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Abstract: Soil moisture is a crucial component of land–atmosphere interaction systems. It has a
decisive effect on evapotranspiration and photosynthesis, which then notably impacts the land
surface water cycle, energy transfer, and material exchange. Thus, soil moisture is usually treated as
an indispensable parameter in studies that focus on drought monitoring, climate change, hydrology,
and ecology. After consistent efforts for approximately half a century, great advances in soil moisture
retrieval from in situ measurements, remote sensing, and reanalysis approaches have been achieved.
The quality of soil moisture estimates, including spatial coverage, temporal span, spatial resolution,
time resolution, time latency, and data precision, has been remarkably and steadily improved. This
review outlines the recently developed techniques and algorithms used to estimate and improve
the quality of soil moisture estimates. Moreover, the characteristics of each estimation approach
and the main application fields of soil moisture are summarized. The future prospects of soil
moisture estimation trends are highlighted to address research directions in the context of increasingly
comprehensive application requirements.

Keywords: soil moisture; estimation method advances; applications; prospects

1. Introduction

Soil moisture (SM), the moisture content in the soil, is a crucial component in the hy-
drological cycle; it links atmospheric precipitation and underground water and is also an
important parameter of energy exchange between the land surface and the atmosphere [1–4].
Consequently, SM is recognized as an essential element in studies aimed at analyzing and
understanding Earth system processes, such as climate change and ecological evolution.
Specifically, the available water content, which is essential for vegetation growth, is one of
the most important components of soil and has crucial guiding significance for agricultural
production. Currently, both ground and spaceborne sensors are used to derive the original
SM information [2,5,6]. Numerous technologies, such as statistical models, data fusion, ma-
chine learning, and assimilation approaches, are widely used to improve SM quality [7–10].
Additionally, SM datasets with high spatial-temporal resolution are valuable for boosting
agricultural production in terms of drought and flood monitoring, crop growth analysis,
and yield estimation.

Significant efforts have been devoted to SM acquisition and estimation techniques
during the past decades, and numerous global-scale SM estimates have been generated
and are available for scientific studies [11–13]. To fulfill the increasingly comprehensive
requirements for SM estimates, their quality, including spatial coverage, temporal span,
spatial resolution, temporal resolution, time latency, and data precision, is notably improved
through advanced methods. However, there is still a long way to go so as to further
enhance the spatiotemporal integrity, accuracy, and stability of estimated SM. Therefore, it
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is necessary to rigorously summarize these data acquisition methods, progress in advanced
techniques, and point out future challenges for SM retrieval.

The remainder of this paper is organized as follows. Section 1 introduces the meaning
of improving SM products and the two main original SM data acquisition methods. Sec-
tion 2 provides a comprehensive and systematic review of the methods for improving the
quality of both ground- and satellite-observed SM products. The principles, advantages,
and limitations of these methods are presented. Section 3 presents the application fields of
SM products. Section 4 presents future prospects for advancing global SM products, and
Section 5 concludes the article.

Currently, there are two main data acquisition methods:

(1) Point-scale original data acquisition: in situ measurements

Considering the scientific significance and application value of SM, the Soviet Union
and Mongolia have started to record ground SM using monitoring sensors to retrieve
national soil water content through networks since the 1950s [14–16]. In situ measurements
can conveniently monitor SM at precise sites, depths, and hourly or sub-hourly frequencies.
Both the sensors and networks are easily accessible and affordable. However, as various
institutes have different research objectives, each SM network has its own station density,
observation frequency, monitoring depth, sensor type, spatial coverage, and temporal
period. SM can be expressed as a gravimetric unit (g/cm3), volumetric unit (m3/m3), or
a function of the field capacity according to usage habits [17]. Every SM network has its
own method of sharing data, usually through a website in its own language. Therefore, it
is difficult for researchers to derive SM records from different observation networks.

Facing these difficult problems, the International Soil Moisture Network (ISMN, https:
//ismn.geo.tuwien.ac.at/en/, accessed on 31 July 2022) is devoted to performing as a
centralized data hosting facility for global in situ SM measurements [5,18,19]. This platform
is initiated to collect global SM from operational networks and validation campaigns,
standardize the techniques and protocols and make them available to users. Currently
(June 2022), 73 networks and more than 2800 stations are located in Europe, North America,
South America, Asia, Africa, Australia, and Oceania, which are collected by the ISMN
and available to the public. In addition to SM, ISMN also integrates and provides SM-
related meteorological variables, such as soil temperature and precipitation, which serve as
critical supplementary references for the comprehensive analysis of soil water evolution
characteristics. Currently, the ISMN is an increasingly popular data source for studies
focused on SM validation worldwide [14,20–26]. With continuous network expansion and
data updates, the ISMN has become an energetic and well-acknowledged global-scale SM
ground observation database. Additionally, the National Soil Moisture Network has been
established in the contiguous United States. There are 24 networks, and the SM data are
retrieved in a timely manner with a one-day latency (http://nationalsoilmoisture.com/,
accessed on 31 July 2022).

However, despite the increasingly standardized and abundant in situ measurements,
it is still difficult for point-scale data to represent large-area SM conditions. Limited time
and space coverage greatly restrict the application of in situ measurements in large-scale,
long-term scientific studies and explorations. As a result, in situ measurements usually
serve as a crucial reference for the evaluation of multi-scale SM estimates.

(2) Large-scale data acquisition: spaceborne remote-sensing technology

There is an urgent demand for access to near-real-time soil moisture data on a global
scale. Since the 1970s, spaceborne remote sensing technology has gradually become a
promising approach for obtaining global-scale continuous time-series surface SM data. The
abundance of satellite-retrieved soil moisture data provides an unprecedented opportunity
to conduct related analyses and applications.

A number of remotely sensed data, including optical, thermal infrared, and microwave
bands, were employed to retrieve SM estimates [27]. In terms of optical and thermal infrared
remote sensing data, soil surface spectral reflectance characteristics, soil surface emissivity,

https://ismn.geo.tuwien.ac.at/en/
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http://nationalsoilmoisture.com/
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and surface temperature are mainly used to estimate SM [28]. However, retrieval models
are mostly established on the basis of empirical relationships between SM and land surface
condition indexes, that is, vegetation condition index [29], normalized difference vegetation
index (NDVI) [30], temperature vegetation drought index (TVDI) [31], and soil wetness
index [32], which can hardly satisfy large-scale and multi-climate zone applications. In
addition, both optical and thermal remote sensing are vulnerable and sensitive to cloudy
and rainy weather, dense vegetation coverage, and aerosol optical depth. Optical remote
sensing can only measure reflection and emission from the land surface at a depth of 1 mm.
For hydrological and agricultural analyses, SM data could be far more meaningful at a
depth of several centimeters than at a mere 1 mm.

In comparison, microwave signals are impervious to rainy and cloudy weather, and
their penetration depth can reach 0–5 cm, showing prominent advantages in SM retrieval.
Microwave remote sensing technology can be divided into active and passive microwaves
based on the working modes of different sensors. Active microwave sensors transmit sig-
nals to the detection targets and receive backscattered signals after the interaction between
the signals and targets, whereas passive microwave sensors receive signals reflected and
emitted from the underlying surface [33–35]. Currently, both active and passive microwave
signals are employed to derive land surface soil water content. As shown in Table 1, a
large number of spaceborne microwave SM products have been retrieved and published
in the past half-century. Through their application in various hydrology-related scientific
explorations, they efficiently boosted the understanding of spatial-temporal evolution
characteristics of SM and the mechanism by which SM influences climate change across the
globe. In addition to the listed global SM products, there are also studies and programs
focused on SM deriving in a certain vegetation cover or climate zone to acquire regional
SM with high accuracy [9,36,37].
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Table 1. A brief summary of single spaceborne microwave-retrieved SM products and their basic properties.

