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Abstract: While thunderstorms can pose severe risks to property and life, forecasting remains
challenging, even at short lead times, as these often arise in meta-stable atmospheric conditions.
In this paper, we examine the question of how well we could perform short-term (up to 180 min)
forecasts using exclusively multi-spectral satellite images and past lighting events as data. We
employ representation learning based on deep convolutional neural networks in an “end-to-end”
fashion. Here, a crucial problem is handling the imbalance of the positive and negative classes
appropriately in order to be able to obtain predictive results (which is not addressed by many previous
machine-learning-based approaches). The resulting network outperforms previous methods based
on physically based features and optical flow methods (similar to operational prediction models) and
generalizes across different years. A closer examination of the classifier performance over time and
under masking of input data indicates that the learned model actually draws most information from
structures in the visible spectrum, with infrared imaging sustaining some classification performance
during the night.

Keywords: neural networks; satellite images; class imbalance; feature attribution; lightning prediction;
nowcasting; short-term forecasts; machine learning; meteorology

1. Introduction

Thunder and lightning are violent atmospheric events that must have impressed
humans since prehistoric times. Lightning itself, as well as strong winds and precipitation,
hail, or even down bursts or tornadoes that might accompany thunderstorms, are not only
impressive appearances in satellite images but can pose significant risk to life and property.
Even in modern times, fatalities and severe damages from thunderstorms are still occurring
at unfortunate rates, and many commercial operations, such as airports or public outdoor
events (sports, music, gatherings), rely on risks assessments and prediction of lightning
in order to operate safely. In this context, accurate forecasts for the next few hours are
particularly important. Usually, thunderstorms are associated with lightning, which easily
can be detected by triangulation using multiple radio wave antennas.

Unfortunately, the prediction of thunderstorms and lightning (Cb) is a very difficult
problem: The development of atmosphere’s electric field with locally strong charges of
different signs is crucially dependent on cloud processes. Charge generation is based on
the collision of ice particles (ice crystals, graupel or hail particle) in the presence of super-
cooled water droplets [1]. Furthermore, other processes of this kind are proposed for charge
generation; see, e.g., [2]. Nevertheless, the collisions are enhanced in strong, localized
atmospheric updrafts that are typically formed by frontal movements or spontaneous
convective events induced by heat in situations of unstable atmospheric layering. In
particular, the latter effects are highly sensitive to small-scale perturbations and thus are
hard to predict.

Although significant improvements in Cb forecasting have been achieved with numer-
ical weather prediction (NWP) [3,4], accurate forecasts of Cb location and strength are still
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a major challenge. Hence, nowcasting methods are typically used to issue warnings with
short lead times (in the range of up to a few hours) [5]. An early overview of nowcasting
of (severe) weather phenomena is given in [6]. Nowcasting can in general be viewed as
a special type of video prediction problem, that is, classification or regression based on a
temporal sequence of images. Thus, methods proposed for, e.g., video frame prediction in
natural videos are applicable to nowcasting and are related; see [7].

Radar-based methods are often used for regional nowcasting—in particular, the
(Doppler-) radar-based remote sensing of (heavy) precipitation events and their movement,
depending on the method in combination with lightning data [8]. The forecast is typically
based on two subsequent images and extrapolation of the movement of the observed storm
cells, e.g., by optical flow methods [9] or tracking methods [10]. This limits the ability
to predict newly forming or decaying cells and limits long-term precision. For example,
operational systems such as NowCastMIX [10] struggle with predictions for lead times
beyond two hours. That is why for longer lead times, NWP models are used.

An alternative source of information are images recorded by geostationary satellites. They
cover larger regions than methods based on weather radar. For example, the SEVIRI instrument
onboard Meteosat’s second generation (MSG) platform provides data in twelve spectral bands
with a temporal resolution of 15 min and a spatial resolution with 3 km× 3 km sub satellite
point, which corresponds to 0.05◦ × 0.03◦ in Central Europe. These data can be used like
radar data to determine atmospheric motion vectors (AMVs) using optical flow and to provide
information about the brightness temperature of clouds (BT), which can be used to indicate
thunderstorms. For example, the physically motivated usage of the “sandwich” method, which
is based on the BT difference between the 6.3 water vapor (WV) channel and the IR window
channel [11], or alternatively the 7.3 WV channel [12]. Yet, Cbs are defined by lightning. Hence,
in order to improve the accuracy of the detection of Cbs, which is the basis for the nowcasting,
it is recommended to use lightning data in addition. For example, [13] use the Advanced
Baseline Imager (ABI) and flash-extent density (FED) from the Geostationary Lightning Mapper
(GLM) on board GOES-16, as well as satellite and solar zenith angles and geo-coordinates to
predict “intense convection”. In [14], satellite-based information is combined with lightning
data from the Vaisala Global Lightning Detection Network (GLD360) and information from
NWP. Moreover, a combination of satellite and radar information is applied; for example, [15]
make use of five temporal images from two ABI channels to predict convective regions, derived
from Multi-Radar Multi-Sensor (MRMS) precipitation types.

However, it remains unclear whether physical nowcasting methods are capable of making
the best possible use of the available information given in the satellite image and lightning data.
As discussed before, current approaches, e.g., [14,16,17], do not take into account the decay or
development of (new) cells. Corresponding information may be hidden in the input data and
unused. The visual analysis of thunderstorms based on lightning data and satellite imagery
suggests that there may be more information in the data that can be extracted. Thus, an obvious
alternative is to resort to machine learning [18,19] and in particular deep representation learning
techniques [13,20], which have, in recent years, become able to automatically build highly
predictive statistical models even from data with extremely complex statistical dependency
structure, such as differentiating different breeds of dogs in general photography [21–23].

