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Abstract: Drought is a recurring natural climatic hazard event over terrestrial land; it poses 

devastating threats to human health, the economy, and the environment. Given the increasing 

climate crisis, it is likely that extreme drought phenomena will become more frequent, and their 

impacts will probably be more devastating. Drought observations from space, therefore, play a key 

role in dissimilating timely and accurate information to support early warning drought 

management and mitigation planning, particularly in sparse in-situ data regions. In this paper, we 

reviewed drought-related studies based on Earth observation (EO) products in Southeast Asia 

between 2000 and 2021. The results of this review indicated that drought publications in the region 

are on the increase, with a majority (70%) of the studies being undertaken in Vietnam, Thailand, 

Malaysia and Indonesia. These countries also accounted for nearly 97% of the economic losses due 

to drought extremes. Vegetation indices from multispectral optical remote sensing sensors 

remained a primary source of data for drought monitoring in the region. Many studies (~21%) did 

not provide accuracy assessment on drought mapping products, while precipitation was the main 

data source for validation. We observed a positive association between spatial extent and spatial 

resolution, suggesting that nearly 81% of the articles focused on the local and national scales. 

Although there was an increase in drought research interest in the region, challenges remain 

regarding large-area and long time-series drought measurements, the combined drought approach, 

machine learning-based drought prediction, and the integration of multi-sensor remote sensing 

products (e.g., Landsat and Sentinel-2). Satellite EO data could be a substantial part of the future efforts 

that are necessary for mitigating drought-related challenges, ensuring food security, establishing a 

more sustainable economy, and the preservation of the natural environment in the region. 

Keywords: drought; drought impact; agricultural drought; hydrological drought; meteorological 

drought; earth observation; remote sensing; Southeast Asia; Mekong 

 

1. Introduction 

1.1. Drought Relevance 

Drought is a recurring natural climatic hazard event over terrestrial land; it poses 

devastating threats to the community, the economy, and the environment. It can occur in 

nearly all climatic regions, and has a complex, evolving nature with varying levels of 

severity, frequency, spatial extent and impacts. Although drought accounted for 7.3% of 

natural disasters, its impact was by far considered to be the most widespread and 

damaging [1]. Agriculture is the first and most affected sector, accounting for 80% of all 

direct impacts when drought occurs. The updated statistics from the Special Report on 

Drought of the United Nations Office for Disaster Risk Reduction (UNDRR) estimated 

that the United States loses USD 6.4 billion in agriculture every year, while Europe suffers 
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from USD 9 billion due to agricultural drought hazards [2]. In Africa, drought hazard has 

exaggerated the food crisis (e.g., the maize price increased by 25% in 2011) and left 

millions of farmers dependent on global humanitarian assistance [3]. The 

Intergovernmental Panel on Climate Change’s sixth report indicated that many parts of 

the world will continue to suffer from serious droughts in the near future because of 

climate change and human activities [4]. 

In Asia, over the past three decades, multiple extreme and severe droughts have 

occurred (e.g., drought events in 1997–1998, 2005–2006, 2015–2016, and 2018–2020), and 

drought has become one of the costliest natural hazards in China [5,6], Southeast Asia 

[7,8] and Central Asia [9,10]. The most recent drought event, which occurred in 2018–2020, 

caused an economic loss of USD 240 million in Yunnan, China, whereas in Southeast Asia 

there was a USD 840 million loss in Thailand. In addition, droughts are frequently 

reported in the least-developed Asian countries, with devastating agricultural impacts. 

Miyan et al., 2015 [11], analyzed drought impacts on the 14 least-developed Asian 

countries, and their findings indicated that Cambodia, Bangladesh, and Nepal frequently 

suffered from severe droughts. For example, in Nepal the severe droughts that took place 

from 2013 to 2017 imposed an intervention cost of USD 5.2 million from the government. It 

is believed that economic loss due to droughts in Asia will likely increase in the near future 

because of global warming. Recent studies projected that severe droughts are expected to 

occur more frequently in Southeast Asia [12,13], South Asia [14], and China [15]. 

Drought is one of the most complex phenomena because it starts slowly and its 

impacts often accumulate over a considerable period of time to cause a visible loss. Hence, 

the exact onset and end of a drought event are challenging to measure. As their 

characteristics are complex in nature, there has been no universally accepted drought 

definition; in fact, in the early 1980s Wilhite and Glantz, 1985 [16], reported more than 150 

drought definitions worldwide. In an effort from the World Meteorological Organization 

(WMO), drought is defined as “a prolonged dry period in the natural climate cycle that 

can occur anywhere in the world and caused by a lack of precipitation” [17]. More 

recently, the special report on drought 2021 by the United Nations Office for Disaster Risk 

Reduction (UNDRR) defined drought as “abnormally dry weather or an exceptional lack 

of water compared with normal conditions constitute the hazard” [2]. 

Despite the diversity of drought definitions, it can be broadly classified into four 

main types, including meteorological, agricultural, hydrological, and socioeconomic 

drought [18,19]. Meteorological drought refers to precipitation below the long-term 

average condition (e.g., 30 years) over a specific location for a period of time, from which 

other drought types originate. Agricultural drought relates to a deficiency of the soil 

moisture content in the plant root zone that can cause a susceptibility to and/or a reduction 

in crop/vegetation productivity, or even crop failure. Depending on the prior condition of 

the soil moisture layer, the onset of agricultural drought usually lags by weeks to three 

months from meteorological drought [20,21]. Hydrological drought is also associated with 

a lack of precipitation, but over a longer period of time, which causes a reduced water 

level and streamflow in surface water bodies (e.g., lakes and reservoirs) and groundwater. 

Socioeconomic drought associated with drought impacts the supply and demand of 

goods and services. River cruise ships, for example, cannot provide tourism services and 

other recreational activities. Recently a new form of drought, ecological drought, was 

defined as the deficiency of available water in the natural ecosystem that is beyond the 

thresholds of vulnerability, which threatens plants, animals and ecosystem services [22]. 

Although each drought type has its characteristics and impacts, they are closely 

interconnected, and originate from a lack of precipitation. Figure 1 provides an overview 

of the different drought types and their associated triggers and impacts. 
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Figure 1. An overview of the drought types and their associated factors and impacts on land 

features, such as increased crop failure and vegetation stress. This figure is intended to provide a 

general overview of the main drought types, impacts and responses, as drought conditions may 

vary from place to place; consequently, their impacts and responses vary. Most of symbols were 

extracted from the University of Maryland (https://ian.umces.edu/, last accessed on 5 May 2022). 

Given the various drought types, a vast number of drought indicators and indices 

have been developed to measure the quantitative conditions of droughts and describe 

their physical characteristics (e.g., severity, duration, spatial extent, and frequency). The 

benefit of these indices is that they provide a numerical representation of drought severity, 

and they are primarily grouped as meteorological, hydrological, and agricultural drought 

indices. Such indices can be derived from different sources of in-situ and remote sensing-

based data, such as temperature and precipitation. In practice, users can employ a single 

drought index, multiple indices, or composite/combined indices depending on the 

drought characteristics and needs. To some extent, one single drought index can be used 

to characterize various drought types, for example in the case of the Standardized 

Precipitation Index (SPI). The SPI can be used to monitor meteorological drought [19,23] 

and agricultural drought [24,25]. A recent handbook of drought indicators and indices 

from the WMO and the UNDRR provides an overview of the commonly used drought 

indices and describes their use in detail [2,19]. 

1.2. Impacts of Drought in Southeast Asia 

In Southeast Asia agriculture and food are key sectors, and this region is considered 

to be one of the largest agricultural producers worldwide. Rice, for example, is the most 

critical crop, and is a staple food source in the region [26]. The crop is of great significance 

to the local and regional economy [27]. However, the increasing climate crisis makes this 

crop more vulnerable to drought than ever before. An updated estimate of the Economic 

and Social Commission for Asia and the Pacific revealed that, in recent years, the average 

annual loss of agriculture in the region reached nearly USD 410 billion [28]. 