Sensor
Working

Mode
Satellite Program Time Range

Ascending/
Descending
Time Node

Temporal
Resolution

Spatial
Resolution Sensor Sensor

Band
Penetration

Depth
Retrieving
Algorithm Publisher

Detailed
Informa-

tion

Active

European
Remote-Sensing

Satellite-1 (ERS-1)

1991.7.17–
2000.3.10

22:15 (A), 10:30
(D) Daily 50 × 50 km2

Synthetic
Aperture

Radar (SAR)

C band
(5.3 GHz) <2 cm

The Integral
Equation Model,

the Semiempirical
Change Detection

Approach

The European
Space Agency

(ESA)
[38,39]

European
Remote-Sensing

Satellite-2 (ERS-2)

1995.4.21–
2011.9.5

22:30 (A), 10:30
(D) Daily 25 × 25 km2 SAR C band

(5.3 GHz) <2 cm

The Backscattering
Model,

the Semiempirical
Change Detection

Approach

ESA [33,40]

Environmental
Satellite

(ENVISAT)

2002.3.1–
2012.4.8

22:00 (A), 10:00
(D) 35 days 1 × 1 km2 SAR C band

(5.3 GHz) <2 cm
The Semiempirical
Change Detection

Approach
ESA [41]

Advanced
Scatterometer on

MetOp-A (ASCAT
MetOp-A)

2006.10.19
ongoing

21:30 (A), 09:30
(D) Daily 25 × 25 km2,

50 × 50 km2 SAR C band
(5.3 GHz) <2 cm

The Semiempirical
Change Detection

Approach
ESA [42,43]

Advanced
Scatterometer on
MetOp-B (ASCAT

MetOp-B)

2012.9.17
ongoing

21:30 (A), 09:30
(D) Daily 25 × 25 km2,

50 × 50 km2 SAR C band
(5.3 GHz) <2 cm

The Semiempirical
Change Detection

Approach
ESA [20,44]

Cyclone Global
Navigation

Satellite System
(CYGNSS)

2017.3.18–
2020.8.16 – Every 6

h/daily 0.3◦ × 0.37◦ Bistatic Radar L band
(1.4 GHz) 0–5 cm

The linear
relationship between
SMAP soil moisture
and CYGNSS surface

reflectivity
observations

The National
Aeronautics

and Space Ad-
ministration

(NASA)

[45]

Terra-Sar 2007.6
ongoing

18:00 (A), 06:00
(D) Daily 2 × 2 m2 SAR X band

(9.5 GHz) <2 cm

The water-cloud
model and

self-organizing
neural networks

ESA [46–48]

Sentinel-1 2014.4.3
ongoing

18:00 (A), 06:00
(D) Daily 1 × 1 km2 SAR C band

(5.404 GHz) <2 cm The change detection
algorithm ESA [49,50]
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Table 1. Cont.

Sensor
Working

Mode
Satellite Program Time Range

Ascending/
Descending
Time Node

Temporal
Resolution

Spatial
Resolution Sensor Sensor

Band
Penetration

Depth
Retrieving
Algorithm Publisher

Detailed
Informa-

tion

Passive

Scanning
Multichannel
Microwave
Radiometer

(SMMR)

1979.10–
1987.8

12:00 (A), 24:00
(D) Daily 150 × 150 km2 Radiometer

C band
(6.6 GHz),

X band
(10.7 GHz),

K band
(18 GHz)

<2 cm The Land Parameter
Retrieval Model

The National
Snow and Ice
Data Center

(NSIDC)

[51,52]

Special Sensor
Microwave Imager

(SSM/I)

1987
ongoing

F08 18:12 (A),
06:12 (D)

F11 17:10 (A),
05:10 (D)

F13 17:35 (A),
05:35 (D)

F14 20:21 (A),
08:21 (D)

F15 21:31 (A),
09:31 (D)

F16 20:13 (A),
08:13 (D)

Daily 69 × 43 km2 Radiometer

K band
(19.4 GHz),

Ka band
(37.0 GHz)

<1.5 cm The Land Parameter
Retrieval Model NSIDC [51,53]

Tropical Rainfall
Measuring Mission
Microwave Imager

(TRMM TMI)

1997.12.7–
2015.4.8

changes 24 h of
local time in

46-day
procession

Daily 59 × 36 km2 Radiometer

X band
(10.65 GHz),

Ka band
(37.0 GHz)

<2 cm The Land Parameter
Retrieval Model

the Goddard
Earth Sciences

Data and
Information

Services Center

[51,54]

Advanced
Microwave
Scanning

Radiometer
for the Earth

observing system
(AMSR-E)

2002.6.1–
2011.10.4

01:30 (A), 13:30
(D) Daily 76 × 44 km2 Radiometer

C band
(6.9 GHz),

X band
(10.7 GHz)

<2 cm

The Land Parameter
Retrieval Model, the
Japanese Aerospace
eXploration Agency

algorithm

Earth
Observation

Research Center
of Japan

Aerospace
Exploration

Agency

[55,56]

Advanced
Microwave
Scanning

Radiometer 2
(AMSR-2)

2012.8.10
ongoing

01:30 (A), 13:30
(D) Daily 35 × 62 km2 Radiometer

C band
(6.9 GHz),

X band
(10.7 GHz)

<2 cm

The Land Parameter
Retrieval Model, the
Japanese Aerospace
eXploration Agency

algorithm

The Earth
Observation

Research Center
of Japan

Aerospace
Exploration

Agency

[57,58]
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Table 1. Cont.

Sensor
Working

Mode
Satellite Program Time Range

Ascending/
Descending
Time Node

Temporal
Resolution

Spatial
Resolution Sensor Sensor

Band
Penetration

Depth
Retrieving
Algorithm Publisher

Detailed
Informa-

tion

Windsat/Coriolos 2003.2.13
ongoing

18:10 (A), 06:10
(D) Daily 25 × 35 km2 Radiometer C band

(6.9 GHz) <2 cm The Land Parameter
Retrieval Model

the Goddard
Earth Sciences

Data and
Information

Services
Center

[59,60]

Soil Moisture and
Ocean Salinity

(SMOS)

2009.11.2
ongoing

06:00 (A), 18:00
(D) Daily 25 × 25 km2 Radiometer L band

(1.4 GHz) <5 cm

The L-band
Microwave Emission

of the Biosphere
model

ESA [61]

FengYun-3B
(FY-3B)

2011.7.12–
2019.8.19

13:40 (A), 01:40
(D) Daily 25 × 25 km2

the Microwave
Radiation

Imager

X band
(10.65 GHz) <2 cm The Land Parameter

Retrieval Model

China Meteo-
rological

Administra-
tion

(CMA)

[62,63]

FengYun-3C
(FY-3C)

2014.5.29
ongoing

22:00 (A), 10:00
(D) Daily 25 × 25 km2

the Microwave
Radiation

Imager

X band
(10.65 GHz) <2 cm The Land Parameter

Retrieval Model CMA [64,65]

Passive (the
active

microwave
scatterometer

failed
irreparably in

July 2015.)

Soil Moisture
Active Passive

(SMAP)

2015.1.31
ongoing

18:00 (A), 06:00
(D) Daily 36 × 36 km2, Radiometer L band

(1.4 GHz) ~5 cm

The H-pol Single
Channel Algorithm,

the V-pol Single
Channel Algorithm,
the Dual Channel

Algorithm,
Microwave

Polarization Ratio
Algorithm, and the

Extended Dual
Channel Algorithm

NASA [66,67]
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Specifically, active microwave-derived data have high spatial and low temporal res-
olution, although they are susceptible to surface roughness and vegetation cover. Com-
paratively, passive microwave-derived data often have high temporal resolution and low
spatial resolution and can behave insensitively to surface roughness and vegetation cover.
Additionally, both active and passive microwaves suffer from radio-frequency interference
(RFI) [68,69]. Direct broadcast and communication satellites cause considerable RFI above
the microwave band, which can be a critical reason for outliers and gap regions in satellite-
retrieved SM products [70,71]. Basically, all single spaceborne microwave SM retrievals
have large gap regions induced by RFI, dense vegetation coverage, veil of ice, and the
relative motion between satellite revolution and Earth rotation [62], seriously impeding
their spatiotemporal integrity.

Despite the enormous number of multi-source SM products mentioned above, sci-
entific explorations and experiments pursuing high quality are ongoing. Attempts have
mainly focused on improving the completeness, spatial representativeness, spatial reso-
lution, and accuracy of currently accessible SM retrievals. Therefore, this review aims to
provide an auxiliary reference for readers to understand the history and emerging trends
of global SM retrieval methods.

2. Models to Improve the Quality of SM Products
2.1. Statistical Model

A statistical model can be established based on the significant statistical or empirical
relationship between SM and land surface elements (such as surface temperature, vegeta-
tion index, evapotranspiration (ET), and albedo). These convenient and simple statistical
models have been widely employed since inception and are mainly used for regional SM
gap-filling and downscaling in terms of different research emphases [36,72–75]. Because of
the variable coupling relationship along with various underlying surface hydrothermal
features, the statistical model always has inter-regional applicability limitations. Further-
more, it is difficult to ensure the robustness and accuracy of statistical model-derived
large-scale results.

2.1.1. Triangular (Tri)-Based Method

The Tri-based method can provide nonlinear solutions for SM estimation. Among
the various statistical models, the Tri-based method is a classic method that estimates
SM based on its close coupling relationship with land surface temperature (LST) and
vegetation conditions [76–78]. Sandholt et al. [79] proposed a triangular feature space
constructed using the LST and NDVI. The wet edge is composed of the lowest LST under
different vegetation conditions, which indicates the maximum humidity. The dry edge,
which indicates the minimum surface ET, is formed by the scatter of the highest LST under
different NDVI values. As shown in Figure 1, if vegetation cover in a certain region ranges
from bare soil to dense coverage and SM ranges from extreme drought to extreme humidity,
the NDVI-LST scatter diagram is triangular in shape. A drought index, referred to as the
TVDI, was defined and tightly linked to SM [80]. Then, a method was suggested to simulate
SM using the combination of LST and NDVI based on the triangular feature space of TVDI.
The Tri method equations are as follows.