Our study follows this approach: We predict lighting events from image sequences
containing satellite imagery and a map of recent lightning events through an image-to-
image translation performed by (a variant of) a convolutional U-Net [24], which could
be considered a “canonical” network approach to image-segmentation and translation
tasks. Our study is designed in particular to address the question of what insight can be
gained from satellite images alone for short-term Cb-forecasting, and which parts of the
data are most important to this end. The use of machine learning methods, and specifically
deep neural networks, has been studied previously in the literature [25–29]. Specifically,
U-Nets have been used in related studies for precipitation forecasting [30,31]. Regarding
convection, [32] published a study that uses radar images (2 min, 1 km grid) to predict
precipitation with a lead time up to 6 h using a (residual) U-Net. Similarly, Shi et al. [33]
train a Trajectory GRU model to predict precipitation based on radar images (6 min, ca.
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1 km grid). A random forest classifier to detect convective initiation (CI) from geostationary
satellite data training on hand-crafted features, where CI is derived from radar data, was
proposed in [34]. A similar model based on four commonly available surface weather
variables (air pressure at station level (QFE), air temperature, relative humidity, and wind
speed) to predict lightning events for lead times with up to 30 min training a decision tree
was developed in [35].

However, lighting prediction comes with the problem of heavy class imbalance which
is a general challenge for classification with statistical machine learning: In many relevant
scenarios, lighting events are rather rare; thus, a classifier that just predicts “no (nearby)
lightning” for all outputs can easily reach accuracies close to 100%. Previous work has
mitigated this issue by resampling in evenly balanced examples [18] or considering condi-
tions with high prevalence [20], which then also assumes balanced base-rates when making
predictions. In our paper, we develop a method to automatically balance class weights to
optimize a deep learning classifier for high predictive power (such as high critical success
index, CSI). This permits a simple “end-to-end” training with operationally meaningful
predictions (i.e., using recent lightning and satellite observations, the classifier predicts
future events with above-chance accuracy). To obtain an indicator of the quality achieved,
our results are compared with those of an optical flow-based nowcasting method of the
German Weather Service (DWD).

A second and possibly even more interesting question is understanding which infor-
mation actually contributes to making better predictions. Having a strong classifier that
outperforms hand-engineered operational models by simple, automatic statistical learning
opens up the opportunity to study this question: By withholding data at the learning stage
and tracking the reduction in performance, we can attribute how much information the
classifier was able to draw from these sources (formally as lower bound of how much
statistical information about the event is contained in portions of the data). We conduct an
experiment where we measure the variability of the prediction performance over different
times of the day, and retrain classifiers for visible (including a 1.6 µm near-infrared channel),
infrared, and two water vapor bands.

Overall, our study makes two key contributions: (i) a simple method for end-to-end
training of lightning events from image data that is both practical (applicable to data with
real-world, skewed prior class frequencies) and accurate (outperforming state-of-the-art
optical flow-based systems), and (ii) we obtain some novel insights of which sources of
information are useful for making predictions by examining the performance characteristics
of the learned classifier.

2. Materials and Methods

Our method performs statistical learning to learn a mapping that takes satellite images
and measurements of recent lightning activity as input and predicts future lighting activity
as output, with a specific lead time.

Satellite images: Formally, we define the geostationary satellite images as functions

S : R× [−79◦, 79◦]× [−81◦, 81◦]×R→ R, (1)

denoted as St(θ, φ, λ), where t is the time at which the image capturing has begun, θ
and φ are the longitude and latitude, respectively, and λ refers to the wave-length band
measured. The specific satellite imagery used is provided via the Spinning Enhanced
Visible and InfraRed Imager (SEVIRI) of the Meteosat Second Generation (MSG) system,
and obtained from EUMETSAT [36]. Images are available in 12 discrete frequency bands
with a finite temporal resolution of ts = 15 min. Eight bands represent the thermal infrared
(IR) range, providing radiance resulting from the emission of the atmosphere and the Earth
surface. They can by used to estimate the brightness temperature of the atmosphere and
the surface. Three channels in the visible (VIS) spectrum measure the reflection of solar
light at clouds or the Earth’s surface. This information can be used to retrieve the albedo
of clouds and the surface. Lastly, the High-Resolution Visible (HRV) channel contains
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multiple broadband detection elements to scan the Earth with a lower sampling distance.
The spatial resolution of the satellite images in Central Europe is roughly 0.05° latitude
and 0.03° longitude (except the HRV band, which we do not consider). All satellite data
are projected to an equirectangular projection with an equal spatial resolution of 0.05◦. We
represent the satellite data as collections of 2D images Sλ,t as data with values quantized to
a 16-bit integer. Figure 1b–d show examples of processed satellite imagery of the VIS006
(λ = 0.6 µm), WV062 (λ = 6.2 µm), and IR120 (λ = 12 µm) channels at 4 June 2016 at
12:00 h UTC, where a lot of lightning occurred across Central Europe. The images already
indicate that the optical band might be more informative, as the infrared channels only see
the cloud tops. However, the patterns in the visible spectrum are complex and not easy to
capture in a hand-designed classifier.
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Figure 1. SEVIRI satellite images (in radiances) (b–d) and (aggregated and binarized) LINET events
(a) for Central Europe on 4 June 2016 at 12:00 UTC. In the IR120 (d) (WV062, (c)) only the cloud
top contributes to the emission and hence to the signal measured at the satellite, with exception of
semi-transparent clouds. However, in the VIS (b) the complete cloud contributes to the signal. The
texture, thickness and shape of clouds are therefore much more pronounced in the VIS.