Due to its climatic geography (e.g., oceanic and atmospheric factors [29]), Southeast 

Asia has suffered from diverse impacts of drought, ranging from human death to 

economic and environmental losses. Table 1 offers an overview of drought impacts across 

Southeast Asian countries from 1960 to 2021. Overall, nearly 97% of economic loss due to 

droughts in Southeast Asia was observed in Vietnam, Thailand and Indonesia, whereas 
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the highest numbers of people affected by droughts were identified in Cambodia and 

Thailand. Table 1 shows that there were 84 reported drought events with more than ten 

thousand deaths, nearly 82 million affected people, and approximately USD 31.6 billion 

economic loss in the region over the past decades. Indonesia was the most affected country 

in terms of deaths (9790 people) and economic damage (~17.5 USD billion), whereas 

Thailand had the highest number of affected people (~43 million). The Philippines ranked 

second in terms of deaths (371 people), and Thailand ranked third (77 deaths). 

Interestingly, there were no reported deaths in Vietnam, Cambodia, Laos, Brunei and 

Timor-Leste, although these countries often suffer from droughts, except for Brunei and 

Timor-Leste. There was a total of 23,000 people from Myanmar and Malaysia who left 

their homes due to drought between 1960 and 2021, while other countries have reported 

no homelessness associated with droughts. Wildfire, famine and pollution are frequently 

observed in the region as the aftershock of droughts. 

Table 1. Summary of drought impacts in Southeast Asia from 1960 to 2021. 

Country Drought Year 
Associated 

Consequences 

No. of 

Deaths 

No. of 

Affected 

People 

No. of 

Homeless 

Cost 

(×103 USD) 

No. of 

Events 

Indonesia 

1966, 1972, 1978, 1982, 

1984, 1986, 1987, 1991, 

1994, 1997, 1998, 1999, 

2000, 2002, 2003, 2005, 

2006, 2015, 2019 

Epidemic, 

Wildfire, Cold 

wave, Storm, 

Famine, 

Pollution 

9790 8,246,535 0 17,468,124 22 

Laos 
1977, 1987, 1988, 1991, 

1999, 2019 
- 0 4,250,000 0 1990 6 

Philippines 

1978, 1980, 1983, 1985, 

1987, 1990, 1998, 2000, 

2002, 2007, 2015, 2019 

- 371 5,749,094 0 299,899 14 

Myanmar 1979, 1981, 2018 - 25 58,588 20 000 41,070 3 

Cambodia 
1987, 1994, 2001, 2002, 

2005, 2016 
- 0 9,050,000 0 240,054 6 

Vietnam 
1987, 1997, 1999, 2002, 

2005, 2015, 2019 

Food shortage, 

Water shortage 
0 8,545,558 0 8,763,728 8 

Malaysia 
1993, 1995, 1997, 1998, 

2005, 2014 
Pollution 72 2,205,000 3000 509,758 7 

Thailand 

1991, 1993, 1999, 2002, 

2005, 2008, 2010, 2011, 

2012, 2014, 2015, 2016, 

2019 

Pollution 77 42,982,602 0 4,364,113 15 

Brunei  1998 - 0 0 0 3325 1 

Timor-Leste 2007, 2016 - 0 120,000 0 0 2 

Total   10335 81,207,377 23,000 31,622,061 84 

Source: EM-DAT, The International Disasters Database https://www.emdat.be (accessed on 29 

December 2021). 

1.3. The Potential of the EO-Based Analysis of Droughts 

Remote sensing products have been used to monitor drought-related phenomenon 

and assess their impacts on the community, the economy, and the environment. In the 

drought domain, multispectral, thermal, and microwave remote sensing observations are 

primarily employed to retrieve drought information. There are a large number of sensors 

and remotely-sensed datasets that can be used to characterize drought conditions. 

However, some sensors may receive greater attention than others in drought monitoring 
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due to their superior spatiotemporal characteristics. The success of the Landsat satellite 

program has led to a series of new satellite EO missions in 1980s and 1990s, such as the 

Advanced Very High Resolution Radiometer mission (AVHRR) in 1981, the Tropical 

Rainfall Measuring Mission (TRMM) 1987, and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) in 1999. The launch of these missions provided an 

unprecedented amount of remote sensing data to unlock regional and global drought 

monitoring and characterization from various perspectives (e.g., meteorological, 

hydrological, agricultural and ecological droughts). 

In recent years, the number of newer satellite-based EO missions has substantially 

increased, which offers numerous opportunities for drought monitoring and assessment. 

The advantages of recent satellite missions, such as higher spatial and temporal 

resolution, have provided an uninterrupted flow of drought observations. The Sentinel-2 

mission, for example, consists of two multispectral satellites, including Sentinel-2A and 

Sentinel-2B. The Sentinel-2A satellite was launched in June 2015, and Sentinel-2B was in 

orbit in March 2017. Together, these two satellites have an operational capability to deliver 

highly spatial, spectral, and temporal observations of the global land surface temperature 

and vegetation from 2 to 5 days (at the mid-latitudes and the equator, respectively) under 

cloud-free conditions. In addition, the recent launch of Landsat 9 in September 2021 

continued the legacy of 50 years of observing the Earth. The combined Landsat 8 and 

Landsat 9 satellites can provide high-spatial-resolution (30 m) data at a revisit time of 

around 8 days for drought monitoring anywhere on Earth. 

Apart from multispectral and thermal remote sensing satellites, microwave satellite 

sensors play an important role in drought monitoring and assessment. Soil moisture 

active and passive (SMAP), a mission led by the National Aeronautics and Space 

Administration (NASA), was launched in 2015; it provides high temporal observations of 

terrestrial surface soil moistures with near real-time global coverage in 2–3 days. In 

addition, based on the successor of the TRMM, the Global Precipitation Measurement 

Mission (GPM) was launched in 2014 by NASA and its partners to provide globally 

available precipitation measurements every 30 min. With recent advancement in space 

technologies and open data policies, more drought remote sensing datasets will be 

expected to be available to the public. Jiao et al., 2021 [30], offered a comprehensive list of 

satellite-based datasets for drought monitoring and assessment. 

The traditional approach to drought monitoring and assessment relies on in-situ 

observations of precipitation, temperature or soil moisture, which are constrained by 

large-scale and frequent monitoring. With the unprecedented volume of different remote 

sensing datasets, the shift from ground-based observations to satellite-based sensors 

provides near real-time measurements, global coverage, and consistent and improved 

spatial resolution data records for the monitoring of droughts from a wide array of 

perspectives, such as agricultural and meteorological droughts [31,32]. In addition, the 

launch of Google Earth Engine (GEE), a big data cloud-based processing platform, in 2010 

enabled users to access vast satellite datasets, and makes it possible to process such data 

for drought characterization and assessment [33–37]. Apart from the repeated observation 

capacity of the land surface, remote sensing sensors can provide measurements in regions 

that are either inaccessible or lack in-situ monitoring facilities for drought assessment [30]. 

1.4. Scope and Purpose of the Review 

Remote sensing data have been increasingly available to support various aspects of 

drought mapping and assessment worldwide. These efforts have led to a significant 

increase in scientific literature and databases on droughts. There have been several 

reviews summarizing the global progress of remote sensing satellite-based drought 

studies [30,31,38], whereas there are only a few reviews dedicated to specific regions, 

including South Asia [39], the Middle-East, Southwest Asia [40], and East Asia [41]. In 

Southeast Asia, however, a review assessing remote sensing of drought events is still 

missing. To our knowledge, this is the first review of EO-based drought studies in the 
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region. This review aims to provide a summary of recent progress in drought studies 

based on EO products over Southeast Asia. More specifically, we survey the aspects of 

drought indices, uncertainty and validation strategies for EO products, and thematic 

drought applications. In this regard, we consider only satellite EO products, and not 

airborne and drone remote sensing platforms, as the latter suffer from limited spatial 

and/or temporal coverage. 

We structured the review into five sections. The Section 1 introduces the topic, 

drought impacts and potential of EO products in the region, whereas Section 2 concerns 

the materials and review method. We present the results in Section 3, providing an 

overview of the progress of drought remote sensing in the region (e.g., the spatial 

distribution of the publications, satellite sensors, drought indices, and thematic drought 

applications). Finally, we discuss the challenges and opportunities of drought remote 

sensing in the region, before providing a summary of the main findings. 

2. Materials and Methods 

A systematic review was performed to assess the progress of drought studies in 

Southeast Asia from an EO perspective. For this review, a comprehensive literature search 

was conducted to identify drought-related papers over Southeast Asia, with the main 

focus on the use of EO satellite-based products. More specifically, we conducted a 

literature search within two major academic database platforms, Web of Science and 

Scopus, from January 2000 to December 2021 (last accessed 25 December 2021). The choice 

of the two databases was due to the fact that they are two world-leading academic 

platforms, and offer more comprehensive cover than any other journal ranking lists [42]. 