Soil Moisture = aij

4

∑
i=0

LST∗i
4

∑
j=0

NDVI∗j (1)

where aij is the correlation coefficient of every term in the polynomial, which is calculated
using multiple regression. LST∗ is calculated as follows:

LST∗ =
LST − LSTmin

LSTmax(NDVI)− LSTmin
(2)
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where LSTmax(NDVI), LSTmin are the maximum and minimum values of the LST dataset
calculated from NDVI, respectively. NDVI∗ is calculated as follows:

NDVI∗ =
NDVI − NDVImin

NDVImax − NDVImin
(3)

where NDVImax, NDVImin are the maximum and minimum values, respectively, of the
NDVI dataset.

Figure 1. Triangular feature space of TVDI (figure reprinted from [72]).

Zhao et al. [36] systematically tested the performances of different vegetation indexes
in the Tri model through a case study at the northeastern part of the Tibetan Plateau.
The results demonstrated the advantage of NDVI in constructing the Tri model. The SM
estimated by the NDVI-based model showed higher accuracy than those estimated by
models constructed from the enhanced vegetation index (EVI) and soil-adjusted vegetation
index (SAVI).

Many studies have attempted to estimate SM using the Tri method. The LST and NDVI
datasets were acquired from high-resolution, remotely sensed products, and the established
model could be effectively employed to improve the coarse-resolution SM [72,81–83].
Additionally, the Tri model neither requires any ancillary atmospheric data nor is it sensitive
to atmospheric parameters. In general, this method is appropriate for flat regions with
moderate vegetation coverage because NDVI is easily saturated in densely vegetated areas
such as forests. This solution tends to exhibit better performance in regions with a single
climate type and minimal artificial interference. Additionally, sufficient pixels are necessary
to construct the “universal” triangular feature space. Sufficient pixels are also crucial for
the accurate identification of wet and dry edges.

Apart from the classic vegetation and temperature combination, there are new ap-
proaches to parameterizing the Tri model. Shafian et al. [84] used thermal data and ground
cover from Landsat imagery to establish the feature space to retrieve a perpendicular soil
moisture index, which reduced the expense and complexity of the SM estimation. Sun [85]
proposed a two-stage trapezoid to construct a feature space. This approach was established
based on the theory that the vegetated surface temperature should vary after the bare soil
surface temperature, as vegetation can absorb water from a deep soil layer to maintain
transpiration. In addition, this two-stage method explicitly expresses the evolution of the
feature space from a triangular to trapezoidal form.

2.1.2. Disaggregation Based on Physical and Theoretical Scale Change (DISPATCH) Algorithm

DISPATCH is another well-known and widely used algorithm capable of improving
the spatial resolution of surface SM [86–90]. This approach was developed based on the
tight interaction between surface SM and LST during the ET process. The DISPATCH
method equation is a first-order Taylor series expansion and is expressed as follows [91]:

SMD = SMO + (δSEE /δSM )−1
O (SEED − SEEO) (4)
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where SMD is the downscaled high-pixel resolution SM; SMO is the original low-spatial
resolution SM; SEED and SEEO are the high- and low-resolution soil evaporative efficiency
(SEE), respectively. (δSEE/δSM)−1

O is the inverse of the partial derivative of low-resolution
SEE(SM). SEE is calculated as

SEE = STmax − ST/STmax − STmin (5)

where ST is the surface soil temperature. STmax and STmin correspond to the SM under
extremely dry (SEE = 0) and extremely humid (SEE = 1) conditions, respectively. All ST
were derived from the linear decomposition of LST into soil and vegetation using the
following equation:

ST = LST − PvegTveg/1 − Pveg (6)

where Pveg is the vegetation coverage percent, and Tveg is the vegetation temperature.
Merlin et al. [92] first proposed this algorithm and successively disaggregated the

SMOS from 40 to 1 km with favorable accuracy. Then, they conducted a case study using
DISPATCH to downscale SMOS SM in southeastern Australia [93]. This study found
that the quality of the disaggregated product was good in summer and poor in winter. In
addition, the coupling level in semi-arid areas was evidently stronger than that in temperate
zones, and both vegetation coverage and vegetation water stress could influence ST retrieval.
Hence, it is suggested that DISPATCH could perform better in low-vegetated semi-arid
areas than in densely vegetated temperate regions. To enhance the disaggregation accuracy,
Merlin et al. [94] designed a yearly SEE self-calibration model that could effectively make
the DISPATCH algorithm more robust. This study proved the competence of DISPATCH in
multi-scale SM downscaling through an evaluation study at 3 km and 100 m resolution in
Spain. To extend the applicability of the DISPATCH approach, Ojha et al. [91] used TVDI
instead of SEE in their model to include more densely vegetated areas. The results showed
that the adoption of TVDI obviously increased the coverage percentage of the case study
region, and the downscaled SM from the EVI-derived model displayed a higher correlation
against in situ measurements than the one from the NDVI-derived model over vegetated
areas. Apart from disaggregation, DISPATCH can also be utilized for coarse-resolution SM
product evaluation [95].

2.2. Data Fusion

The data fusion method integrates multi-source remotely sensed data to produce SM
estimations with higher accuracy, completeness, and reliability than the single satellite
information source-retrieved ones. Through the fusion of multi-band, sensor working
mode, and transit time remote sensing information, the quality of SM, including data
accuracy, spatial coverage rate, temporal scope, and day-scale representativeness, can be
efficiently improved. The Essential Climate Variable Soil Moisture (ECV SM), Soil Moisture
Operational Product System (SMOPS), and Soil Moisture Active Passive (SMAP) are three
well-known multiple microwave information-fused SM products. Because of their high
performance in depicting soil water content conditions, they have received considerable
attention since their inception.

(1) ECV SM

The ESA launched the ECV program, also known as the Climate Change Initiative,
to monitor global climate evolution tendencies in 2010, and SM was simultaneously rec-
ognized as an ECV at the same time. The ECV SM, with global coverage, 0.25◦ pixel size,
and daytime scale temporal resolution, was derived from the fusion of numerous satellite-
based microwave products [96]. There are 13 versions available to the public to date, each
updated with new sensors and an extended time series (https://esa-soilmoisture-cci.org/,
accessed on 31 July 2022). Currently, the latest one is v07.1, which spans over 40 years from
1 November 1978 to 31 December 2021, combining information from 4 active and 12 passive
microwave sensors. The ECV SM provides three SM estimations, which are derived from

https://esa-soilmoisture-cci.org/
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active sensors (ERS 1, ERS 2, Advanced Scatterometer on MetOp-A (ASCAT MetOp-A),
and Advanced Scatterometer on MetOp-B (ASCAT MetOp-B)), passive sensors (Scanning
Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I),
TRMM TMI, Windsat/Coriolos, AMSR-E, AMSR-2, SMOS, FY-3B, FY-3C, FY-3D, SMAP,
and GPM GMI), and their combinations.

The merging scheme of the ECV SM is described as follows: First, all the sensor
retrievals are unified to a 0.25◦ grid and daily time stamps (00:00 UTC) through a hamming-
window method and a nearest neighbor search. Then, the active estimation is retrieved
using the TU Wien Water Retrieval Package, which is a change detection method to de-
rive SM, as well as the official method to retrieve ASCAT L2 SM products [97]. Passive
estimation is generated through the land parameter retrieval model, which is a forward
model based on the radiative transfer model and has its own advantage of good frequency
compatibility and a vegetation optical depth analytical solution [98]. The Global Land Data
Assimilation System (GLDAS) Noah 2.1 was used for the active-passive combined estima-
tion by offering a consistent climatology. The combined SM was finally derived through
GLDAS Noah-based scaling, error characterization, and merging of each microwave sensor
product. For more details about the merging algorithms of ECV SM and their evolutionary
history, readers are referred to [99].

A number of studies have comprehensively and systematically evaluated the per-
formance of ECV SM and almost consistently concluded that: (1) ECV SM expresses
a good fitting degree to both ground observations and reanalysis products [100–102].
(2) The accuracy and robustness of ECV SM are steadily enhanced when the version is up-
dated [99,103]. (3) Combined products are superior to the corresponding active and passive
products [103,104]. (4) The spatiotemporal integrity and accuracy of the combined ECV SM
display similar or better performances than each single microwave sensor retrieval [22,24].