Lightning images: Measurements of lightning activity are given as point sets
{l1, . . . , lnl} ∈ R4, with two spatial geo-coordinates, a time coordinate, and the electrical
current Ii. The lightning data used in this study were obtained from the LINET lightning
detection network [8]. LINET is a low-frequency long-range lightning detection network
(VLF/LF) using the time-of-arrival (TOA) method, consisting of several ground-based
lightning sensors. For further processing, we convert the point set into images, with the
same spatial and temporal resolution of the satellite images. To this end, we bin all lightning
events in an aggregation time span of ta = 15 min, during which the satellite data have been
measured, or, during experiments with varying lead-time ∆t, offset by the corresponding
∆t, and binarize them by setting the closest pixel to 1 (with background set to 0). To filter
out potential noise, only lightning events with an electric current of at least 1 kA were
considered. We denote the resulting lightning images by Lt. Figure 1a shows an example
of a processed lightning image for the same example date (4 June 2016, 12 h UTC).

The region of interest (ROI) in our work is the mid-latitudes in Central Europe, be-
tween 2.0°W and 21.5°E, and 44.5°N and 57.5°N. The data are cropped to the defined ROI
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and split up in smaller patches, according to Appendix A.3. We focus our work on the months
May to August in the years of 2016 and 2017. As additional test data set, we use data from
August and September of 2021. Detailed information about the data and their use can be seen
in Tables A1 and A2 for 2016/2017 and 2021, respectively. The processing of the data is done
using multiple tools, such as pyPublicDecompWT [37], SatPy [38], Pyresample [39], and Cartopy [40].

The learning task can now be posed as a probabilistic prediction of a future lightning
image: Let t0 denote the current time, ∆t the lead time for the prediction, ts the temporal
sample spacing, ta the aggregation time span (in our case: ts = ta = 15 min), and k the number
of past satellite images used for the prediction. With this information, we want to determine
a probabilistic classifier fθ that computes a probability map that specifies for each pixel the
likelihood of a lightning event being marked in the future lightning image:

fθ

(
Lt0 , St0 , Lt0−1·ts , St0−1·ts , . . . , Lt0−k·ts , St0−k·ts

)
≈ Lt0+∆t. (2)

This problem is solved by representing the function fθ by a deep neural network with
parameters θ ∈ Rd. Learning is performed using maximum-likelihood: We assume that
we are given a set of N training images with pixel-dimensions (W, H) and determine a
good-fitting θ̂ as a (local) maximum of the likelihood function with L1 regularization:

θ̂ = arg max
θ∈Rd

−λR

d

d

∑
j=1
|θj|+ ∑

i∈{1,...,N}
x∈{1,...,W}
y∈{1,...,H}

w
(

f (i)θ , L(i)
t0+∆t, rs

)
[x, y] · `

(
f (i)θ , L(i)

t0+∆t

)
[x, y], (3)

with
`
(

f (i)θ , L(i)
t0+∆t

)
= log f (i)θ · L

(i)
t0+∆t︸ ︷︷ ︸

positives

+ log
(

1− f (i)θ

)
·
(

1− L(i)
t0+∆t

)
︸ ︷︷ ︸

negatives

, (4)

f (i)θ = fθ

(
L(i)

t0
, S(i)

t0
, L(i)

t0−1·ts
, S(i)

t0−1·ts
, . . . , L(i)

t0−k·ts
, S(i)

t0−k·ts

)
. (5)

Here, the operator [x, y] refers to the pixel at position x, y in the respective images;
and w denotes a per-pixel class weight, based on the prediction skill of the sample. L1
regularization is scaled by the factor λR.

The main issue with the cross entropy (CE)-based loss function shown in Equation (4)
is the naive (unweighted) summation over all pixels, regardless of their classification. Even
when including all pixels in a search radius rs, the amount of pixels “with lightning” is
extremely sparse. Therefore, we add the event-based, per-pixel weight w in Equation (3),
which addresses the issue of heavy class imbalance in a sample. This differs from per-
sample weighting strategies based on class balance, such as [41]. Per-sample weights work
well with known class imbalances, e.g., when data from one class are underrepresented in
the data set, by scaling the importance of single samples. This is only partially useful in
our case: Thunderstorms are comparatively rare, but when they occur, lightning activity is
reasonably high, spanning over multiple pixels in a sample.

In the following, we will construct a per-pixel weight map w, based on the samples
class labels L(i)

t0+∆t, the predictions f (i)θ , and a (fixed) “search radius” (rs) as follows:

w
(

f (i)θ , L(i)
t0+∆t, rs

)
[x, y] =

{
ωlightning, if L(i)

t0+∆t[x, y] = 1 or
(
(x, y) ∈ FPrs

(
f (i)θ , L(i)

t0+∆t

))
ωno-lightning, otherwise,

(6)

where FPrs(p, l) is the set of pixels classified as false positive given the search radius rs,
the predictions p, and ground truth labels l of the sample, and ωlightning is the modified
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class-weight of the “lightning” class in the data set, and ωno-lightning its corresponding
counterpart. The class-weight ωcw of a class “cw” is defined as

ωcw =
1
2
× 1
|cw| , (7)

where |cw| is the amount of instances of the class. Scaling by 1
2 keeps the overall loss at a

similar magnitude, so that the sum of the weights of all examples roughly stays constant.
The values of ωlightning and ωno-lightning are pre-computed for the whole training split of
the data set, and are shown in Table 1. Taking false positives into account, w will adapt to
the performance of the classifier f . The training split of the data set is detailed in Table A1.