Furthermore, we only considered the search timeframe from 2000 onwards, as there has 

been little research in drought monitoring using the EO measurements before 2000. Our 

trial search found no papers related to the remote sensing of drought in the last century 

over the region. The search queries considered peer-reviewed journal articles published 

in English, whereas the selected papers restricted countries and/or subregions within the 

Southeast Asia region. Figure 2 provides an overview diagram of the review approach, 

from the search process to article selection. 

Drought is a complex phenomenon and can be detected by various satellite sensors, 

ranging from microwave to optical/thermal remote sensing. Thus, the search terms used 

in this study contain various keyword arguments. Firstly, “drought” or “dry” or 

“wildfire” are included in the search, whereas various “remote sensing” terms are 

defined, including “earth observation”, “satellite” and “remotely sensed data”. Next, we 

specify countries in Southeast Asia, including Myanmar, Thailand, Laos, Cambodia, 

Vietnam, Malaysia, Indonesia, Singapore, Brunei, East Timor, and the Philippines. In 

addition, the Mekong is considered an important river basin with the largest area of rice 

crop in the region and received great attention from the local and global science 

communities for drought monitoring and assessment. As such, this term—together with 

Southeast Asia—was also included in the search expression. The final search structure is 

presented as follows: 

TS = (“drought*” OR “dry*” OR “wildfire”) AND (“remote* sens*” OR “earth 

observation” OR “satellite*”) AND (“Vietnam*” OR “Thailand” OR “Myanmar” OR 

“Lao*” OR “Cambodia*” OR “Malaysia*” OR “Singapore*” OR “Indonesia*” OR 

“Philippines” OR “Brunei” OR “Timor” OR “Mekong” OR “Southeast Asia*”) 

Here, TS means “topic”, such that keywords appear in the titles, abstracts and/or 

keywords of a given paper. The “*” means the inclusion of everything after, such as 

Vietnam or Vietnamese, whereas OR and AND are Boolean conditions to navigate the 

search. We used the same keyword search expression in both Scopus and Web of Science, 

with a two-step process. Firstly, we searched for all of the articles that matched our 

keywords, and this search query returned a large number of research articles associated 

with the topic from the two databases, for a total of 1295 articles. It is observed that many 

of the papers appeared in both databases; as such, we removed all duplicated articles, and 
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this resulted in a total of 954 remaining papers. Finally, we manually filtered each article 

and selected papers that focused on remote sensing-based drought monitoring. 

 

Figure 2. The simplified diagram describes the process from the keyword search to the final article 

selection. The details of the keyword and article selection are presented in the text. 

More specifically, we skimmed all of the article titles and abstracts, and excluded 

irrelevant articles (e.g., cropland classification) from the formal analysis. We observed that 

many drought articles are based only on non-satellite data such as in-situ precipitation 

measurements, and these studies were also excluded. Although there is a large number of 

forest fire studies, we only considered studies with forest-fire-related drought. In detail, 

the selection of review articles ensured the following criteria: (1) the study characterized 

and assessed drought-related topics with a primary focus on satellite-based EO products; 

(2) the study area is located within Southeast Asian countries; (3) the study addressed 

droughts mainly associated with meteorology, hydrology, agriculture, and socioeconomic 

and ecological impacts; (4) the study concerned drought monitoring and assessment on 

terrestrial land and water ecosystems, excluding ocean and earth-atmospheric interaction 

studies. 

Each article was carefully examined and considered to satisfy the criteria. 

Consequently, a total of 102 research articles were finally analyzed to serve the review. 

Given the diversity of drought indicators/indices for drought characterization and 

assessment in Southeast Asia, this review considered the available droughts in the four 

main types of droughts—meteorological, hydrological, agricultural and 

ecological/wildfire-induced droughts—with further subcategories, namely vegetation 
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stress, surface water/groundwater and streamflow variability, drought-related forest 

fires, drought-induced land use change, and soil moisture drought. In order to facilitate a 

systematic review, we then extracted a list of the relevant variables to produce the graphs 

and tables presented in the Section 3. Table 2 displays a list of 25 relevant variables for 

this review. 

Table 2. A list of relevant variables used to derive the systematic plots and tables in this review. 

Variables Recorded 

Article code; Authors; Article title; Publication year; Journals; Journal categories; 

Corresponding authors’ country; Study country; Spatial scale a; Spatial extent (km2); Spatial 

resolution (m); Validation strategies b; Validation data; Drought indices; 

Remote sensing-derived input variable categories; Drought types c; 

Drought applications; Satellite sensors; Remote sensing categories d; Datasets; 

Temporal resolution e; Starting year of investigation, Ending year of investigation; Length of 

study; Notes. 
a Transboundary, local, and national; b in-situ source, modeled source, and not reported; c 

meteorological, hydrological, agricultural, and wildfire-related droughts; d passive microwave, 

active microwave, thermal, optical, and multi-type remote sensing; e mono-temporal, multi-

temporal, and time-series. 

3. Results 

3.1. Current Progress and Trends of Drought Studies in Southeast Asia 

3.1.1. Temporal Progress and the Journal of Drought Publications 

Southeast Asia is a subregion of Asia, and is home to nearly 680 million people. The 

majority of its population depend on agriculture and fishing, and with its prominent 

tropical climatic zones the region is one of the largest rice producers worldwide [43]. 

However, the region has experienced more frequent droughts in recent decades due to 

climate change and the ENSO (El Niño-Southern Oscillation) phenomenon [29], 

threatening its socioeconomic development, food security and the environment. 

Consequently, there has been a recent growing interest in drought research and impact 

assessment from national governments and academic institutions. Figure 3 shows the 

annual number of research articles dedicated to various drought monitoring methods and 

assessments in Southeast Asia over the past two decades. It is noteworthy that the 

majority of the studies were published within the last 5 years, accounting for nearly 80%. 

 

Figure 3. The bar plot shows the growing number of drought studies in Southeast Asia from 2000 

to 2021. Agricultural drought had the largest number of publications, while hydrology and forest-

related drought received the least attention. 
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Before the El Niño 2015–2016 event, there was a small number of drought articles 

reported, less than five articles per year, and some years were even observed with an 

absence of drought publications (e.g., 2005, 2007, 2010). However, drought studies has 

witnessed a substantial growth since 2016; the largest number of drought articles was 

reported in 2021, with 21 articles. It was observed that the El Niño 2018–2020 event caused 

the worst drought in the past two decades [44]. Most of the examined studies focused on 

agricultural droughts, followed by meteorological droughts. The year 2019 had the largest 

number of agricultural drought publications (14 articles), while meteorological droughts 

were the most reported in 2021 (Figure 3). Hydrological drought and forest-related fire 

drought received less attention, especially in the first 15 years of the 21st century. 

Drought publications in Southeast Asia have been reported in 60 journals over the 

past two decades. Figure 4 presents the number of journals and their categories which are 

relevant to drought topics. The Remote Sensing journal had the highest number of 

drought publications from Southeast Asia, with 14 articles. The Journal of Hydrology was 

ranked second, with seven articles, while there were six articles each from Water and 

International Journal of Remote Sensing. The “others” with only one article per journal 

(e.g., Remote Sensing of Environment) had 46 publications, and the remaining journals 

reported two to three drought publications from Southeast Asia (Figure 4). In addition, 

we classified all of the reported journals into six categories, as shown in the pie chart 

(Figure 4). There were about 28.5% and 10.8% of the journals in the remote sensing and 

Earth science categories, respectively, whereas the hazard and environment journal 

categories were the least reported. The category “others” in the pie chart indicates journals 

with only one or two publications, and its scope lies outside of the pre-defined categories. 

Nearly 36.5% of the journals are reported in the “others” category. Overall, the majority 

of the drought articles in Southeast Asia were published in non-remote sensing journals 

and categories between 2000 and 2021. 

 

Figure 4. The number of journals and categories that reported drought publications in Southeast 

Asia between 2000 and 2021. The “others” in the horizontal bar plot represents journals with only 

one article, whereas the category “others” in the pie chart contains journals with broad topics that 

fall outside of the pre-defined categories (e.g., agriculture and forestry). Some of the journal 

abbreviations used in this figure follow the list compiled by the Swiss Federal Institute for Forest, 

Snow and Landscape Research (https://www.wsl.ch/, accessed on 25 March 2022). 

