
 

 

 

 
Remote Sens. 2022, 14, 3726. https://doi.org/10.3390/rs14153726 www.mdpi.com/journal/remotesensing 

Article 

A Simple Statistical Model of the Uncertainty Distribution for 

Daily Gridded Precipitation Multi-Platform Satellite Products 

Rômulo A. J. Oliveira 1,2,* and Rémy Roca 1 

1 Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Université de Toulouse III, CNRS, CNES, 

IRD, 31062 Toulouse, France; remy.roca@legos.obs-mip.fr 
2 Géosciences Environnement Toulouse, Université de Toulouse III, CNRS, CNES, IRD,  

31062 Toulouse, France 

* Correspondence: juca.oliveira@legos.obs-mip.fr 

Abstract: Multi-platform satellite-based precipitation gridded estimates are becoming widely 

available in support of climate monitoring and climate science. The characterization of the 

performances of these emerging Level-4 products is an active field of research. This study 

introduced a simple Gaussian mixture model (GMM) to characterize the distribution of uncertainty 

in these satellite products. The following three types of uncertainty were analyzed: constellation 

changes-induced uncertainties, sampling uncertainties and comparison with rain-gauges. The 

GMM was systematically compared with a single Gaussian approach and shown to perform well 

for the variety of uncertainties under consideration regardless of the precipitation levels. 

Additionally, GMM has also been demonstrated to be effective in evaluating the impact of Level-2 

PMW rain estimates’ detection threshold definition on the constellation changes-induced 

uncertainty characteristics at Level-4. This simple additive perspective opens future avenues for 

better understanding error propagation from Level-2 to Level-4. 
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1. Introduction 

Precipitation is at the heart of the global water and energy cycle that is strongly 

impacted by global warming [1]. This has prompted the scientific and operational 

community to develop new products to support climate monitoring and a better 

understanding of processes [2]. At the one degree one day scale, the emergence of a suite 

of new and renewed precipitation estimates from in situ, reanalysis and satellite [3] has 

been shown to provide observational constraints for detection and attribution analysis [4], 

climate model validation [5,6] and process analysis [7]. In particular, with the advent of 

the long time series of satellite precipitation-relevant measurements, multi-platforms 

satellite precipitation estimates have been shown to reveal overall good performances 

[8,9]. 

While at a high resolution, multi-platform precipitation products’ uncertainty has 

actively been explored [10–14] at the daily accumulated scale of 1° × 1°, less is known in 

terms of structural errors of the products. Numerous atmospheric processes contribute 

for modulating the precipitation (detection and intensity) distribution in space and time. 

Assessing this using satellite, on an 1°/daily scale, would support research on global 

precipitation (e.g., on the investigation of global extremes) and facilitate better 

intercomparison and validation exercises with a common gridded database. A few 

validation studies have nevertheless been conducted in the tropics revealing some 

regionally varying uncertainties that are difficult to interpret in terms of algorithms’ 

limitations [15]. Chambon et al. [16] conducted a thorough error propagation analysis of 

the TAPEER product at a 1° × 1° daily scale. Their study revealed the importance of the 
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sampling uncertainty in the error budget, compared to the Level-2 (L2) uncertainty and 

satellite calibration sources. It also showed the non-linearity of the L2 to Level-4 (L4) bias 

propagation, emphasizing the specific nature of the 1° × 1° accumulated daily 

precipitation uncertainty. Uncertainty depends on the assumed error model [17] and also 

relates to the sources of intrinsic errors that create it in the first place. In the case of multi-

platforms satellite products, for instance, the changes in the microwave constellation 

configuration can impact performances and the structural errors of the final product 

[18,19]. For daily gridded products, sampling errors due to a finite number of observations 

can significantly alter the comparison to ground-based networks [20]. 

As an attempt to improve the existing framework for better understanding the 

uncertainty of the daily 1° × 1° scale, the ability of a simple decomposition of the 

uncertainty, under an additive error model assumption and as a sum of two Gaussian 

distributions was assessed. The following three types of uncertainties were considered 

here: (i) constellation changes-induced uncertainties, (ii) sampling uncertainties and the 

(iii) uncertainties related to comparisons with rain-gauge network data. Each of the 

uncertainties are illustrated with a multi-platform satellite precipitation product. Section 

2 presents the data and details the algorithm used for the Gaussian mixture calculations. 

Section 3 shows the results of the fitting which are systematically contrasted with those of 

a single Gaussian approach. Finally, our findings are summarized and discussed in 

Section 4. 