Table 1. Computed pixel-weights of the training split for the 2016/2017 data set, based on class-
weights shown in Table 2 and Equation (7).

Class Pixel-Weight

ωlightning 3.33
ωno-lightning 5× 10−5

Table 2. Measured class-weight of the training split for the 2016/2017 data set.

Class Class-Weight

lightning 0.15
no-lightning 99.85

The search radius rs is used to model the label uncertainty introduced by various factors,
such as the dislocation between lightning and the fictitious center of the Cb, the geolocation
error of the satellite, and the movement of the cloud [12]. During the computation of w, it is
used to determine false positive predictions. The weight map w can efficiently be computed
at every training step in parallel. During training, the loss values are averaged over all
pixels and samples in a batch.

The network f used in our study is based on the U-Net [24] architecture, combined
with ResNet-v2 [42] residual blocks, adapted to work with three-dimensional input.

The input to our model is of the form (B, H, W, T, C), where B is the batch size, H and
W the height and width of an image, T the amount of time-frames, and C the amount of
channels. We fixed the height and width of our model to be 256 px × 256 px, which equals
12.8° × 12.8°, or roughly 1425 km × 1425 km. Larger input areas are split up according
to the domain decomposition scheme described in Appendix A.3. Further, each input
possesses a boundary region, overlapping with neighboring inputs, which allows for a
more precise prediction of the non-overlapping region, but which is excluded from the
optimization process and evaluation.

Figure 2 shows an overall view of the used network architecture. The U-Net structure,
including skip-connections, can be seen. Varying from the original architecture, we replace
the stacked convolution layers and the pooling layer at each down/up sampling step with
residual blocks (with stride where necessary). Instead of cropping the feature map of
the contracting path, we use the feature map after the down-sampling operator. We use
convolutions for down-sampling, but deterministic trilinear up-sampling operations. Devi-
ating from the original architecture, we replace batch normalization layers with instance
normalization [43], which normalizes each element of the batch independently, i.e., only
across the spatial and time dimension.
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Figure 2. Illustration of the used network architecture, based on a U-Net with residual blocks.
Depicted in light gray is the tensor size (H, W, T) between each block; the batch size and the number
of channels have been omitted. Blue boxes correspond to down-sampling residual blocks, green
boxes correspond to up-sampling residual blocks, and dark gray boxes correspond to residual blocks.
Dashed lines indicate skip connections between the encoding and decoding phases of the U-Net.
Solid lines indicate connections between layers.

The residual blocks consist of full pre-activation units, optionally paired with pre-
activated convolution shortcuts, as described in [23]. Figure 3 illustrates the used residual
(Figure 3c), down-sampling (Figure 3a), and up-sampling blocks (Figure 3b). Convolution
layers use 3× 3× 3 filters for up- and down-sampling, and 1× 1× 1 otherwise. Non-linear
layers consist of ReLU [44] activation functions.

As usual, we increase the amount of channels per block (representing coarser spatial
scales). Empirically, we found good validation results for a stronger increase (only) for
larger lead-times—details are shown in Table 3. When growing, it follows an exponen-
tial curve countering the spatial down- and up-sampling per block in the U-Net, which
restraints memory use for weights and activations. The resulting network can be trained
on consumer graphics cards at a reasonable batch sizes. Together with the training set-
tings, the expressivity of the neural network is adapted to “match” the complexity of the
modeled problem.

Table 3. Detailed number of channels in the network, depending on the lead time.

Lead Time Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Bottleneck

0 min 13 13 14 14 15 16 16
30 min 14 16 20 28 46 81 81
60 min 14 16 21 31 52 97 97
90 min 14 16 21 32 56 106 106

120 min 14 16 22 33 59 114 114
180 min 14 16 22 35 63 124 124
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Figure 3. Detailed illustration of the used architecture blocks of our network, used for down- (a) and
up-sampling (b), as well as a residual block (c). Down-sampling is realised with strided convolutions,
whereas deterministic up-sampling is used. Concatenation of tensors in the channel dimension is
denoted as ◦. Addition of tensors of the same size is denoted as +.

Our model is trained using stochastic gradient descent (SGD) with momentum [45]
using decoupled weight decay (SGDW) [46] to optimize the loss function, described in
Equation (3). The base learning rate (LR) is set as λ = 0.5, and the weight decay (WD) and
L1 regularization are set based on the number of channels of the network, as shown in
Table 4. We use a batch size of 64 and train the network for 14 epochs. In each epoch, the
network trains on a random permutation of the complete training data set. At the end of
each epoch, we validate the network’s performance on the validation data set and save its
parameters to disk. Every 8th batch, we adapt the decision threshold based on the current
best performance. During training, the LR is scheduled with a 1-cycle LR scheduler [47]
(two-phase, cosine decay). The learning rate schedule throughout the training process is
discussed in more detail in Appendix A.5 and is depicted in Figure A2. Additional to the
use of our custom weighted loss function, samples with no lightning activity are discarded
during training.

Table 4. Detailed training settings, depending on lead time and network size.

Lead Time Bottleneck
Channels Base LR WD Regularization

Factor Epochs

0 min 16 0.5 5.0× 10−6 0.1 14
30 min 81 0.5 7.0× 10−6 0.15 14
60 min 97 0.5 7.0× 10−6 0.2 14
90 min 106 0.5 7.0× 10−6 0.2 14

120 min 114 0.5 1.0× 10−5 0.3 14
180 min 124 0.5 1.0× 10−5 0.3 14
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All parameters (of all experiments) were tuned based on data given in Table A1. Our
method uses the following input features: SEVIRI channel VIS 0.6, VIS 0.8, nIR 1.6, IR 3.9,
WV 6.2, WV 7.3, IR 8.7, IR 9.7, IR 10.8, IR 12.0, IR 13.4 and the most recent lightning events
from LINET.