3.1.2. Spatial Distribution and Authorship of the Drought Publications 

Droughts in Southeast Asia have been monitored and assessed at various spatial 

scales depending upon their characteristics and impact levels (e.g., drought severity and 

duration). This review considered the examined studies at two different spatial scales, 

namely within-country and transnational studies. The within-country/local studies were 
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concerned with drought monitoring and/or assessment within the local administrative 

boundary of a country (e.g., provincial and national studies), while the transnational scale 

refers to the studies undertaken in two or more countries within the region (e.g., studies 

conducted in Vietnam and Thailand or mainland Southeast Asia). Figure 5 presents the 

number of drought publications produced within the boundary of a country and across 

countries. 

Figure 5. The map shows the spatial distribution of drought publications in Southeast Asian 

countries. The color codes indicate the total number of reported drought articles, including local 

and transboundary studies (a) and the number of reported local and national drought publications 

(b). The maps used in this figure were obtained from GADM (https://gadm.ogr, last accessed on 25 

February 2022). 

Southeast Asia has been observed to have discrepancies in drought publications 

among countries and subregions. Figure 5a shows that the majority of drought studies 
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were undertaken in mainland Southeast Asia, accounting for nearly 65%. Vietnam has 

become the most active destination of remote sensing-based drought studies, with 35 

papers, and Thailand is ranked second (34 articles), whereas Brunei, Singapore, and 

Timor-Leste had the lowest number of drought studies over the past two decades. 

Without considering transnational studies, Indonesia had the highest number of drought 

studies (22 papers), followed by Thailand (21 articles). Vietnam is ranked third, with 19 

articles (Figure 5b). Noticeably, there were no local or national drought publications based 

on EO products found in Myanmar, Laos, East Timor, and Brunei from the literature 

search over the given period (Figure 5b). Other countries, such as the Philippines and 

Cambodia, published less than eight articles, although they experienced several severe 

droughts of which the impact strongly damaged crops [34,45,46]. Overall, nearly 40% of 

drought studies were conducted in Vietnam and Thailand, including local and 

transboundary studies. 

In this framework, the institutional affiliation of the study’s corresponding authors 

was taken into consideration, as this information can provide critical insights into remote 

sensing satellite-based drought research capacity in the region. Figure 6 illustrates that the 

highest percentage of corresponding authors came from Thailand (19.23%). Although 

mainland Southeast Asia had the largest number of drought articles, there have been no 

corresponding authors associated with institutions from Myanmar, Laos and Cambodia. 

Interestingly, nearly 24% of the corresponding authors who published drought articles in 

Southeast Asia had affiliations with academic institutions from China and the United 

States of America. Furthermore, nearly 13% of the corresponding authors who contributed 

to Southeast Asian drought publications were from European institutions. In short, it was 

observed that more than half the drought publications (~52%) in Southeast Asia were 

undertaken by corresponding authors from foreign research/academic institutions. 

 

Figure 6. The contribution of corresponding authors to drought publications over the past two 

decades. Among the Southeast Asian countries, Thailand and Vietnam had the highest percentage 

of corresponding authors, whereas China and the United States of America contributed significantly 

to the remote sensing-based drought studies of Southeast Asia.  
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3.1.3. Temporal Resolution of the Drought Publications 

The satellite missions started in the 1970s (e.g., the Landsat program), and today 

remote sensing data are increasingly accessible in drought research, especially through 

the availability of multi-sensor products [30,47,48]. However, there is little information on 

the temporal resolution of drought studies over the past two decades in Southeast Asia. 

Here, we classified the examined studies into one of the three categories (mono-temporal, 

multi-temporal, and time-series). The mono-temporal resolution includes studies 

performing single-date drought analysis, time-series means regular intervals over time, 

while the multi-temporal category considers studies performing drought analysis at 

several timesteps (e.g., multiple irregular years). 

Figure 7 illustrates the frequency of drought publications regarding their duration. 

The majority of the past drought studies in Southeast Asia employed multi-temporal and 

time-series remote sensing data, whereas single-date analysis was the least reported, 

accounting for 8.8% over the past two decades. It is remarkable that there were only two 

time-series drought studies before 2010, and this figure increased significantly in recent 

years. For example, the past 5 years have seen considerable growth in the number of time-

series drought articles, an increase of 10.7%. The time-series drought publications were 

the most reported in 2021 (25%), and the multi-temporal analysis was primarily published 

in 2019, accounting for nearly 24%. By contrast, the mono-temporal analysis dropped by 

2.9% over the past 5 years. With the increasing availability of multi-sensor remote sensing 

data, time-series drought publications are likely to continue to dominate the region. 

 

Figure 7. The articles in drought remote sensing, along with the reported investigated timeframe. 

The various colors represent mono-temporal (blue), multi-temporal (green), and time-series (dark 

yellow) studies, respectively. 

The EO satellite-based time-series duration is another key factor in understanding 

drought trends and patterns. This review investigated the duration of the remote sensing 

data used in drought studies across Southeast Asia. Although there has been growing 

interest in time-series drought monitoring and assessment in the region, the number of 

long-term drought studies (e.g., greater than 30 years) was limited. The results showed 

that nearly 90% of the drought studies harnessed geospatial data over less than 30 years 

(Figure 7). The mean duration of time-series drought studies was 18 years, while this 

figure for the multi-temporal analysis was less than 7 years. Noticeably, there were two 

studies investigating drought conditions over more than 50 years [49,50]. Overall, recent 
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years have witnessed an increase in the number of drought studies with longer periods of 

time, as well as denser time-series data (Figure 7). 

3.1.4. Spatial Scale, Resolution and Drought Validations 

Drought monitoring and assessment products in Southeast Asia have been produced 

at different spatial extents and resolutions. Figure 8 demonstrates the relationship 

between the spatial extent and its spatial mapping resolution. The spatial extent varies 

greatly, from 100 km2 (at local scale) to more than 4 million km2 (at regional scale), while 

the map spatial resolution ranged from 30 m to approximately 110 km. Because drought 

events usually impact large areas, a coarser resolution is a choice of interest. It can be 

observed that there is a positive tendency between the produced map resolution and 

spatial extent. The larger the study area is, the coarser the spatial resolution of the map 

produced (Figure 8). 

Over the past two decades, the majority of the drought studies in Southeast Asia 

employed a relatively coarse spatial resolution. For example, nearly 64% of the drought 

digital maps were produced at a spatial resolution of 1 km and above, whereas only 20% 

of the publications had a spatial resolution of less than 100 m. It can be observed that more 

recent articles surveyed drought conditions at both low and high spatial resolutions, but 

the publications published up until 2010 mainly employed coarser spatial resolutions. 

Noticeably, there were two studies investigating droughts at a very low spatial resolution 

of ~111 km between 2018 and 2020, and they employed the Gravity Recovery and Climate 

Experiment (GRACE), a joint mission between NASA and the German Aerospace Center 

(DLR). 

 

Figure 8. The relationship between the spatial extent and mapping resolution among all of the 

drought remote sensing articles in Southeast Asia from 2000 to 2021. The color bar represents the 

years of publications. 

For the spatial extent, more than half of the publications were conducted in an area 

of above 100 thousand km2. However, considering regional and sub-regional extents, 

there were no publications reported to cover the whole region or mainland Southeast Asia 

at a spatial resolution of less than 500 m. In addition, most of the Southeast Asian 

countries’ areas range from 200 thousand to ~800 thousand km2, as can be seen from 

Figure 8: more than half of the drought publications were conducted at the local and 

national levels. There are only three publications covering every Southeast Asian country 

and four articles for the entire mainland Southeast Asian territory. 
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Another important aspect of the drought monitoring is the validation and 

uncertainty estimation report. These statistics provide a measure of reliability and 

accuracy in drought remote sensing mapping products. Figure 9 presents the various 

validation strategies and data sources to evaluate the map accuracy. As can be seen from 

Figure 9, most of the publications validated their drought products while nearly 21% did 

not report the accuracy assessment. More specifically, using in-situ data was the most 

frequent validation strategy to evaluate the drought products, accounting for 45.1%, while 

approximately 34.3% of the studies employed other/modeled strategies (e.g., available 

global and regional remote sensing-derived datasets) for validation. The choice of validated 

data varies greatly in the Southeast Asian drought studies, but primarily included 

precipitation, soil moisture, temperature, water surface extent, streamflow and others (e.g., 

fire events/areas and evapotranspiration). Among the reported data, precipitation was the 

most commonly used, accounting for 73.9% and 37.1% of the in-situ and modeled data 

respectively. Streamflow and soil moisture were the least-often used to validate the 

mapping products. The remaining validated data varied between 8% and 28%. 