(2) SMOPS

Although the ECV SM reveals a favorable capability in depicting land surface soil
humidity conditions, the prevalent gap regions still hinder its spatial coverage integrity.
The NOAA initiated the SMOPS program in 2012, which is dedicated to creating a global
seamless SM product from accessible microwave satellite observations [105]. The first
version of SMOPS-blended SMOS, ASCAT MetOp-A, and Windsat/Coriolos generated a
6 h and daily SM simultaneously. In 2016, the upgraded version 2 product with an extended
time series introduced ASCAT MetOp-B and AMSR-2 into the system. Windsat/Coriolos
were excluded. Both SMOPS V1.0 and V2.0 were generated using the single-channel
retrieval algorithm, which could convert the brightness temperature of a single channel
to emissivity [106]. The SM estimation can then be derived through the Fresnel equation
by calculating the dielectric constant and dielectric mixing model. SMOPS V3.0, which
contained 6 h and daily (00:00 UTC) SM products with a 0.25◦ grid, was developed in 2016,
and SMAP was added to the blending system [107]. Moreover, a near real-time level-1
brightness temperature other than the officially released products was employed to satisfy
the latency requirements.

SMOPS provides an almost seamless SM across the globe with high spatial coverage,
which is a notable advantage compared to most satellite-based SM products. Small gap
areas are mainly distributed in frozen (i.e., ice, snow) or dense vegetation-covered regions.
Numerous studies have objectively assessed the quality of SMOPS and indicated that:
(1) compared to the individual satellite-retrieved SM products, SMOPS exhibits much
higher data availability; (2) the accuracy of SMOPS is continuously improved along with
updated versions; (3) ECV shows higher accuracy, whereas SMOPS has superior spatial
coverage [102,105,108].

(3) SMAP

Considering the merits of the L-band and fusion of active and passive microwave
signals, NASA launched the SMAP program in 2010, utilizing L-band radar and radiometer
instruments onboard the same spacecraft to detect surface SM conditions [66,67]. One of
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the main tasks of SMAP is to acquire an active and passive blended product to advance
SM mapping by combining its strengths. Radar signals can achieve high pixel resolution;
however, they are vulnerable to surface roughness and vegetation, which could significantly
influence signal accuracy. In contrast, radiometer signals usually have coarse resolution, but
they can be sensitive to SM and insensitive to surface roughness and vegetation. Therefore,
the combined SMAP SM was expected to be capable of accurately expressing the surface
soil water level with a relatively intermediate resolution. The brightness temperature
disaggregation and time-series methods were used in the combination process. First,
a linear relationship was established between variations in brightness temperature and
radar backscatter using time-series approaches. This relationship was then employed to
disaggregate brightness temperature. Finally, SM can be derived from the disaggregated
brightness temperature and the corresponding retrieval algorithms. The 9 km combined
SM has been validated by many scholars, and they found that it performed well in terms
of fitting degree in the forested region [109]. However, on 7 July 2015, the radar failed
irreparably after 3 months of operation. Although the time series of the combined SMAP
SM product was only 86 days, it acted as a valuable precedent for SM merging using
SMAP retrievals.

Many attempts have been made to renew the mission of generating a high-resolution
SMAP SM product, and the signal from C-band SAR onboard Sentinel-1A/1B has been
found to be an adequate substitute for the irreparable SMAP radar signal. By merging with
Sentinel-1A/1B, a high-spatial-resolution SM product at 3 and 1 km has been generated.
Meanwhile, the swath width of Sentinel-1A/1B is approximately 250 km, whereas that of
SMAP can reach 1000 km. Because of this large difference, the overlap spatial coverage of
SMAP and Sentinel is remarkably reduced, which then reduces the revisit interval from the
original 3 days to 12 days. During the fusion process, the resampled 1 km Sentinel-1A/1B
backscatter and the 9 km SMAP passive enhanced brightness temperature were input to-
gether as original data. The 1 km brightness temperature was obtained using the snapshot
retrieval approach [110] on the overlapped area. Then, the high-resolution SM can be
retrieved using the tau-omega model [111], together with the brightness temperature and
ancillary datasets. For more details about the merging approaches of the SMAP/Sentinel
SM product, readers can refer to [112]. Both 1 and 3 km resolution SMAP/Sentinel SM prod-
ucts have been validated against hundreds of in situ measurements, including dense and
sparse networks across the globe. These encouraging results suggest that SMAP/Sentinel
SM estimations could considerably match ground observations, demonstrating their capa-
bility to express soil water content with good accuracy and high resolution [112,113].

2.3. Assimilation and Reanalysis

The assimilation approach could effectively overcome the spatial scope and represen-
tativeness limitation of ground observations, overcome the depth limitation of spaceborne
microwave-derived data, and achieve complete multi-depth coverage SM with definite
physical meaning. It is efficient for the integration and improvement of SM from multiple
independent sources [114]. Hence, spatial-temporal continuous SM profile information
can be efficiently derived by assimilation systems [115,116]. The assimilation algorithm
is an important part of the entire process that connects the observed and predicted data
to optimize the estimation values. Commonly used SM assimilation methods include
step-by-step correction [117], optimal interpolation [118], variational constraints [119],
Kalman filters [120], and particle filters [121,122]. Recent studies note that deriving al-
gorithms of filtering (i.e., ensemble Kalman filter) [123,124] and variational constraints
(i.e., four-dimensional variational) [119,125] express favorable performance in estimating
model parameters. As the central part of the assimilation process, the land surface model
(LSM) simulates the physical processes occurring between the ground and atmosphere
in the exchange of matter and energy. Many LSMs, such as Noah [126], the Community
Land Model (CLM) [127], the Simple Biosphere Model [128], and the Boreal Ecosystem
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Productivity Simulator [129], are frequently employed in the assimilation of land surface
parameters (including SM).

Table 2 shows that many LSM-based SM estimations are released for various hydro-
meteorological applications. It is worth noticing that the spatial extent of many LSM-based
retrievals merely covers the specific nation or region the development organizations belong
to, which remarkably restricts their scopes of application. In comparison, GLDAS, being
one of the few global-scale assimilation systems, is well acknowledged as an eminent land
surface modeling framework to produce optimal fields of land surface states and fluxes in
near-real time across the world [130–133].

The SM profile information can also be retrieved from reanalysis approaches. The
reanalysis process takes all available observations (i.e., ground- and spaceborne-based
datasets) to calibrate the results from model running, whereas the assimilation process
refers specifically to adding observation data for correction when the physical model is
running. Many reanalysis retrievals have been released to simulate the global SM profile
information (Table 2). ERA5 has attracted extensive attention since its advent as a fifth-
generation reanalysis product of ECMWF. ERA5 is capable of generating higher spatial
resolution (9 km) and temporal resolution (1 h for every atmospheric variable) retrievals
than other reanalysis systems. In addition, it uses more satellite-based observations that are
available to optimize the output results. Previous studies have revealed that the ERA5 SM
exhibits higher skills than the other reanalysis products and a significant improvement over
its predecessor [134], which may imply a promising application prospect for the ERA5 SM.

Table 2. A brief summary of assimilated and reanalyzed SM products and their basic properties.

Type Program LSM Assimilation
Algorithm

Spatial
Extent

Spatial
Resolution

Time
Range

Temporal
Resolu-

tion
Publisher

Detailed
Infor-

mation

Assimila-
tion

Global Land Data
Assimilation

System (GLDAS)

Mosaic,
CLM, Noah

Ensemble Kalman
filter, extended
Kalman filter,

optimal
interpolation

global
0.25◦ ×

0.25◦ , 1◦ ×
1◦

1948.1.1
ongoing

3 h, 1 day,
1 month NASA GSFC [130]

North American
Land Data

Assimilation
System (NLDAS)

Mosaic,
CLM, Noah

Ensemble Kalman
filter, extended
Kalman filter,

optimal
interpolation

67◦W–
125◦W,
25◦N–
53◦N

0.125◦ ×
0.125◦

1979.1.1
ongoing

1 h, 1
month NASA GSFC [135,

136]

European Land
Data Assimilation
System (ELDAS)

Lokal
Modell,

ISBA and
TERRA,
TESSEL

Four-dimensional
variational, Kalman

filter, optimal
interpolation

15◦W–
38◦E,
35◦N–
72◦N

0.2◦ × 0.2◦ ,
1◦ × 1◦

1999.10–
2000.12 3 h, 1 day

The
European
Centre for
Medium-

Range
Weather
Forecasts
(ECMWF)

[137,
138]

CMA Land Data
Assimilation

System (CLDAS)

The
Common

Land Model,
CLM, Noah

Three-dimensional
variational, optimal

interpolation

60◦E–
160◦E,

0–65◦N

0.0625◦ ×
0.0625◦

2012.1.1
ongoing 3 h, 1 day CMA [139,

140]

Satellite
Application Facility

on Support to
Operational

Hydrology and
Water Management

(H SAF)

The
Hydrology

Tiled
ECMWF

Scheme for
Surface

Exchanges
over Land

Four-dimensional
variational Global

1 km × 1 km;
12.5 km ×
12.5 km;

25 km × 25
km;

2005
ongoing 1 day

European
Organiza-

tion for the
Exploitation
of Meteoro-

logical
Satellites
(EUMET-

SAT)

[26,141]

The National
Centers for

Environmental
Prediction/the

National Center for
Atmospheric

Research
(NCEP/NCAR)

The
T62/28-level
NCEP global
operational

spectral
model

Three-dimensional
variational,

four-dimensional
variational, optimal

interpolation, SSI

Global 2.5◦ × 2.5◦ 1948.1.1
ongoing

6 h, 1 day,
1 month

The NOAA
Earth

System
Research

Laboratory
Physical
Sciences

Laboratory

[142,
143]



Remote Sens. 2022, 14, 3741 13 of 32

Table 2. Cont.