We use PyTorch [48] for all of our experiments and train on a single machine, equipped
with an Intel Core i7-8700 Processor and a single NVIDIA TITAN RTX GPU. A reference
implementation is provided under a free license.

3. Results

We evaluate our method on the testing data set aside from the original 2016/17 data
set (Table A1 in the Appendix A.1), as well as testing data from the month of August and
September of 2021, for which comparison data with a nowcasting method [14] at DWD
were available. In line with good experimental practice, all hyperparameter tuning has
been concluded using validation data before running any inference on any test data has
been performed (with frozen, final hyperparameter settings). In particular in our case,
where substantial hyperparameter tuning was required, this protocol minimizes the risk of
reporting a coincidental success. Further, training and testing were performed 5 times with
independent random initialization and training of the network, which can always lead to
(a bit of) spread in the results, and mean and standard deviation are reported.

We report the critical success index (CSI) (see Appendix A.2 for details) of the deep
network and a base-line “persistence” method, which just assumes that the most recent
lightning events at the start of the prediction period persist at the same spot indefinitely. We
also compute an “improvement factor” that measures the factor by which the deep network
outperforms the base-line persistence model in terms of CSI. As discussed in more detail in
Appendix A.4, this makes it easier to compare to other methods while avoiding misjudge-
ment due to small deviations in the evaluation protocols for the corresponding CSIs.

The findings are shown in Figure 4 and Table 5.
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Figure 4. Improvement factor (right y-axis) and CSI (left y-axis) over lead time: Performance measures
using CSI for a search radius of 30.61 km of our method for various data sets. All lines showing the
improvement factor start at the bottom-left, and all lines showing the CSI start at the top-left.



Remote Sens. 2022, 14, 3760 10 of 21

Table 5. CSI of our method for various data sets, SR 30.61 km and varying lead time (LT).

Data Split\LT 0 min 30 min 60 min 90 min 120 min 180 min

Validation 16/17 99.9± 0.0 89.2± 0.8 78.5± 1.6 74.4± 1.6 66.8± 2.9 38.2± 2.3
Testing 16/17 99.7± 0.0 88.6± 1.4 77.8± 1.9 76.2± 1.6 70.0± 2.7 41.8± 3.1

Testing August 21 99.9± 0.0 87.9± 1.1 75.4± 2.0 69.7± 2.7 61.3± 3.7 31.9± 3.0
Testing September 21 99.1± 0.0 87.2± 1.3 72.9± 2.7 66.9± 3.5 56.9± 5.2 24.7± 4.2

3.1. Classifier Performance and Base-Line Comparison

As a first sanity check, for zero lead time, the network reaches very close to 100%
success (i.e., matching the base-line when tasked with just predicting the last known events),
which means that the network has been able to successfully learn to base its decisions solely
on the lightning data in this setting.

With growing lead-time, the results diverge from base-line, with substantial advan-
tages for the learning-based model. We obtain a CSI of about 57–80% at 120 min and 25–42%
at 180 min lead time (depending on the data set), corresponding to a factor of improvement
of ≥1.5 at 3 h and ≥2.0 at 2 h lead time.

This can be interpreted as a good outcome: Usually a CSI value of 50% is used to
decide if the forecast provides a useful prediction. The CSI value is well above 50% for
all testing periods up to a lead time of 120 min, demonstrating the quality and potential
practical relevance of the classifier obtained from statistical machine learning.

Specifically, our model was able to transfer to unseen data from September 2021,
as neither the year nor the month was in the training or validation data set. As expected,
testing results for this period show a decline in performance, but are still above 50% CSI
for a 120 min lead time. Data from 2021 in general perform a bit worse than testing data
from the corresponding months of the 2016/17 data. We believe that the close temporal
proximity of the 2016/17 testing data to training data is likely responsible for this. While we
reduce direct data leakage of capturing the same convective cell by maintaining a 12 h gap
in between adjacent weeks, the statistical similarity of the overall meteorological conditions
appears as a plausible explanation. The increased drop for September 2021 is consistent
with this hypothesis as the atmospheric conditions in September generally differ from
May to August, which are used for training. As shown in Table 5, the performance on
validation data is not systematically better than testing performance, showing that the
hyperparameter choice has most likely not been overly specific to training and validation
data used for method development.

3.2. Prediction Structure

To provide an impression of the outputs produced by the network, Figure 5 shows
the model logits (inputs to the softmax-layer that yields normalized probabilities) and skill
(True/False positives and negatives per pixels) for the previously used example of a severe
weather event on 4 June 2016 at 12:00 h UTC [49]. It shows how the predicted lightning map
significantly reduces false negatives and positives over base-line persistence. Visually, one
can see that the predictions are automatically enlarged by the network to match the search
radius, but our formulation of the adaptively weighted loss (Equation (6)) does not lead
to “overblown” predictions, thereby reducing false positives (a naive dilation operation
on all input and output data to model the search radius would lead to smudged, unsharp
predictions at the border regions and could seriously harm false positive rates).
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Figure 5. Predictions and skill of the compared methods for a 120 min forecast during a severe
weather event, 4. June 2016 12:00 UTC. (a): Unscaled model logits. Sharp lines at around 11°E, 26°E
and 43°N are artifacts from the domain decomposition scheme, detailed in Appendix A.3. (b): Model
skill: CSI 77.82%, POD 78.25%, FAR 21.74%. (c): Persistence predictions. Cbs remain static, no forecast
is applied. (d): Persistence skill: CSI 43.46%, POD 60.86%, FAR 39.13%. True positives are marked
green, false positives orange, and false negatives purple.