 

Figure 9. The validation strategies and data used in the corresponding strategies. The inner chart 

presents validation strategies, whereas the outer chart depicts the specific data used to validate the 

produced drought products. This review considered the major validated data, but it is admitted that 

few studies are reported to use more than one data type for validation. 

3.1.5. Satellite Sensors and Categories 

Satellite remote sensing data have been increasingly available to support drought 

monitoring and assessment at various scales, from local to global. Over the past 21 years, 

many drought studies in Southeast Asia have employed various satellite sensors, 

including active microwave, passive microwave and optical satellites. In this review, we 

divided remote sensing sensors into three types, and further divided them into five 

remote sensing categories. Figure 10 presents the percentage of the employed sensors and 

remote sensing categories for drought mapping in the region. Overall, there were 15 

satellite sensors reported with five different remote sensing categories. It is noted that 

although the SMAP is an active and passive microwave mission, we considered it a 

passive sensor, as its active counterpart malfunctioned in 2015 [51]. 
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Figure 10. Various sensors used for drought monitoring and assessment. The color codes represent 

the types of sensors in the bar plots, while the pie chart indicates the percentage of articles associated 

with each remote sensing category. 

Among the reported sensor types, multispectral sensors were by far the most 

frequently use for drought monitoring and assessment in the region, and accounted for 

nearly 75%, whereas active microwave sensors were the least often used, at only 8.8% 

(Figure 10). The MODIS was the most reported sensor for characterizing and monitoring 

droughts (~42%), followed by Landsat (16.3%) and AVHRR (~10%). SPOT is ranked as the 

fourth sensor, with nearly 2.5%. The remaining multispectral sensors, including FY-2E 

(Feng-Yun -2E), Sentinel-2, WorldView-2, and GeoEye-1 were less often reported, at less 

than 2% each (Figure 10). Against the multispectral sensors, the frequency of active and 

passive microwave sensors for drought mappings in Southeast Asia was limited (less than 

4%), save for TRMM (Figure 10). 

Apart from the statistics of the individual satellite sensors and their types, this review 

considered five primary drought remote sensing categories. The pie chart from Figure 10 

indicated that the optical remote sensing was the most frequently used source of data for 

characterizing and assessing drought conditions in Southeast Asia (47%), whereas passive 

and active microwave satellite products were reported as less than 7%. Multi-sensor 

remote sensing has gained popularity in recent years for the identification of drought-

related phenomena [30]. In Southeast Asia, about 29% of the drought publications 

reported the use of a multi-sensor remote sensing approach. Thermal is another frequently 

used remote sensing category for drought characterization in Southeast Asia, accounting 

for nearly 13%. Together, multi-sensor and optical remote sensing made up three-quarters 

of the reported EO satellite categories in the region. 

3.1.6. Remote Sensing-Derived Input Variables and Drought Indices 

Given the diversity of remote sensing sensors and categories, drought information 

can be derived from a wide array of input variables. In this review, various remote sensing 

inputs and indices were taken into consideration. We categorized all of the derived remote 

sensing-based input variables into one of eight pre-defined groups, such as vegetative 

indices, precipitation, temperature, water indices, and thermal indices. Figure 11 presents 

the different input variables extracted from remote sensing measurements for drought 

monitoring and assessment in Southeast Asia over the past 21 years. Together, vegetation, 

temperature and precipitation accounted for nearly 70% of the input extracted variables 

for drought characterization and assessment. 
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Figure 11. The input variables derived from remote sensing used for drought analysis. Vegetation 

indices were by far the most common extracted variable for assessing and monitoring droughts in 

Southeast Asia. The “others” indicate the remaining reported input variables, such as 

evapotranspiration, spectral bands, and burnt areas. Some studies employed multiple input variables. 

Vegetation-related indices were most frequently used as drought indicators or inputs 

for the calculation drought indicators, accounting for nearly 30%, whereas streamflow-

based indices received the least attention (2.1%). Precipitation and temperature play an 

important role in forming drought phenomena; hence, these input data have been 

frequently reported, at ~22% and 17.7%, respectively. Thermal indices ranked fourth 

among the input variables, with 8.2%. In addition, water indices and soil moisture 

contributed to drought mapping products by less than 8% each. The remaining input 

variables referred to as “others” (e.g., evapotranspiration and burnt area) in the pie chart 

accounted for 6.1% of the drought remote sensing in the region. 

Based on remote sensing data, various drought indicators/indices have been 

developed and/or applied to characterize drought patterns and assess their impacts. 

Figure 12 presents the various drought indicators/indices used for drought studies in 

Southeast Asia. Among the reported individual drought indices, the SPI was by far the 

most commonly used index to detect drought severity in the region, followed by the 

Thermal Anomaly Index (TAI), which accounted for 16.1% and 9.2%, respectively. The 

Normalized Difference Vegetation Index (NDVI) ranked third, with nearly 8%. The 

“others” included drought indices/spectral information with a frequency of less than 

three, accounting for more than 18% of the reported indices. The remaining frequently 

used indices are reported as less than 7% each over the observed period (Figure 12). 
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Figure 12. Drought indicators and indices used for characterizing and assessing drought conditions 

and their impacts in Southeast Asia over the past 21 years. The “others” indicate drought 

indicators/indices with a frequency of less than three. Many studies employed more than one 

drought indicator/index. 

3.2. The EO Applications in Drought Analysis 

Remote sensing satellite data have become increasingly available, and provide rich 

information for understanding drought conditions and their impacts. In Southeast Asia, 

there has been a growing interest in drought remote sensing, and several drought-related 

topics have been explored. In this section, we classified droughts into one of the four 

categories, and then further categorized them into specific applications. For example, 

studies considered the characterization and assessment of droughts in relation to 

agriculture referred to “agricultural application”, but this broad application is further 

divided into multiple subcategories such as vegetation stress, soil moisture, land use 

change, crop stress and others. Vegetation can be broad, e.g., forest or grassland 

vegetation, but we group it into vegetation stress due to drought. Many studies use 

vegetation indices as a drought indicator to examine vegetation or forest drought, and we 

also consider them as vegetation stress. Figure 13 presents an overview of drought remote 

sensing applications and their subcategories in Southeast Asia over the past 21 years. 

From a broad application perspective, agricultural droughts accounted for the largest 

percentage, at nearly 58% of the reported applications, whereas wildfire-related and 

meteorological droughts were the least reported, with less than roughly 14% each. 

Hydrological droughts ranked second, with nearly 16%. 
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Figure 13. The summary of drought applications in four major domains with ten subcategories, 

including crop stress, land use change, soil moisture, vegetation stress, streamflow and water 

surface variability, fire mapping, fire hotspot analysis, fire risk assessment and other-related 

droughts. 

Given the diversity of drought applications in Southeast Asia, we considered the 

investigation of six thematic applications which cover the reported drought studies. They 

included soil moisture and crop stress, vegetation stress due to drought, drought-induced 

land-use/land cover changes, streamflow and water surface variability, forest-fired 

droughts, and meteorological droughts. The selection of thematic applications lies in the 

publications’ objectives and analysis. Some studies were found to characterize drought 

conditions on multiple thematic applications; hence, they considered various 

corresponding thematic topics. The following sections discuss the details of these thematic 

applications. 

3.2.1. Soil Moisture and Crop Stress 

Soil moisture drought (also known as agricultural drought) is the lack of moisture 

contents in soil, primarily because of precipitation deficit. The deficiency of moisture 

content in root zone layers can cause significant impacts to crops, and in the long run can 

reduce crop productivity or even lead to crop failure. Given the severe impacts of soil 

moisture deficiencies on crops, there have been several studies investigating agricultural 

droughts in Southeast Asia. Over the past years, nearly 18% of applications in the region 

have been devoted to the soil moisture droughts and crop stress impacts. Most of these 

studies were conducted in lower Mekong countries such as Thailand, Vietnam and 

Cambodia [36,52–62]. 

Remote sensing-based drought products have become a primary source of 

information to better understand the soil moisture variability in space and time, and its 

impacts on crops. In Southeast Asia, multispectral vegetation datasets were the most 

frequently used for soil moisture drought. In recent studies, MODIS time-series vegetation 

and land surface temperature were used to detect agricultural droughts and assess their 

impacts [52–54,57,63,64], whereas some other studies employed Landsat and/or Sentinel-

2 time-series data [36,62,65]. Microwave sensors are the least often reported for soil 

moisture drought detection, and in fact there was only one study retrieving soil moisture 

information for potential drought evaluation [66]. 