Type Program LSM Assimilation
Algorithm

Spatial
Extent

Spatial
Resolution

Time
Range

Temporal
Resolu-

tion
Publisher

Detailed
Infor-

mation

Reanalysis

NCEP Climate
Forecast System

Reanalysis (CFSR)

NCEP
Coupled
Climate
Forecast
System

Dynamical
Model, the
Seasonal
Forecast
Model

Three-dimensional
variational, GSI Global 0.5◦ × 0.5◦ ,

2.5◦ × 2.5◦
1979.1.1–
2011.3.31

1 h, 6 h, 1
month

The NOAA
National

Centers for
Environmen-

tal
Information

[144]

ECMWF Reanalysis
v5 (ERA5)

Land-
surface
model

(HTESSEL),
ocean wave

model

Four-dimensional
variational Global 9 × 9 km2,

30 × 30 km2
1950.1

ongoing
1 h, 1 day,
1 month ECMWF [145,

146]

Modern Era
Retrospective-
Analysis for

Research and
Applications

(MERRA)

The GEOS-5
atmospheric

general
circulation

model

Three-dimensional
variational,

Gridpoint Statistical
Interpolation (GSI)

Global

1/2◦ × 2/3◦ ,
1.25◦ ×

1.25◦ , 1◦ ×
1.25◦

1979–
2016.2

1 h, 3 h, 6
h NASA GSFC [147]

the Japan
Meteorological
Agency (JMA)

MRI/NPD
unified non-
hydrostatic

model

Four-dimensional
variational Global 10 × 10 km2 1958–2013 6 h, 1 day

The Japan
Meteorologi-

cal
Agency

[148]

CMA Reanalysis
(CRA) Noah

EnKF,
three-dimensional

variational
Global ~34 × 34

km2 1979–2018 6 h CMA [149,
150]

2.4. Machine Learning

Recently, machine learning techniques have demonstrated great potential for simu-
lating patterns and gaining insights into Earth’s systems from scientific data. Machine-
learning-based approaches exhibit notable competence in the simulation of nonlinear
complex mapping relationships, such as SM. Machine learning algorithms are currently
employed in SM estimation studies [151,152]. In terms of the different scale transition
processes, the simulation can be divided into gap filling, downscaling, and upscaling
(Figure 2). Gap filling means no scale transition during the entire simulation process, and
the output estimations are dedicated to filling the gaps in the original SM products to
improve spatial completeness. Great efforts have been made to downscale fields to acquire
high pixel resolution SM estimations, which could depict regional SM spatial heterogeneity
in detail and then be applied in the agricultural sector at the field scale. Comparatively,
upscaling is usually dedicated to transferring point-scale in situ measurements to pixel-
scale estimations, retrieving spatially continuous and representative SM products. Table 3
introduces the application of machine-learning methods to improve the performance of
SM products. Meanwhile, an increasing number of published papers clearly state that
machine-learning-based SM research is becoming a hot topic at present.

2.4.1. Traditional Machine Learning

Because of their greater ability in nonlinear and complex relationship simulations
than traditional statistical regression methods, considerable attention has been devoted
to using machine learning methodologies for enhancing SM products [7]. As shown in
Table 3, several approaches, such as artificial neural networks (ANN), Bayesian, classifica-
tion and regression trees (CART), extreme gradient boost (XGB), gradient boost decision
trees (GBDT), K-nearest neighbor (KNN), random forest (RF), and support vector ma-
chine (SVM), are employed for both regional and global SM mapping [9,14,17,152–155].
Liu et al. [14] systematically compared the performance of six traditional machine learning
approaches in surface SM downscaling from 0.25◦ to 1 km in four case study areas with
different climates and land cover types. The results showed that the multi-regression
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tree-based RF achieved high performance with high goodness of fit and low regression
bias, whereas the downscaled data from the ANN, CART, and SVM models occasionally
showed abnormal values. Among the different case study regions, it was found that regions
located in a single climate zone, with mild topographic variation and medium vegetation
coverage tended to produce high-accuracy results. The contribution of each explanatory
variable varied remarkably across the case study regions owing to their diverse complex
hydrothermal and physical geographical conditions. On this basis, Liu et al. [154] further
explored the capability of multiple regression tree-based machine learning algorithms to
explicitly illuminate their characteristics in multi-scale surface SM disaggregation. Through
inter-comparison among RF, GBDT, XGB, and CART, it was suggested that the best result
was derived from GBDT in grasslands with a high correlation coefficient and low error,
and both RF and XGB achieved favorable performances as well. Additionally, XGB was
applied in multi-layer high-resolution SM estimation over the United States, and the down-
scaled SM favorably captured the temporal dynamics of in situ measurements with high
accuracy [156]. The RF model was employed in a spatiotemporally continuous surface SM
downscaling process at a field scale of 30 m resolution and displayed good performance in
generating accurate SM estimations [9]. The GBDT algorithm was used for SM downscaling
over the Tibetan Plateau and effectively improved the resolution of the SMAP SM from 36
to 1 km. High-resolution SM can preserve the accuracy of the original SMAP and express
detailed spatial SM variability simultaneously [157]. Apart from the abovementioned
studies, there is a host of research using multi-regression tree-derived machine learning
methods to improve the resolution and spatial-temporal continuity of SM [65,158–161].

Figure 2. Flowchart of SM simulation using machine learning algorithms.

In general, great efforts have been made to clarify the performance of each member of
the huge machine-learning family in simulating SM across various underlying surfaces.
Among the numerous methodologies, multi-regression tree-derived approaches, such as
RF, XGB, and GBDT, have revealed favorable capabilities in simulating and reconstructing
SM products with good accuracy and fitting degree. Thus, this finding provides important
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guidance for the selection of machine learning methods in SM regression. Feature extraction,
as a critical pre-processing step, could be very important in decreasing dimensionality
and redundancy, increasing learning accuracy, and improving the understandability of
results. However, for traditional machine-learning algorithms, the feature extraction
and model training processes of classical machine-learning methods are two separate
processes. The extracted features are used directly in subsequent calculations without any
return adjustment, which results in error propagation. Under the joint action of climatic
and human factors, the pattern of SM presents spatial-temporal distribution regularities.
Classical machine learning methods only support the input of sample data in the form of
discretization and rarely exploit the spatial-temporal dependencies of samples [162].

2.4.2. Deep Learning

In comparison, deep learning techniques are capable of constructing multi-layer neural
networks by simulating the mechanism of the human brain, automatically extracting the
spatial-temporal features of data, and then conducting spatial-temporal modeling and
prediction based on deep understanding and mining [163–165]. Deep-learning methods
can behave much better in learning high-dimensional features than classical machine-
learning methods. A series of studies and applications have been carried out in the field of
spatial data mining using deep learning methods, and relatively ideal results have been
achieved in recent years [162]. Deep learning shows good potential for texture extraction
and reconstruction. As presented in Table 3, many scholars have attempted to retrieve
qualified SM estimations through deep learning algorithms, such as convolutional neural
networks (CNN), gated recurrent units (GRU), long short-term memory (LSTM), deep
feedforward neural networks (DFNN), and H2O models. Liu et al. [166] designed a novel
LSTM-based multi-scale scheme for estimating surface SM by integrating remotely sensed
data and in situ measurements over the United States. The model directly learned spatial-
temporal patterns from in situ measurements, and the derived 9 km SM presented better
accuracy than the 9 km products of the SMAP mission. This upscaling study revealed the
significance of ground observations despite the availability of numerous satellite-retrieved
products. Li et al. [167] tested the performance of CNN, LSTM, and ConvLSTM (a model
integrating the merits of CNN and LSTM) in improving SMAP SM over China. The
ERA5 SM information was transferred to SMAP to improve the prediction accuracy. The
results illustrate that ConvLSTM outperformed CNN and LSTM in terms of a higher fitting
degree and lower error. The transfer-based models exhibited better accuracy than the
models without transfer learning, except in winter. ConvLSTM, combined with a physical
model, was applied to estimate root-zone SM [168]. The GLDAS SM products were used
as prediction data, and the spatiotemporal continuous root-zone SM derived from the
physical model and in situ measurements were treated as target data. The estimated SM
achieved high fitting coefficients compared with the original GLDAS SM, especially for the
deep layers. Zhao et al. [169] investigated the capability of the deep belief network (DBN),
improved DBN model, and residual network (ResNet) model in SM downscaling on the
Tibetan Plateau. It was shown that the deep learning models had the advantage of fitting
detailed SM texture patterns compared with RF. Compared to the DBN models, ResNet
displayed an extraordinary ability to learn and simulate SM textures with high robustness.