Further details of the results are presented and discussed in the following subsections.

3.3. Comparison Against Physical Nowcasting Method

The DWD currently works on an improvement of the nowcasting applied within the
24/7 nowcasting method, discussed in detail in [14]. In order to obtain a first hint of the
possible improvements of a machine-learning-based method, the factor of improvement
between persistence and nowcasting was calculated for the 120 min prediction for both
approaches. Due to a deviation in the lead time reference point, a 120 min lead time in our
work transfers to a 120 + 10 min lead time in the physical nowcasting method. The valida-
tion method has been adapted as far as possible for this comparison. Nevertheless, it is not
a direct comparison and hence only provides an indicator for possible improvements using
the method presented in this manuscript. The authors of [14] state a CSI for the persistence
algorithm of 26%, which is consistent with the values reported in our work; see Table A3.
For the physical nowcasting method, they state a CSI of 38%; thus, the improvement factor
is of about 1.4 and hence significantly below the values achieved by our learned classifier.
This is not proof but a strong indicator that the developed method is able to gain hidden
information and to improve the prediction of Cbs in the time frame of 0–3 h.

3.4. Feature Attribution

After observing that our classifier is able to make statistically strong predictions (in
comparison to alternative methods), we ask the question which “features” (input channels)
are most informative in making the decision.

Figure 6 shows the result of training the classifier again, but with some inputs omitted.
The graph shows the CSI over the course of the day, with an overlay of the number of
lightning events recorded by LINET (dotted black curve) at these times of day on average
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(clearly peaking in the afternoon UTC time, which is late afternoon local time in the
observed region). The time on the x-axis denotes to the prediction time and corresponds to
the number of lightning events shown (the actual data used for the prediction are taken
2 h prior).
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Figure 6. CSI over daytime (left y-axis): Performance measures for 120 min forecasts us-
ing CSI for search radius 30.61 km of our method for the 2016/2017 test data sets, using
only VIS+PER (VIS 0.6, VIS 0.8, nIR 1.6, Persistence), WV+PER (WV 6.2, WV 7.3, Persistence) and
IR+PER (IR 3.9, IR 8.7, IR 9.7, IR 10.8, IR 12.0, IR 13.4, Persistence) channels. Average lightning events
over daytime (right y-axis).

The full classifier model (dark blue curve) shows a significantly lower CSI at night-
time than during the day: With the sunrise starting, performance improves, and drops
again later in the evening; the increase in performance during 4–6 am UTC coincides with
the beginning of dawn in Central Europe (local daylight-saving time being offset by +2 h)
in the relevant time frame of May to August. As more daylight becomes available closer to
the start of summer, more visible information becomes available earlier in the day, which
could explain the transition in accuracy. Similarly, accuracy declines towards the end of
the day.

A second phenomenon, apparently overlayed with the hypothesized daylight effect, is
a further increase in CSI between 9 and 16 h UTC, peaking around noon (notably, at about
80% CSI). This corresponds to the time where most LINET events have been recorded.
Apparently, prediction becomes easier if events are more common (which is a statistically
plausible finding and would be expected).

The hypothesis that the network bases its decision mostly on information in the
visible spectrum of light is solidified by looking at the CSI-curves when using only images
from the visible spectrum (VIS/light orange) versus various infrared channels only (light
blue/green): During daylight, the model using only visible features drops only slightly in
performance compared to the full model (often within the 1σ-margin of error of the full
model), while the infrared models perform significantly worse. Only at night, the prediction
benefits from IR-information (with visible-only falling behind), although at an overall
poorer level of performance. Surprisingly, the water-vapor bands alone yield an even
slightly worse performance than the other IR-channels.

The comparison against base-line persistence shows an occasional drop below base-
line for the restricted models, which might be explained by training noise (with variance
increasing during low-event-count night times); this also suggests to not over-interpret
smaller differences (WV vs. IR), but the gap to visible light appears very large and corre-
spondingly very unlikely coincidental.
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In summary, we observe that visible light has by far the largest contribution to clas-
sification performance, indicating the image recognition in the visible spectrum plays a
major role. When visible light is available, the model performs very well at levels of CSI of
60–80%, which might have some operational relevance for applications to daytime activities.
Infrared imagery appears to be much less informative to our classifier, which can only
sustain a generally lower prediction performance consistently at day and night times. The
water vapor channels alone, which are a target for physically motivated, “hand-crafted”
models [12], lead to overall worse prediction results than visible or other infrared bands.

4. Conclusions

Our paper provides an end-to-end training technique for Cb nowcasting. As it works
directly on unbalanced data, it can easily be used for predictions, as no pre-filtering of data
is required. The experimental results provide clear indications that deep learning can be
used to improve the Cb nowcasting even in this general scenario of naturally unbalanced
classes. It should be noted, however, that the data used are not maximally unbalanced: All
training and testing has so far been taken from the “warm” months of May to September,
where lightning is much more prevalent in the observed region of Central Europe; including
winter data and/or a more global excerpt of the planet might likely lead to a decrease
in performance.