2. Data and Method 

2.1. Uncertainty Distribution as a Function of the Precipitation Accumulation 

In the study, we adopted an additive error model by which we assumed the 

uncertainty to be obtained as a difference between the estimated precipitation 

accumulation and a reference. An additive error model was preferred to a multiplicative 

one since, at the 1° × 1° one day scale of interest here, this approach was shown to be well 

suited to characterize various sources of errors [15,20,21]. The distribution of uncertainty 

as a function of the precipitation accumulation P was hence computed as the Relative 

Error (RE) per precipitation accumulation bin: 

��(����) = �
���� − ����
����

� × 100, (1)

where SRC is one of the sources of uncertainty under consideration and REF is a reference. 

Since the precipitation distribution usually tends to emphasize lower precipitation 

accumulations due to their higher frequency of occurrence, the precipitation values were 

log-scale binned-distributed, in order to provide more weight to the moderate and large 

precipitation accumulation categories by increasing their samples, which would benefit 

the model fitting. 

Generally, the relative error distributions are considerably high and largely spread 

at low precipitation accumulations, with a high occurrence of non-representative extreme 

values (outliers). As the accumulated precipitation increases, the RE decrease strongly 

(distribution tends to narrower) and the diminishing of outliers is also observed. Given 

that, we utilized the interquartile IQR range rule (Q1/Q3 ± IQR × 1.5) of the RE distributions 

at each precipitation accumulation bin (outliers neglected). Subsequently, the 

precipitation binned RE distributions were normalized to the corresponding maximum 

RE value. Indeed, the RE distributions can vary according to the uncertainty source, as 

discussed in detail in the following. 

2.2. Sources of Uncertainty and Datasets 

2.2.1. Constellation Changes-Induced Uncertainties 

The time evolution of the microwave constellation induces inhomogeneity in the time 

series of constellation-based precipitation estimates, as in [18]. This can be thought of as 
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uncertainty arising from the changes in the platform number and configuration that forms 

the constellation. Such uncertainty can readily be estimated using data-denial 

experiments whereby the change of the configuration can be easily simulated with the 

Global Interpolated RAinFall Estimation (GIRAFE, [22]) framework. GIRAFE is an 

algorithm that provides 1°/daily rain accumulation estimates based on the combination of 

multi-source satellite observations/estimates (i.e., from geostationary and low earth orbit 

satellites), globally and has been available since 2000 for up to 55° N/S. GIRAFE evolved 

from the Tropical Amount of Precipitation with an Estimate of ERrors (TAPEER) 

approach [19,23], which is based on the Universally Adjusted GOES Precipitation Index 

(UAGPI) technique [24,25]. In the present GIRAFE version, the instantaneous rain rate 

retrievals (i.e., the L2 input database) were extracted from the Goddard Profiling 

Algorithm (GPROF2017, [26]) and the Precipitation Retrieval and Profiling Scheme 

(PRPS2019, [27]) PMW algorithms were obtained from the GPM V05 and V06 database, 

respectively. Oliveira et al. [28] provided a systematic analysis of this source of 

uncertainty over the last decades and here we illustrated the resulting uncertainty 

distributions by exploring only 2 configurations that are representative of the actual 

changes in the constellation setup. The GPM “golden era” constellation period was 

selected as a reference for comparison with the other two different configurations, namely 

i) an idealized case for a single SSMI/S and ii) a configuration used to exploit the impact 

in the absence of MT1.SAPHIR and GPM.GMI. Table 1 shows the PMW radiometers 

considered for each experimental configuration. Data-denial experiments were performed 

for June-July-August of 2014 (JJA2014) and December-January-February of 2014/5 

(DJF2014/5). The study domain corresponds to a quasi-global zone between 55° N/S. The 

GIRAFE framework training volume of 5° × 5° × 5 days was adopted for both the intensity 

and detection parameters, which were assumed as 1.5 and 0.5 mm h−1, respectively. 

It is worth mentioning that the rain estimation framework used in this work (i.e., 

GIRAFE), for describing the uncertainty according to the constellation changes, was 

redesigned to accordingly geo-collocate the distinct platforms (imagers and sounders) and 

their different footprint sizes and shapes (retrieval resolution) that fall into an 1° × 1° grid. 