Although there are some key crops (e.g., rice and maize) in Southeast Asia, rice is 

probably the most important crop. Hence, there were six studies devoted to the 
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monitoring and assessment of rice droughts and/or their productivity [54,55,59,62,64,67]. 

For example, Son et al., 2020 [54] evaluated the drought conditions over Cambodian rice 

cropland from 2000 to 2019 based on the MODIS time-series vegetation health index 

(VHI), a drought composite indicator derived from a combination of the vegetation 

condition index (VCI) and temperature condition index (TCI). Their findings indicated 

that droughts in Cambodia had a higher probability of occurrence in lowland areas 

around Tonle Sap Lake, and in 2016 nearly 32% of the rice cropland suffered from severe 

drought conditions. In the Philippines, rice productivity witnessed a decrease in drought 

in years 2001 and 2005 [67], but this was not clear in Cambodia [59]. Other studies reported 

rice cropping patterns and yield prediction relationships with drought conditions in the 

Vietnamese Mekong region and Thailand [55,62]. 

Vegetation-temperature indices and their combinations derived from remote sensing 

measurements are the main method of soil moisture drought mapping. The drought 

composite/multispectral indices approaches (e.g., VHI, VCI) have been reported in several 

studies [54,55,57,63–65]. These indices are easy to use, and provide various perspectives 

on drought impacts and conditions. In addition, simulated crop models have been 

developed to associate the relationship between crop productivity and drought conditions 

[59,62]. Although machine learning has been massively developed and applied in various 

research domains [68], little research has been conducted in this area. Perez Macapagal et 

al., 2016 [63], used machine learning algorithms (e.g., an artificial neural network and a 

vector autoregressive model) to forecast drought occurrence in the Philippines. In short, 

most of the soil moisture and crop stress drought studies are based on well-established 

multispectral indices such as VHI and VCI. 

3.2.2. Vegetation Stress 

Drought has posed a significant concern to ecological ecosystems, and vegetation is 

a key response indicator to drought conditions because it reflects the growth and status 

of plant healthiness. In Southeast Asia, there has been a substantial number of 

publications dedicated to this topic. Among the reported applications, vegetation drought 

was by far the most investigated topic over the past 21 years, accounting for nearly 31%. 

Most of the vegetation drought publications were investigated in Thailand (28%), 

followed by Vietnam (14%). Malaysia and Indonesia shared 11.5% each, and the 

remaining countries were less reported, ranging from 3 to 6%. In addition, local/national 

vegetation drought publications were more frequently reported than transboundary 

studies. Nearly 88% of these articles focused on local and/or national spatial scales, 

whereas just about 12% aimed to investigate the transnational variability in vegetation 

health due to drought impacts [69–72]. 

Vegetation remote sensing is the primary source of data to monitor and assess the 

drought impacts on vegetation in the region. Variations in green vegetation and canopy 

structures can be captured by certain wavelengths, especially red and the near infrared 

spectrum. One of the most well-established approaches to vegetation stress monitoring is 

based on time-series NDVI products. The NDVI observations reflect the state of plant 

greenness because healthy vegetation strongly absorbs visible red light, but reflects in the 

near-infrared wavelength [30,31,73]. When drought occurs, it reduces the vegetation 

greenness and hence reflects less near-infrared light. Several studies in the region employed 

the NDVI to monitor and assess vegetation droughts [74–77], whereas other forms of 

vegetation indices based on the NDVI gained popularity in recent studies [78–84]. 

Several drought indicators have been developed and/or applied to investigate 

vegetation drought variability in the region. The time-series MODIS-based vegetative 

drought indices were mostly observed from studies in Thailand [74–76,79,80,82–85] 

whereas drought indices derived from the Landsat were undertaken in Vietnam [86–88]. 

Droughts have been reported to impact forests and vegetation over the past two decades. 

For example, Zhang et al., 2014 [72], investigated the vegetation productivity variations 

using the Palmer drought severity index (PDSI). The results of this study indicated that 
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the Mekong region suffered from severe droughts, reducing vegetation net productivity 

products (NPP) in 2005 and 2010. The widespread decline in vegetation was also observed 

in the 2015–2016 drought event [69]. In addition, in the lower Vietnamese Mekong region, 

drought and salinity reduced vegetated perennial croplands [88]. Other studies also 

reported reduced vegetation greenness in drought years such as 1997–1998 and 2005–2006 

[46,70,89,90]. 

Although most of the vegetation drought studies in the region utilized multispectral 

remote sensing data available from the providers without reconstruction and 

enhancement, Xie et al., 2021 [71] applied various methods (e.g., Fourier-based harmonic 

analysis of time series [HANTS], the Savitzky-Golay filter [SG], and a Whittaker smoother 

[WS]) to reconstruct MODIS time-series NDVI, enhanced vegetation index (EVI), and land 

surface temperature (LST) products. They showed that drought indicators derived from 

reconstructed remote sensing data outperformed others; among the reported approaches, 

the HANTS method was superior. Furthermore, Mohd Razali et al., 2016 [91], developed 

a drought classification system, Malaysian Southwest Monsoon (M-SWM), to monitor and 

assess natural and planted vegetation. Apart from the traditional vegetation-based 

approach, microwave remote sensing and machine learning also have been explored for 

vegetation droughts [92–94]. Although multi-sensor remote sensing provides higher 

temporal and spatial resolutions for drought characterization and assessment, there are 

few studies integrating multi-sensor vegetation droughts. Recent examples of such multi-

sensor remote sensing vegetation droughts have been undertaken in Indonesia [95] and 

Southeast Asia [70]. In short, vegetation droughts in the region are mainly derived from 

the MODIS-based vegetation time-series indices, whereas the multi-sensor remote sensing 

of droughts and machine learning are the least explored. 

3.2.3. Drought-Related Forest Fires 

Drought is one of the key factors in the increasing frequencies of wildfire/forest fires, 

and their consequences on the ecosystem environment and human beings are tremendous 

[30]. In Southeast Asia, drought-induced forest fire caused the loss of biodiversity and 

increased greenhouse gas emissions, among other effects [96–98], all of which can lead to 

more intense global warming. In response to such emerging issues, there have been 

several publications devoted to forest-related droughts in the region. Among the reported 

applications, drought-related forest fires accounted for 14%, with various foci, including 

fire mapping, forest fire risk assessment, and hotspot analysis (Figure 12). Indonesia was 

the most frequently reported, with drought-induced forest fires accounting for nearly 70%, 

followed by Malaysia (21%). The remaining other countries have made little progress in 

drought-related fire research, even though these countries often suffer from forest fires [96]. 

Given the unique distinction of forest fires, thermal remote sensing is probably the 

most frequently used technique to detect forest droughts. In the Southeast Asian region, 

the majority of the publications investigating drought-induced wildfires used the thermal 

MODIS and/or AVHRR time-series products [99–104], as these two sensors can provide a 

higher temporal resolution and hence capture more clear-sky imagery. Over the past two 

decades, it can be observed that forest fire droughts were primarily investigated in El Niño 

years [99,102,105–108]. For example, Fuller et al., 2004 [98], reported a loss of nearly 3 

million hectares of forest in relation to the El Niño drought years 1997–1998 in Kalimantan, 

Indonesia. A more recent example was the study of Miettinen et al., 2017 [100]; they 

detected nearly 107,000 fire hotspots during El Niño year 2015 in Peninsular Malaysia and 

Indonesia. Droughts occurred more often in undeveloped peatlands and oil palms (e.g., 

uncertified oil palm) then other land cover types [100,105,108,109]. 

The multi-sensor remote sensing approach has been employed to detect forest fire 

hotspots [102,105,110]. The detected fires based on multi-sensor measurements varied in 

time and space. Fanin et al., 2017 [110], reported that the MODIS time-series thermal 

anomaly products detected nearly four times more fires than the Along Track Scanning 

Radiometer (ATSR) of European Remote Sensing (ERS) from 2001 to 2012. In comparison 
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with the diverse vegetation indices for agricultural droughts, in the forest-related fire 

droughts thermal anomaly/burnt products are the most often reported indicator in the 

region. Burned area mapping is another common approach to gain insights on forest fires 

in relation to drought. Lohberger et al., 2018 [109], employed Sentinel-1 SAR remote 

sensing, together with other datasets, to detect more than 4 million hectares of burnt 

forests during drought years. 