Comparison to operational nowcasting approaches: Most physical models are based
on the extrapolation of the detected Cbs with atmospheric motion vectors (AMV; see [14]
and the references therein). This approach works well as long as the cells do not decay
during the prediction period. Unfortunately, cells usually do decay after a certain lifetime,
such that this effect occurs regularly. Further, newly developed cells cannot be captured by
extrapolation of detected cells. These are serious drawbacks of the AMV approach. The
quite good results achieved with deep learning indicate that the training process might
enable the network to gain information on the life cycles of cells (decay, newly developed
cells). The network seems to be able to learn to a certain extent whether Cbs decay or newly
develop within the prediction period or not, and we believe this is crucial for lead times
around or larger than 180 min, as the lifetime of regular Cbs is usually shorter than this;
see, e.g., [50].

Importance of the visible-light spectrum: The results diagrammed in Figure 6 clearly
show that the learning process benefits tremendously from the visible channels. In the IR,
only the cloud top contributes to the emission and hence to the signal measured at the
satellite, with exception of semi-transparent clouds. However, in the VIS, the complete
cloud contributes to the signal, and the reflections hold the information of the cloud
optical thickness and effective cloud droplet radii [51]. Thus, the VIS provide much more
information about the cloud textures, shapes and micro physics. It is likely that this
information is used to learn information about the life cycle of Cbs. Otherwise, better
results compared to physical methods are hard to explain. Although the prediction of Cbs
with NWP has been significantly improved, nowcasting is still assumed to outperform
NWP in the first 0–3 h. Thus, a lot of scientists aim to develop a seamless transition between
nowcasting and NWP. Currently, mainly physical methods are used to achieve this goal,
but deep learning might be a powerful alternative.
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Abbreviations

The following abbreviations are used in this manuscript:
ABI Advanced baseline imager
AI Artificial intelligence
ANN Artificial neural network
BT Brightness temperature
Cb Cumulonimbus cloud (incl. thunderstorms and lightning)
CE Cross entropy (loss function)
CI Convective initiation
CRS Coordinate reference system
CSI Critical success index
DWD Deutscher Wetterdienst (German Weather Service)
FAR False alarm ratio
FED Flash-extent density
FN False negative
FP False positive
GLD360 Vaisala global lightning detection network
GLM Geostationary lightning mapper
HRIT High rate image transmission
IF Improvement factor
IR Infrared
LR Learning rate
LRRT Learning rate range test
MRMS Multi-radar multi-sensor
MSG Meteosat second generation
NWP Numerical weather prediction
POD Probability of detection
ROI Region of interest
SEVIRI Spinning enhanced visible and infrared imager
SGDW Stochastic gradient descent with momentum using decoupled weight decay
SSP Sub-satellite point
TN True negative
TOA Time-of-arrival
TP True positive
WD Weight decay
WV Water vapor

Appendix A

Appendix A.1. Data Set Splits

Detailed information about the data and their use can be seen in Tables A1 and A2
for 2016/2017 and 2021, respectively. We focus our work on the summer months May to
August in the years of 2016 and 2017. As additional test data set, we use data from August
and September of 2021. We split the data based on weeks, and assign each to a different
data set (shown in column “Data Set”). To uniformly cover the complete time span of the

https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:HRSEVIRI
https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:HRSEVIRI
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2016/17 data with every data set, we assign successive weeks to alternating, repetitive sets
of “train”, “test”, “train”, “validation”, and so on. This culminates in 19 train, 10 test, and 9
validation “weeks” for the 2016/17 period, and 10 weeks of testing data for the 2021 period
(which is solely used for testing purposes). A 12 h window between weeks is discarded to
prevent temporal “data leakage” between sets.

Table A1. Train, test, and validation splits for 2016/2017 data set. Events are shown in millions
(×106) in the area (2.0◦W–21.5◦E, 44.5◦N–57.5◦N).

Year Month Week Events Data Set

2016 May 17 0.03 Train
2016 May 18 0.10 Test
2016 May 19 0.24 Train
2016 May 20 0.13 Validation
2016 May 21 0.70 Train
2016 May/June 22 0.94 Test
2016 June 23 0.80 Train
2016 June 24 0.56 Validation
2016 June 25 1.81 Train
2016 June/July 26 0.58 Test
2016 July 27 0.36 Train
2016 July 28 1.08 Validation
2016 July 29 0.70 Train
2016 July 30 1.18 Test
2016 August 31 0.95 Train
2016 August 32 0.28 Validation
2016 August 33 0.67 Train
2016 August 34 0.50 Test
2016 August 35 0.56 Train

2017 May 17 0.01 Validation
2017 May 18 0.15 Train
2017 May 19 0.26 Test
2017 May 20 0.28 Train
2017 May 21 0.33 Validation
2017 May/June 22 1.10 Train
2017 June 23 0.37 Test
2017 June 24 0.61 Train
2017 June 25 1.88 Validation
2017 June/July 26 1.05 Train
2017 July 27 0.81 Test
2017 July 28 0.77 Train
2017 July 29 1.29 Validation
2017 July 30 1.13 Train
2017 July/August 31 0.89 Test
2017 August 32 1.25 Train
2017 August 33 0.45 Validation
2017 August 34 0.43 Train
2017 August/September 35 0.95 Test
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Table A2. Additional test split for 2021 data set. Events are shown in millions (×106) in the area
(2.0◦W–21.5◦E, 44.5◦N–57.5◦N).

Year Month Week Events Data Set

2021 July 30 0.23 Test
2021 August 31 1.09 Test
2021 August 32 1.06 Test
2021 August 33 0.89 Test
2021 August 34 1.33 Test
2021 August/September 35 0.82 Test
2021 September 36 0.97 Test
2021 September 37 0.56 Test
2021 September 38 0.88 Test
2021 September/October 39 0.29 Test

Appendix A.2. Critical Success Index Calculation

We evaluate the performance of our method and the baseline method by calculating
the critical success index (CSI) [52,53], similar to previous works, e.g., [12,54]. The CSI is
the amount of correct classified events out of all events classified and undetected events. A
natural question that arises is how to combine multiple CSI values of different samples to
form a single performance measure.