The results and conclusions of these studies indicate that deep learning methods
are suitable for SM simulations. Further, the well-designed deep learning model could
outperform RF in SM estimation, suggesting the huge potential of deep learning methods
in improving the quality of SM. The multiple deep learning algorithm-fused model usually
behaved better than the single ones. In addition, because there are a number of algorithms
inside the deep learning framework, more deep learning method-based explorations are
necessary to determine comparatively eminent algorithms for SM estimation.
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Table 3. A brief summary of machine learning algorithms utilized in enhancing the quality of SM products.

Type Source Algorithm Target SM Data Result Conclusion

Gap filling

[170] A two-layer machine
learning-based framework SMAP/Sentinel-1 SM product

3 km resolution SM estimations at four study
regions (Arkansas, Arizona, Iowa, and

Oklahoma) in a 3.5-year period between 1
April 2015 and 30 September 2018

The two-layer machine learning-based
framework can reconstruct 3 km SM at gap

regions with high fitting degree and low error

[171] Long Short-Term Memory (LSTM) SMAP passive SM product
36 km resolution SM estimations in the

continental United States from April 2015 to
April 2017

The LSTM exhibit good spatial and temporal
generalization capability in simulating SM

[152] RF ECV active-passive combined SM
product

Global gap-filled monthly ECV SM from
January 2001 to December 2012

The gap-filled products achieve comparable
performance as the original ECV

[172]

Linear interpolation, cubic
interpolation, SVM, and SVM

combined with principal
component analysis

ECV active-passive combined SM
product

Gap-filled daily ECV SM in Southern Europe
from 2003 to 2015

There are no substantial differences between the
accuracy of the original and the

SVM-reconstructed SM products

Downscaling

[153]
ANN, SVM, relevance vector

machine, the generalized linear
model

SMOS SM product
0.05◦ resolution SM estimations in

southwestern England from February 2011 to
January 2012

The ANN outperforms other algorithms in SM
downscaling with higher accuracy

[173] RF

ECV active-passive combined SM
product, CLDAS SM retrievals at

0–10 cm depth, in situ
measurements

1 km resolution SM estimations at crop
growth periods during 2015–2016 over Hebei

Province, which is one of the major grain
production regions of China

The RF model downscaled SM results display
generally comparable and even better accuracy

than the original SM products

[14] ANN, Bayesian, CART, KNN, RF,
SVM

ECV active-passive combined SM
product

1 km resolution SM estimations at four case
study regions with quite different climate
types and underlying surfaces across the

globe

The RF model downscaled SM achieves
excellent performance with a high correlation

coefficient and a low regression error

[154] CART, GBDT, RF, XGBoost SMAP passive and enhanced
passive SM products

1 km resolution SM estimations in western
Europe from January 2016 to December 2017

Multi-decision tree-derived RF, XGBoost, and
GBDT could all achieve good performances in

SM downscaling, and GBDT shows slight
superiority to the other two methods

[9] RF ECV, SMAP, and CLDAS SM
products, in situ measurements

30 m resolution SM estimations during 1
March–31 October of years 2015, 2016, and
2017 in the Haihe Basin, which is one of the

major grain production regions of China

The potential of the RF model is maximized to
provide accurate and highly valuable SM

estimations for hydrological research at the field
scale

[174] H2O AMSR-2 SM products, in situ
measurements

4 km resolution SM estimations in the Korean
Peninsula from 2014 to 2016

The H2O deep learning downscaled SM
estimations indicate higher agreement with the
in situ measurements than the original AMSR-2

and GLDAS SM products
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Table 3. Cont.

Type Source Algorithm Target SM Data Result Conclusion

[175] CNN, GRU

MODIS-based surface soil
moisture data as a target variable

obtained from the GLDAS 2.0
model

Forecasted SM in the Australian Murray
Darling Basin on the 1st, 5th, 7th, 14th, 21st,

and 30th day between 1 February 2003 and 31
March 2020

The CNN-GRU hybrid models are considerably
superior in SM forecasting to standalone

methods

Upscaling

[156] XGBoost

Multi-layer in situ measurements
(5, 10, 20, 50, and 100 cm depths),

SMAP surface (0–5 cm), and
root-zone (0–100 cm) SM

products

1 km resolution SM retrievals at 5, 10, 20, 50,
and 100 cm depths over the United States
from 31 March 2015 to 29 February 2019

The multi-layer SM retrievals well match the
temporal dynamics of SM; the ubRMSE is less

than 0.04 m3/m3 at most sites

[176] Bayesian 0–5 cm depth in situ
measurements

100 km grid-box SM at 0–5 cm depth over the
central Tibetan Plateau from 1 August 2010 to

20 September 2011

The upscaled SM revealed higher reliability and
robustness compared to the point-scale data

[177] RF In situ measurements from three
networks, respectively

Gridded SM estimations with an approximate
spatial resolution of 100 m at three networks

located in North America

The RF model upscaled SM expresses high level
matching degree against field samples and

outperforms other common regression methods.

[178] DFNN Top 10 cm in situ measurements
at croplands

750 m resolution SM over the cropland of
China on the 1st, 11th, and 21st day from May

to October in 2012 to 2015

The deep learning model retrieved SM shows
better accuracy than SMAP radar and GLDAS

SM products
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3. Applications

SM is a sensitive component of the Earth system that interacts with the atmosphere and
Earth’s surface at every moment. Although the in situ measured SM can precisely reflect the
soil water content, the confined extent and point-scale value remarkably restrict its applica-
bility. Moreover, the original remotely sensed SM can hardly provide high-resolution and
spatial-temporal continuous SM records because of the inherent limitations of spaceborne
microwave sensors. Comparatively, advanced SM products provide unprecedented oppor-
tunities for deriving datasets with improved spatial coverage, multi-depth information,
high resolution, and extended time sequence from the 1950s to future scenarios. These
multi-model improved SM products are broadly applied to advance the understanding
of Earth system processes, which mainly include drought monitoring, climate change,
hydrology, and ecology.

3.1. Drought Monitoring

Drought is usually induced by a deficiency of precipitation and excess ET, which
jointly cause varying degrees of decline in SM. As drought can seriously affect crop growth
and yield, agricultural departments have always attached great importance to real-time
drought monitoring. Therefore, a wide variety of studies have explored the potential of
SM for drought monitoring. First, for regions renowned for their advanced plant product
industries, more ground stations could be arranged in cropland when establishing SM
networks [18,179,180]. This arrangement style reflects the emphasis attached to cultivation-
related drought monitoring by acquiring multi-depth SM recordings in real-time. Second,
in regional- or national-scale drought forecasting studies, both in situ measurements and
raster SM estimations are employed simultaneously to ensure data accuracy and spatial
coverage [181–183]. Third, coarse-resolution SM products, retrieved from spaceborne sen-
sors or LSMs, are mainly utilized for depicting large-scale (i.e., continental, global) drought
characteristics [16,184]. In these studies, SM and other related auxiliary components, such
as vegetation fraction, temperature, and precipitation, were used together in drought appli-
cations. These variables are co-converted to representative indices, such as the SM drought
index [183], soil water deficit index [182], SM use efficiency [184], perpendicular drought
index [16], modified perpendicular drought index [181], and enhanced combined drought
index [185], to comprehensively indicate the duration, trend, intensity, and severity of
drought conditions.

3.2. Climate Change

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change
was released in 2021 [186]. This unequivocally revealed a serious warning of unprece-
dented warming trends and increasingly frequent extreme weather events. Because every
component inside the climate system constantly interacts with each other, the spatial and
temporal patterns of SM are derived from the combined actions of all members. Con-
sequently, SM products based on spaceborne sensors and LSMs have been widely used
in climate-variability experiments and analyses. Dorigo et al. [187] evaluated the global
trend in harmonized multi-satellite surface SM from 1988 to 2010 and found drying and
wetting trends in different regions. Qiu et al. [188] compared the performance of satellite-
and reanalysis-based SM products. The two types of products exhibit coincident patterns
in non-irrigated areas. Moreover, the discrepancy was mainly induced by artificial in-
terference such as irrigation and harvest. On the basis of ECV SM v4.2, Pan et al. [189]
conducted seasonal and annual scale analysis, and the results revealed that “wet seasons
get wetter, and dry seasons get dryer,” proving the gradual extremity tendency. In addition
to analyzing the evolutionary features of SM, integrated climate variability studies were
carried out in terms of interactions and feedbacks between ET, temperature, precipitation,
and SM [190–192].