3.2.4. Variability in the Terrestrial Water Storage and Streamflow 

The reduction of groundwater and surface water (e.g., lakes, streamflow) is referred 

to as hydrological drought. This process is associated with the deficiency of precipitation 

over a longer period of time, such as months or even years. Unlike agricultural droughts, 

hydrological droughts usually take a long time to recover and have broader impacts on 

other economic sectors (e.g., recreational activities and the energy sector). For example, 

the reduced level of streamflow not only impacts agricultural irrigation but also threatens 

hydroelectric power production. In Southeast Asia, several recent studies indicated that 

streamflow and surface water storage suffer from great temporal variations [111–115]. 

Noticeably, parts of the lower Mekong region witnessed a downward trend of surface 

water based on the MODIS time-series observations from 2001 to 2017 [114]. 

With increasing remote sensing observations from different sensor platforms, the 

time-series characterization of streamflow and water surface variability can provide great 

insights into hydrological droughts. In Cambodia, the low surface water storage around 

Tonle Sap Lake was observed to be associated with the dry seasons and the El Niño 

drought years [113,116,117]. In addition, Erban and Gorelick, 2016 [118], estimated that 

96% of Cambodian rice cropland remains fallow in dry seasons due to a lack of surface 

water. In this region, it can be observed that multispectral remote sensing has been used 

to gain an understanding of the patterns of surface water and streamflow 

[114,116,118,119]. The multi-sensor remote sensing approach also gained more attention 

in more recent years, but this approach was seen more often in the combination of the 

MODIS, TRMM, GRACE, and ENVISAT sensors [111,113,115,120]. Pham-Duc et al., 2019 

[115], employed the MODIS time series, GRACE, and ENVISAT datasets to provide 

insights into monthly variations of surface and subsurface water in the lower Mekong 

region. Other studies combined drought indices (correlation analysis) such as the Palmer 

drought severity index (PDSI) and the El Niño Southern Oscillation index (ENSO), for 

example in the analysis of surface water changes associated with El Niño years [121]. 

Although there are numerous available remote sensing datasets that can be used for 

hydrological-related droughts, their accuracy and spatiotemporal resolutions vary, and 

may be a challenge for domain researchers and scientists. Le et al., 2020 [122], evaluated 

eight publicly available satellite-based precipitation products, and their conclusion 

indicated that the GPM Integrated Multi-satellite Retrievals (IMERG) and Climate 

Hazards Group Infrared Precipitation (CHIRPS) datasets outperformed other products, 

with regard to the potential for hydrological drought analysis in Vietnam. In addition, the 

GRACE dataset showed the potential of streamflow and surface water storage monitoring 

in the region. Due to their unique characteristics, such as measurements of subsurface 

conditions, GRACE data have been applied in the analysis of subsurface and surface water 

variability in the region [115,123]. 

3.2.5. Drought-Induced Land-Use Change 

Land-use and land cover change are closely associated with droughts and other 

human activities. Drought and its impacts not only reduce crop productivity but may also 

drive land degradation, turning fertile soil into degraded/non-productive fields [124]. Given 

the increasing climate crisis, warmer temperatures are being observed in many parts of the 

world; consequently, droughts are expected to increase in frequency, severity and duration 

[12,125,126]. Such changing climate conditions can lead to a faster rate of land degradation 

and desertification, which in turn can result in land use/landcover changes. 
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Among the reported applications, land-use-related droughts accounted for nearly 

9.5%, and most of these studies were undertaken in Vietnam [88,127–133] and Indonesia 

[126]. Multi-spectral remote sensing products from the MODIS and Landsat sensors 

dominated, whereas the multi-sensor approach has been limited in few recent studies 

[128,132]. Pham et al., 2021 [128] combined Landsat and MODIS time-series products, and 

their findings indicated that droughts, among other drivers, are closely related to the land-

use/land cover change pattern. In the coastal Vietnam, droughts reduced rice cropland 

and aquaculture in drought years [129], and exaggerated the desertification [127]. Land 

use change associated with droughts is also predicted to occur in parts of Indonesia [126]. 

3.2.6. Meteorological Droughts 

In this section, meteorological drought refers to the articles that cover general 

drought monitoring or precipitation-based drought comparison without a focus on one of 

the pre-defined subcategories. Indonesia had the highest percentage of meteorological 

drought studies, with 30%, followed by Thailand and Vietnam, with 15% each. It is also 

observed that nearly 70% of these studies were undertaken in mainland Southeast Asian 

countries. 

Precipitation is probably the most fundamental element in identifying 

meteorological droughts [30,134]. Given its importance, there are numerous remote 

sensing precipitation datasets from various sensors platforms in addition to climatic 

reanalysis products available covering the entire globe. These datasets offer various 

spatial and temporal resolution characteristics, whereas their accuracy has been 

inconsistent across the globe [135,136]. In Southeast Asia, several studies validated 

satellite-based precipitation products for local and regional drought detection. There have 

been uncertainties among satellite-based precipitation products in the region, but higher 

overall accuracy was observed for Global Precipitation Climatology Center (GPCC) data 

in Vietnam [137], for the combined use of Modern-Era Retrospective Analysis for Research 

and Applications (MERRA-2) and the TRMM in Indonesia [138,139], and for the TRMM 

in Singapore [140] and Malaysia [141,142]. 

Computing precipitation-based drought indices is the main approach for detecting 

meteorological droughts in the region. The SPI was the most often reported drought index 

for drought monitoring and characterization. The standardized precipitation 

evapotranspiration index (SPEI) ranked second, in addition to the dry spell index (DSI). 

Although satellite-derived precipitation observations can provide an accurate estimation 

of droughts and a cost-efficient approach for large-scale monitoring, they present major 

limitations. The coarse spatial resolution measurements such as CHIRPS (~6 km) and 

TRMM (~28 km) may not be sufficiently reliable to characterize local droughts where crop 

farms require more spatial details, especially in small and fragmented agriculture. In 

addition, satellite-derived rainfall products present uncertainties, as they are produced 

from multiple sensors or in combination with in-situ observations [135]. A recent study 

developed method strategies to enhance the spatial resolution of satellite-based 

precipitation products in the region [143], but more efforts are needed in order to address 

the issues for more accurate and detailed drought monitoring. 

4. Discussion 

4.1. Discrepancy of Drought Publications among Southeast Asian Countries 

We observed an increase in the number of drought publications in the region over 

time (Section 3.1.1). This increase can be observed to be significant since 2016, and reached 

a peak in 2021, which is likely to partially linked to the El Niño events 2015–2016 and 

2018–2020, which were the most damaging drought events in the last two decades. It is 

also observed that nearly 70% of the drought studies were undertaken in Vietnam, 

Thailand, Indonesia and Malaysia. The more frequent drought-related events which 

occurred in these countries may explain the trend (Table 1). 
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Although the region witnessed an increase in drought studies, more than 50% of the 

corresponding authors are associated with foreign institutions. Seven drought studies 

were conducted in Cambodia over the past two decades, but there were no corresponding 

authors affiliate, with Cambodian academic institutions. This reliance may be due to 

external research funding and expertise resources. Gerke and Evers, 2006 [144], revealed 

that the region experienced an increasing dependence for science and research on foreign 

institutions. It is also expected that these dependent links enable close collaborations 

among academic institutions in capacity training and research, and consequently may 

lead to more drought publications in the coming years. With the rise of extreme climate 

events, a recent initiative on the Strengthening of Drought Adaptation by the Association 

of Southeast Asian Nations (ASEAN) was also expected to boost drought research in the 

region [145], especially drought mapping products. We also expect that these endeavors 

will lead to the development of new drought indicators and indices in the region. 

Currently, there has been little progress in developing and/or employing combined 

drought indices. Cammalleri et al., 2021 [146], recently reviewed the combined drought 

indices, and suggested that they had a high potential for agricultural drought monitoring. 

The combined drought indices have also been successfully applied for agricultural 

droughts in Spain [147], Ethiopia [148], and European countries [149]. 