We define the (combined) Critical Success Index (CSI) of all samples in a data set Ω as

CSI(Ω) =
∑s∈Ω TP(s)

∑s∈Ω TP(s) + ∑s∈Ω FN(s) + ∑s∈Ω FP(s)
, (A1)

where TP, FN, and FP are the true positives, false negatives, and false positive of a sample,
respectively. This way, we always measure the performance for an entire data set by com-
bining all events from all samples. This differs from classical machine-learning tasks,
e.g., image classification, where a more fine-grained performance measure that combines
each individual measure of each sample is used.

Appendix A.3. Domain-Decomposition

Domain decomposition has become an essential tool in large-scale computation over
the past decades because of its use to solve problems on parallel machines in the context
of physical simulations [55]. In our case, a trade-off arises between the precision of the
representation (or the level of detail) of the phenomenon and the memory and computer
performance required to compute the model. We aim to fully capture the spatial context in
the input patch, using the highest level of detail. To maintain viable memory and compute
requirements, we apply a domain decomposition scheme to split the input in smaller
subdomains. This allows us to split the computational workload and process the smaller
subdomains, without excluding regions.

Figure A1 shows an example of the used domain decomposition. Here, the original
domain (347 px × 654 px; 17.35° × 32.7°; ca. 1929 km × 3636 km) (grayscale image) is split
into six subdomains (256 px× 256 px; 12.8°× 12.8°; ca. 1423 km× 1423 km). The boundary
(overlapping) region is marked in blue, consisting of a padding of 16 px (0.8°; ca. 88 km)
around the non-overlapping subdomain, which is shown in orange. The boundary region
allows a more precise prediction at regions at the edge of the orange subdomain, because the
cause of occurring lightning might lie outside of it. With a boundary width of roughly 88
km and a time discretization of 15 min of the satellite imagery, clouds with a horizontal
speed of up to 100 m s−1 are visible during their transition through the boundary region.
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Figure A1. Example of the applied domain decomposition scheme into six slightly overlapping
subdomains, shown for VIS006 (grayscale), 20160604 12:00 UTC. The non-overlapping regions are
shown in orange, and their boundary (overlapping) regions are shown in blue.

To ensure all subdomains have the same size, the original domain is padded with zeros
to the needed size, which is shown as white ”background“ in Figure A1. Pixels in these
padded regions are excluded from the optimization process and evaluation of our method.

Appendix A.4. Improvement Factor

During our research, we found it very difficult to (directly) compare our work with
similar methods. The reasons for this were the under-specification of the metrics used to
report the results, the lack of access to the used data, and the lack of availability of the
code necessary for evaluation. Thus, we were unable to reproduce the reported results and
evaluate our method in the same way, which seems to be a general problem in machine-
learning research [56,57].

Therefore, we compare our method against a baseline method using a naive forecast
with the “persistence” algorithm and compute the improvement factor (IF) of our method
over the given baseline. The persistence algorithm is a model in which each lightning is
assumed to be lighting in the same location and the same intensity as it was at the last
known time step. Thus, the Cbs remain at their original position throughout the prediction
time; hence, no forecast is applied and the Cbs are assumed to be static, which can be seen
in Figure 5c. This deterministic method requires no training, is fast to implement with no
significant additional compute, and is often already available in the literature.

The improvement factor (IF) of a method α over method β is defined as

IF(α, β) =
CSIα

CSIβ
, (A2)

in particular, the IF over the persistence model is given as IF(α, PERSISTENCE).
By computing the IF over the persistence model, we are able to compare our work

with others, where otherwise no direct comparison would be possible, e.g., due to a
different implementation of the CSI, or a deviation in ROI. In this way, we can improve the
comparison between studies.
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Table A3 shows the CSI of the persistence model used for the calculation of the
improvement factor. Figure 5d shows the skill for a severe weather event (4 June 2016 [49]).

Table A3. CSI of the persistence model for various data sets, SR 30.61 km, and varying lead time (LT).

Data Split\LT 0 min 30 min 60 min 90 min 120 min 180 min

Validation 16/17 100.00 81.38 56.11 38.08 27.73 17.10
Testing 16/17 100.00 80.89 58.42 40.37 28.64 16.11

Testing 21 August 100.00 78.66 48.79 31.01 21.36 12.25
Testing 21 September 100.00 80.08 57.03 39.50 28.42 16.79

Appendix A.5. Learning Rate Schedule

Figure A2 shows the learning rate (LR) schedule throughout the training process. The
schedule is set using a 1-cycle LR scheduler [47] with two phases using cosine decay. The
training starts with an LR of 0.05 ( 1

10 of the base LR), which then increases to the maximum
LR of 0.5 (base LR) at a training progress of about 20% (beginning of epoch 3). Over the
course of the remaining 80% of the training progress, the LR is decayed to the minimum
LR of 0.0005 ( 1

1000 of the base LR). This schedule is calculated at the start of the training
process and is not altered during training. The maximum LR was experimentally chosen
by running the learning rate range test (LRRT) [58], which is a method for discovering the
largest possible learning rates one can use to train a model “successfully”. While linearly
increasing the learning rate, we examined the divergence of the loss, and additionally, the
changes in the mean activation pattern temperature of the network [59].
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Figure A2. Detailed learning rate schedule throughout the training process.
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