the same over the past two
decades, except for the MBE of GSMaP, which presented a significant improvement. The
monthly and yearly accumulated precipitation values from the GPPs represented large
errors, i.e., RMSE and MBE, indicating that the utility of these values would introduce
high uncertainties to any models or results. Therefore, the monthly or yearly average
values could better suit similar applications, or the original monthly/yearly precipitation
products could provide more accurate results. Additionally, the yearly precipitation values
illustrated the superior performance of CHIRPS, and GSMaP was ranked second in this
regard. Although, on the whole, this paper identified GSMaP as the best-performing GPP
in Iran, other factors (e.g., temporal resolution and spatial resolution) that were discussed
should also be taken into account for GPP preferences. Moreover, the general implication
of this paper was that even though different GPPs have emerged, they do not include
highly accurate precipitation estimates, and more future works are required to improve
their performances or merge multiple products to obtain new precipitation products with
better accuracy.
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