Discrepancy is also observed in drought applications. Agriculture received the 

greatest attention in terms of drought monitoring, partially because of the prominent 

agriculture-based economy in the region. However, many of the studies focused on 

general vegetation stress, while soil moisture and specific-crop droughts are not 

frequently reported. It is likely that vegetation indices have been well established, and 

had a long history of data. Another reason may be attributed to a lack of in-situ soil 

moisture measurements or the limited sharing of data in the region. In addition, other 

types of drought are understudied, although they are key to the community and the 

environment, such that sufficient attention should be given. For example, reduced water 

in lakes and rivers can have long-term impacts on the economy and human activities, such 

as a shortage of drinking water, in addition to groundwater monitoring. Recentl,y flash 

drought has been frequently reported, and has gained great attention in the United States 

of America [150], but there were no studies found on it in Southeast Asia. Given its rapid 

development and intensification, flash drought can cause tremendous impacts on 

agriculture and ecosystems. Hence, future effort for the monitoring of flash drought is 

necessary in order to mitigate its impact in the region. 

4.2. Evaluation of Drought Products and Mapping Duration 

The reporting of map uncertainties is probably the most fundamental statistic in the 

drought remote sensing products. The produced drought maps and their associated 

uncertainties can provide decision-makers with a level of confidence and reliability in 

their drought planning and mitigation programs [151]. Nearly 21% of the reviewed 

studies did not report accuracy assessment (Section 3.1.4). There may be various factors 

influencing the decision of map validation, but the lack of in-situ data is likely a main 

concern [152]. This problem is also observed in other remote sensing-derived products, 

such as biomass products [153] and soil mapping [154]. Currently, there is no standard 

framework for validating drought mapping products in the region. The commonly used 

approaches for validating a drought remote sensing-based product are simple temporal 

and spatial comparisons with precipitation, reported drought events, and/or well-

established drought indices (e.g., SPI, SPEI). A more standard framework of drought 

mapping product accuracy assessment is needed in order to ensure the reliability and 

certainties in local and regional drought planning and mitigation strategies. 

Apart from map uncertainties, long time-series, large-scale drought monitoring and 

characterization are still limited in the region. Given the nature of climatic studies, long-

term historical monitoring is required in order to better understand and characterize the 

evolving patterns of droughts and their impacts [155]. Nearly 92% of drought studies 
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conducted in Southeast Asia had less than 30 years of history (Section 3.1.4), and this short 

time span may not be sufficient to understand the regionwide historical droughts. These 

limitations may be due to the insufficient data storage infrastructure and computing 

resources to deal with a large volume of remote sensing datasets. With increasing digital 

literacy and open-source cloud computing platforms (e.g., Google Earth Engine), there is 

the potential to address this grand challenge in the region. 

4.3. A Need for Higher Spatial and Temporal Resolutions 

Drought phenomena are complex, and their impacts vary in space and time. 

Agriculture droughts can harm crops if the water supply is insufficient for a few days to 

a few weeks, but it may return to normal after rain. Furthermore, crop fields in Southeast 

Asia are small in size and fragmented. Thus, the key challenges in drought remote sensing 

are associated with temporal and spatial resolutions. Although there have been several 

high spatiotemporal EO missions, such as the Landsat and Sentinel sensors, it is still 

challenging to acquire cloud-free monthly composites covering the entire region or the 

national scale for drought monitoring [156]. This issue is likely to remain in the near 

future, with single sensors in tropical regions such as Southeast Asia. 

While the generation of high-spatial-resolution, weekly or sub-monthly drought 

monitoring products may not be feasible with a single-sensor platform at the regional and 

national scale, the combined use of multi-sensor platforms and downscaled products from 

microwave and optical observations offers high potential to produce high-

spatiotemporal-resolution drought products. In addition, the recent technological 

advancements and launch of new sensors offer high potential to address the limitations 

of previous studies. Harmonizing the Sentinel-2 multispectral sensor and Landsat, for 

example, can provide high spatial and temporal observations of the surface of the Earth. 

Nguyen et al., 2020 [157], demonstrated the combined use of Landsat and Sentinel-2 data 

for mapping cropland in drought-prone areas of Vietnam and Lebanon. Although there 

were some uncertainties in Landsat and Sentinel-2 image co-registration, they greatly 

enhanced the spectral temporal information. Given the rise of the Copernicus Sentinel 

missions and long history Landsat, most research acknowledged the role of these missions 

for future drought monitoring [31]. Unfortunately, there has been little effort in the region 

to explore the potential of such missions for drought and risk assessment. 

With the advantages of daily and/or sub-weekly revisits of coarse soil moisture 

sensors such as SMAP, this dataset offers new opportunities for agricultural drought 

monitoring. However, this dataset and its downscaling approach have not yet been fully 

explored in the region. A recent study by Dandridge et al., 2019 [51], demonstrated the 

downscaling of SMAP soil moisture data from 9 km to 1 km, and they concluded that the 

downscaled soil moisture products had the potential to enhance agricultural drought 

monitoring. Given the extensive agricultural region (e.g., Mekong), the SMAP soil 

moisture and its downscaled products will play a key role for local crop drought 

monitoring. Apart from the massive publicly available datasets, satellite products from 

private companies are expected to unlock drought monitoring at daily and sub-daily 

temporal resolutions. Planet, one of the leading commercial EO data providers, offers free 

access at up to 5 thousand km2 monthly for educational purposes. These resources will 

play an important role in drought-prone regions where frequent and high spatial drought 

products are required as key input information in land-use planning and drought 

mitigation strategies. 
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5. Conclusions 

In this paper, the results of a review on drought-related studies based on remote 

sensing products in Southeast Asia from 2000 to 2021 were analyzed. The review 

primarily covered the spatiotemporal distribution of the publications, EO satellite sensors, 

spatial and temporal resolution, remote sensing-based input variables, drought indicators 

and indices, drought validation strategies, and relevant drought-specific applications. 

This review offers the following insights: 

(1) The number of drought publications has increased over the past 21 years, with a total 

of 102 articles, and especially in the last 5 years (which accounted for 80%). However, 

nearly 65% of the articles were conducted in mainland Southeast Asia, and Vietnam 

is the most active destination of drought studies (35 articles). In addition, more than 

50% of the corresponding authors are affiliated with non-Southeast Asian academic 

institutions. we expect that these collaboration links may boost drought research 

capacity and lead to more publications in the coming years. 

(2) Nearly 50% of the articles employed optical remote sensing, whereas the microwave 

remote sensing of drought received the fewest applications. The combined use of 

Landsat and Sentinel data has not yet been explored for drought monitoring. Newer 

satellite missions such as SMAP and its downscaling products should be investigated 

in the region because of their high spatiotemporal resolution for soil moisture drought. 

(3) Most of the studies focused on single vegetation-based and/or precipitation-based 

drought indices (~53%). There are new opportunities for developing combined 

drought approaches. In addition, machine learning has been rarely applied in 

drought detection. Further efforts are needed in order to enhance drought prediction 

for early warning and mitigation planning. 

(4) Several articles did not report the accuracy information on drought mapping products 

(~22%), whereas precipitation was the main source of data for validating drought maps 

(46%). In addition, time-series drought remote sensing witnessed an increase in recent 

years, but longer time-series drought measurements (e.g., >30 years) are limited (~90%). 

Future endeavors on multi-sensor data fusion/reconstruction are necessary in order to 

produce longer time-series drought observations. 

(5) There is an associated relationship between the spatial resolution and the study area 

extent. The larger the study area is, the coarser the spatial resolution of the map 

produced. It can also be observed that more than half of the articles focused on 

drought monitoring at a local scale, and 64% of digital drought maps were produced 

at a spatial resolution of 1 km and above. Given the increasing cloud-based 

computing platforms (e.g., Google Earth Engine), there will be more opportunities 

for regional and transboundary drought assessment. 

(6) There are large discrepancies among drought-specific applications in the region. 

Although agricultural drought was the most frequently reported application (~58%), 

soil moisture and crop-specific drought monitoring are still limited. Because 

Southeast Asia is one of the biggest agricultural producers worldwide, we call for 

more attention to soil moisture and crop-specific drought assessment, in addition to 

hydrological and meteorological observations. 

In conclusion, this review, for the first time, provided great insights into drought 

studies based on EO data in Southeast Asia. The region witnessed significant progress in 

drought publications over time. However, challenges remain, especially in large-area and 

long time-series drought measurements, combined drought approaches, and the 

integration of multi-sensor remote sensing products (e.g., Landsat and Sentinel-2). Thus, 

future efforts are necessary in order to solve these challenges and ensure regional and 

global food security, a more sustainable economy, and the preservation of the natural 

environment. 
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