Remote Sens. 2022, 14, 3741 19 of 32

3.3. Hydrology

SM plays an important role in the circulation of land–atmosphere hydrology and
energy balance. It could “remember” exceptional signals from the land–atmosphere system
and provide effective feedback to other components of the cycle, such as ET, precipitation,
underground water, and runoff [193]. The Food and Agriculture Organization of the
United Nations Irrigation and Drainage Paper No. 56 on crop Evapotranspiration listed
SM availability as a key factor that could influence crop ET estimation [194]. Allam
et al. [195] estimated evaporation over the upper Blue Nile Basin and used least-squares
data assimilation methods to estimate soil water storage. SM datasets from the ECV,
Climate Prediction Center, and Gravity Recovery and Climate Experiment terrestrial water
storage were considered essential inputs during the assimilation procedure. The Global
Land Evaporation Amsterdam Model v3 uses SM products retrieved from both spaceborne
sensors (ECV and SMOS) and LSM (GLDAS Noah) to estimate terrestrial evaporation [196].
Previous studies have suggested a strong coupling between precipitation and SM [197,198].
By inverting the soil–water balance equation, an SM2RAIN algorithm was developed and
used to estimate basin- and global-scale precipitation with satisfactory accuracy using in
situ and satellite SM observations [199,200]. Swenson et al. [201] detected groundwater
variability using in situ measurements in Oklahoma, U.S., and a time series of groundwater
anomalies was successfully acquired after removing SM variability in the unsaturated
zone. Additionally, remotely sensed SM has been proven capable of efficiently calibrating
groundwater-land surface models [202]. Moreover, it is widely acknowledged that the
spatial variability of SM and soil properties may have a dominant and complex impact
on runoff in terms of changing storm size [203]. Therefore, multi-source SM products are
widely utilized in advancing runoff models to help set the initial conditions and reduce
prediction uncertainties [204,205].

3.4. Ecology

SM is a crucial regulator of the basic processes in terrestrial ecosystems. Its variability
can remarkably impact the operational patterns of terrestrial ecosystems. SM can directly
influence photosynthesis and the net primary productivity (NPP) of ecosystems by affecting
the occurrence, intensity, and duration of vegetation water stress [96,206]. In addition, both
nitrogen and carbon cycles are tightly linked to soil water movement [207]. Therefore, SM
plays a significant role in ecosystem processes. Reich et al. [208] explicitly demonstrated
the effect of SM on photosynthesis using in situ measurements. The results assumed
that low SM may limit photosynthesis in boreal tree species during the growing season,
despite warming temperatures. The impact of drought on NPP variability on a global
scale was investigated, and a strong positive relationship between available moisture and
NPP in arid and seasonally dry regions was demonstrated [209]. The SM balance was
calculated using the Carnegie-Ames-Stanford approach and then converted to a water
stress factor to express its impact on the NPP. In addition, dozens of global NPP estimation
models have treated multi-depth SM (ranging from 0 to 2.5 m) as an important input
parameter [210]. Li et al. [207] analyzed SM and other supplementary datasets from 1980 to
2015 in China’s dryland derived from TerraClimate [211]. They found that water and soil
conservation projects, such as reforestation, evidently increased the net primary production.
However, SM continuously decreased, suggesting that the existing ecosystem was unlikely
to be sustained. Satellite-derived SM together with related environmental drivers were
employed to analyze the evaporation decline in the U.S. from 1961 to 2014, and a significant
evaporation decrease of approximately 6% was detected [212].

4. Outlook

This study provides a brief introduction to the main types, deriving methodologies,
quality-improving techniques, and applications of multi-source SM products. Generally,
through development for more than half a century, great contributions and advancements
have been made in SM acquisition and employment. However, to persistently enhance the



Remote Sens. 2022, 14, 3741 20 of 32

performance and applicability of SM products, there is still a long way to go. Based on this
review, we propose the following research priorities for future SM estimations.

4.1. Improved Spatial Coverage

Many studies employing SM as a key analysis object used seamless products to ensure
complete coverage of the study area. Fortunately, assimilation- and reanalysis-based SM
estimations have already overcome this problem in terms of the strength of numerous
hydrological models. However, gap regions are prevalent for remotely sensed data. Owing
to the limitation of microwave penetration, spaceborne sensors are unable to detect signals
in frozen or dense vegetation (≥5 kg/m2)-covered regions. However, it is crucial to access
spatial-temporal continuous SM over forests, which would enhance the understanding of
the mechanisms by which forest structure affects soil water conditions. Forests have a sig-
nificant impact on water movement in nature as well as the regulation of SM, precipitation,
evaporation, runoff, and hydrological cycles. Unexpected RFI typically result in exceptional
values. Moreover, the rotation difference between the satellite and the Earth could result in
a strip-gap region. Hence, it is necessary to explore the capability of gap-filling methods
(i.e., classical statistical algorithms and artificial approaches) and determine an adequate
method to update the present products on the values of gap regions [72,171]. Data fusion
is also an effective approach for improving spatial integrity by blending the quantities
of qualified SM information. For example, the multi-source information-merged ECV
and SMOPS SM products show an evidently higher coverage percentage than the single
sensor-derived ones [102].

4.2. Higher Spatial Resolution

Compared to coarse-resolution SM products, fine-resolution SM products can be
more appropriate for landscape scale, watershed scale, and field scale applications; for
instance, hydrological simulation over the scale of drainage basins or SM spatial variability
analysis on a field scale. Many studies have been conducted on SM downscaling using
statistical models, data fusion, assimilation, and machine-learning algorithms. These works
obtained good results by integrating high-resolution ancillary data collections from MODIS,
Landsat, and Sentinel [11,14,113,176]. Moreover, machine learning approaches have notable
advantages in terms of simplicity, efficiency, and competence. It was found that the multi-
regression tree-based models could accurately reproduce SM with a downscaled resolution;
however, these models did not consider spatial texture features. Comparatively, the advent
of deep learning techniques provides an unparalleled opportunity for the simulation of
spatially autocorrelated objects, such as SM. Therefore, it would be beneficial to develop
a suitable model to estimate SM among the large deep-learning family [162]. In addition,
high-resolution land surface observations from well-known optical sensors and SAR could
serve as qualified explanatory variables for SM downscaling to hundreds or even dozens
of meter grids [17,213].

4.3. Longer Time Span

It can be beneficial to analyze evolutionary trends over decades or even hundreds of
years in climate change fields to capture the laws of climate origination and evolution. Thus,
it is valuable that the time span of SM datasets can be continuously prolonged. Both satellite-
based and assimilated SM products begin when the corresponding observation programs
begin. For the sake of continuous acquisition of SM data, on the one hand, observations
in existence should be maintained and ensured to work properly; on the other hand, new
ground networks and satellites to provide continuous monitoring of SM are indispensable
for extending time series. For instance, the National Satellite Meteorological Center of
China launched the FY-3E satellite on 5th July 2021, which is dedicated to networking
with FY-3C and FY-3D in orbit to observe SM and other meteorological parameters [214].
Additionally, forecasting SM with the help of future scenarios and hydrologic models could
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also provide access to acquire SM predictions, which may favor the investigation of future
climate variations [190,215].

4.4. Higher Temporal Resolution

In addition to pursuing a high spatial resolution, improving the frequency would
also be a key research priority for future SM products. Hourly monitoring data can be of
great benefit in investigating subtle SM fluctuations induced by artificial irrigation, rainfall,
and ET within a day, which is valuable for agricultural and land–atmosphere interaction
applications [195,199,200,216]. At present, both in situ measurements and LSMs are capable
of providing sub-hourly and sub-daily observations. Additionally, the SMAP publishes
three-hourly surface and root zone SM estimates with ~2.5-day latency, which are derived
from the assimilation of both ascending and descending brightness temperature data into
the catchment LSM [217]. It is suggested that LSM is an effective and promising approach
for generating high temporal resolution SM estimates. Furthermore, with an increasing
number of satellites launched with different transit moments from each other, it would be
promising to acquire observations more and more times per day across the globe [214].

4.5. Shorter Time Latency

It is imperative to access real-time or near-real-time SM recordings to conduct drought
monitoring and early flood warning. Croplands also have high timeliness requirements
for SM product availability to arrange irrigation or drainage without delay. In situ mea-
surement data can be quickly collected through sensors and the internet. However, in
terms of remotely sensed and assimilated products, there is always a latency of dozens
of hours. For instance, the SMOPS data latency for 6-h products is 3 h and that for daily
products is 6 h. The SMAP data latency for available data products is as follows: (1) Level
1 products, within 12 h of acquisition; (2) Level 2 products, within 24 h of acquisition;
(3) Level 3 products, within 50 h of acquisition; and (4) Level 4 products, within 7 days
for SM [129]. ERA5 is continuously updated with a latency of approximately 5 days [145].
Consequently, there is an urgent need to accelerate and optimize the processes of data
transmission, algorithm operation, and data distribution, which should include, but not be
limited to, the improvement of related equipment, techniques, and methodologies.

4.6. Developing Multi-Depth Products

Land surface and root-zone SM recordings are of equal importance for advancing the
understanding of Earth’s system processes. Furthermore, root-zone SM counts more than
top-layer SM in vegetation growth. It is critical to develop multi-depth SM products to com-
prehensively master the soil wetness profile. In situ measurements can detect multi-depth
SM using probes at different depths [18]. Assimilation- and reanalysis-based products
can effectively describe soil water movement and then generate root-zone SM estimates
to fulfill the requirements of considerably progressing hydrological and agricultural ap-
plications [145]. In addition, satellite-based programs have started to produce root-zone
values through a data assimilation system. For instance, the SMAP project integrates its
own observations with complementary information into an LSM and produces 3 h and
9 km surface (0–5 cm) and root-zone (0–100 cm) SM estimations through both spatial and
temporal interpolations and extrapolations [66,218]. The ECV program also initiated a
program to develop root-zone SM products using Noah-MP and ISBA LSMs, which are
dedicated to linking vegetation phenology and biomass carbon allocation to moisture
availability in the soil.

4.7. Higher Data Accuracy

Significant efforts have been devoted to reducing errors to continuously close the gap
between SM estimations and real SM conditions. In a previous study, ground probes were
periodically calibrated and maintained to ensure their operation under good conditions [18].
AMSR-2 retrieves SM using an X-band signal and applies a neighboring C-band to escape
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RFI [58]. The SMAP program designed effective L-band SM detection sensors together
with advanced anti-RFI devices and improved algorithms to detect and remove harmful
interference in the L-band [68,219]. A series of developments in model physics, core
dynamics, and data assimilation have been steadily achieved, which have contributed
to significant improvements in SM consistency [145]. Despite this progress, there is still
considerable room to pursue higher accuracy. Artificial intelligence-driven algorithms
display great potential for simulating the SM model. Increasing SM datasets will become
available as more ground networks and satellite programs are being planned. A significant
benefit can be expected from combining these advanced technologies and datasets.

4.8. Better Model Performance and Interpretability

In recent decades, numerous models have been built and updated to estimate SM,
and the overall quality of the corresponding products has been evidently enhanced. Tra-
ditional physical models are widely employed in spaceborne and assimilation systems to
retrieve SM. These sophisticated and exquisite models are carefully designed and theo-
retically interpretable [145,146]. In comparison, artificial intelligence-driven approaches,
especially the deep learning family, exhibit outstanding capabilities in SM regression and
prediction [17,162]. In addition, they have the advantages of being highly efficient, simple,
and convenient. However, their inner operational mechanisms are difficult to explain.
Consequently, it could be favorable to develop hybrid models by combining physical and
artificial intelligence methods, which would be able to exploit the strengths and discard
the weaknesses of both methods. The hybrid model is expected to improve both model
performance and interpretability.

5. Conclusions

Much attention has been paid to SM monitoring since ancient times. Before the ex-
istence of modern technology and equipment, subjective perceptions were prevalently
employed to detect local SM conditions for proper irrigation arrangements. With the
emergence of advanced probes, spaceborne sensors, and algorithms, spatial-temporal
continuous SM records are becoming increasingly easily available. Because SM plays an
important role in the land–atmosphere interaction system, vast amounts of multi-source SM
datasets have been utilized in numerous studies on drought monitoring, climate change,
ecology, and hydrology. However, the current status and characteristics of SM estimates
should be clarified before they can be used in practical applications. The review of SM has
generally been limited to certain retrieval algorithms, scale-conversion techniques, or appli-
cations. Therefore, there is an urgent need for a relatively comprehensive demonstration of
advances in the quality of global SM products.

In this study, we introduce the primary retrieval methodologies of SM and the current
approaches used to enhance the quality of SM products. Owing to the complex driving
mechanism of its spatial-temporal distribution and evolution, great efforts have been made
to advance retrieval methods. Numerous statistics, data fusion, assimilation, and machine
learning-based approaches have been continuously designed and improved to enhance the
reliability (including spatial-temporal completeness, resolution, and accuracy) of retrieved
SM products. Although some of the established models are explainable, whereas others
remain unexplainable in mechanism, they basically give renewed impetus to advancing the
quality of SM estimations. In addition, a large quantity of SM-related original datasets and
land–atmosphere parameters collected from different sensors, bands, and time nodes have
been taken as ancillary references during the retrieval process to promote the reasonability
of the response of SM to land–atmosphere variation.

Despite the steady progress in SM estimation models, there is still a large margin for
improvement, such as pursuing higher spatial coverage, finer spatial resolution, longer
time span, higher temporal resolution, shorter time latency, multi-depth products, higher
data accuracy, and better model performance and interpretability. Moreover, it is critical
to propose targeted solutions to mitigate the influences of various vegetation canopies
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and human activity interference, which could fundamentally improve the accuracy of
spaceborne received signals and retrieved SM.

This review is expected to provide a reference for understanding the advances achieved
in global SM estimation in terms of different approaches. Although many previous studies
are referred to in this review, it could be difficult to include all publications on this topic.
More complete research is necessary to contribute to the generalization of studies focused
on SM in the future.
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Acronyms
AMSR-2 the Advanced Microwave Scanning Radiometer 2
AMSR-E the Advanced Microwave Scanning Radiometer for the Earth observing system
ANN Artificial Neural Network
ASCAT MetOp-A the Advanced Scatterometer on MetOp-A
ASCAT MetOp-B the Advanced Scatterometer on MetOp-B
CART Classification and Regression Trees
CFSR the NCEP Climate Forecast System Reanalysis
CLDAS the CMA Land Data Assimilation System
CMA China Meteorological Administration
CRA the CMA Reanalysis
CLM the Community Land Model
CNN Convolutional Neural Network
CYGNSS Cyclone Global Navigation Satellite System
DEM Digital Elevation Model
DBN Deep Belief Network
DFNN Deep Feedforward Neural Network
DISPATCH Disaggregation based on physical and theoretical scale change
ECV SM the Essential Climate Variable Soil Moisture
ECMWF the European Centre for Medium-Range Weather Forecasts
ELDAS the European Land Data Assimilation System
ENVISAT the Environmental Satellite
ERA5 the ECMWF Reanalysis v5
ERS-1 the European Remote-Sensing Satellite-1
ERS-2 the European Remote-Sensing Satellite-2
ESA the European Space Agency
ET Evapotranspiration
EUMETSAT European Organization for the Exploitation of Meteorological Satellites
EVI enhanced vegetation index
FY-3B FengYun-3B
FY-3C FengYun-3C
GBDT Gradient Boost Decision Tree
GLDAS the Global Land Data Assimilation System
GPM GMI the Global Precipitation Measurement Microwave Imager
GRU Gated Recurrent Unit
GSFC Goddard Space Flight Center

http://www.geodata.cn/
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H SAF
Satellite Application Facility on Support to Operational Hydrology and Water
Management

ISMN the International Soil Moisture Network
JMA the Japan Meteorological Agency
KNN K Nearest Neighbor
LSM the Land Surface Model
LST land surface temperature
LSTM Long Short Term Memory
MERRA the Modern Era Retrospective-Analysis for Research and Applications
MODIS the Moderate Resolution Imaging Spectroradiometer

NCEP/NCAR
the National Centers for Environmental Prediction/the National Center for
Atmospheric Research

NDVI Normalized Difference Vegetation Index
NLDAS the North American Land Data Assimilation System
NPP Net Primary Productivity
NSIDC the National Snow and Ice Data Center
ResNet Residual Network
RF Random Forest
RFI Radio Frequency Interference
SAR Synthetic Aperture Radar
SAVI Soil Adjusted Vegetation Index
SEE the Soil Evaporative Efficiency
SM Soil Moisture
SMMR the Scanning Multichannel Microwave Radiometer
SMAP the Soil Moisture Active Passive
SMOPS the Soil Moisture Operational Product System
SMOS the Soil Moisture and Ocean Salinity
SSM/I the Special Sensor Microwave Imager
ST Soil Temperature
SVM Support Vector Machine
Tri the Triangular-Based Method
TRMM TMI the Tropical Rainfall Measuring Mission Microwave Imager
TVDI Temperature Vegetation Drought Index
UTC Coordinated Universal Time
XGB Extreme Gradient Boost
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