However, the uncertainty due to platform characteristics’ effect is still expected and 

remains due to the physical approaches at the sensor-level rain retrieval scheme. For 

instance, in the GPROF retrieval algorithm, which is commonly used as an input data 

source for L3 precipitation estimates (e.g., the IMERG V06 product), despite being able to 

considers multiple channels for providing the surface rain rate, its retrieval resolution is 

based on the ~19 GHz channel resolutions for most of the radiometers considered (i.e., 

imagers). Further, sounders (e.g., MHS, ATMS and SAPHIR), as cross-track sensors, have 

varying footprint sizes with the scan position and the adopted retrieval resolutions are 

taken at nadir by GPROF algorithm. Therefore, both the assumptions can lead to 

uncertainties at L2 rain retrievals, which can also be propagated to the L3 precipitation 

estimates. In this study, the footprint size artifact leading to uncertainty can be explained 

as part of the constellation configuration differences, however, its quantification was not 

explicitly explored. Nevertheless, further studies exploring the sensor footprint features 

as a component of uncertainty in daily precipitation estimates are recommended. 

Table 1. The adopted data denial experiments and their respective constellation configurations, 

based on the number of platforms available for each corresponding period. 

Experiment Available Period Plat. N° Platforms 

CREF 4 March 2014–8 April 2015 12 

SSMI/S(3), GCOMW1, TMI, 

GMI, SAPHIR *, MHS(4), 

ATMS 

C99 1 January 1988–31 December 1990 1 SSMI/S(1) 

C04 1 December 2006–29 February 2008 10 
SSMI/S(3), GCOMW1, TMI, 

MHS(4), ATMS 



Remote Sens. 2022, 14, 3726 4 of 19 
 

 

C = Constellation configuration experiments. REF = Reference. * Through PRPS2019 algorithm. 

The relative error distribution shows strong variability depending firstly on the 

constellation configuration (Figure 1). As anticipated, the experiment closest to the 

reference configuration exhibited few relative differences and the distribution was narrow 

across the considered range of daily accumulation. For C04, as an intermediate case, the 

distribution reached up to 50% uncertainty at maximum (i.e., IQR range rule). On the 

other hand, for the idealized one single SSMI/S configuration case (C99), the distribution 

was characterized by large errors (up to 200%) and a large spread, even at intense daily 

precipitation accumulations. The secondary cause of variability was the surface type. 

Indeed, the spread over the ocean region was much larger than over land for each 

configuration (not showed). Finally, for all set-ups, the relative errors’ range decreased as 

the daily precipitation accumulation increased. 

The relative error distribution due to the constellation configuration was further 

illustrated by focusing on the RE_C99 distributions that revealed the largest spread for 

small and a large daily accumulation cases (Figure 1a). The small accumulation 

distribution produced a truncated lower end and a large positive spread centered around 

a zero line. The IQR were negatively skewed and, despite the slightly positive tendency 

as precipitation increases, the higher densities were generally at about −15% [±5] of RE 

(systematic underestimation). The Q1, Q2 (median) and Q3 ranged from [−50%, −20%, 

+40%] to [−30%, −10%, +20%] for low-to-moderate precipitation accumulations (0.5 to 10 

mm day−1). In cases of larger precipitation amounts (e.g., >10 mm day−1), despite being 

negatively skewed, the distribution appeared more symmetrical and narrowed around 

the zeros. The overall RE distributions decreased, for instance, from approximately −80% 

and +70% for 10 mm day−1 to −45% and +50% at 50 mm day−1. However, for precipitation 

accumulations greater than 50 mm day₋1, a slight increase towards positive RE 

(overestimation) was observed. Q3 increased by about 15%, from 50 to 100 mm day−1. The 

uncertainty distribution at 100 mm day−1 expressed a slightly right-skewed distribution 

with median and density peaks at about −12%. The closer the proximity in terms of 

constellation configuration (i.e., Figure 1b), the greater the chance that the uncertainty 

distribution acquires a unimodal and leptokurtic shape over the entire precipitation 

range. 

In summary, these overall observed RE distribution characteristics, due to the 

constellation configuration, are closely linked to the nature of the PMW rain rates as input 

data that were also propagated up to the daily precipitation accumulations [18,20,29]. In 

fact, the overall impact that can strongly biasing L3 estimates can be explained through 

the better representation of precipitating yields spatially and temporally, being 

accordingly sampled by the PMW radiometers that contributed to the final daily amounts 

[30,31]. Therefore, assuming a multi-platform PMW rain retrieval database, variability in 

the overall rain distributions and its performances was expected which could also be 

attributed to the retrieval algorithm [10,32–35]. For instance, according to Chambon et al. 

[21], the systematic uncertainties associated with PMW rain retrievals ranging between 2 

and 10 mm h−1 lead to an impact on the 1°/daily precipitation accumulations, resulting in 

non-Gaussian distributions. In this case, the constellation configuration-induced 

variability impacted the entire daily accumulated precipitation range. The impact is 

clearly noticeable through the modification of the RE distribution shape at each 

precipitation category, which can even be seen in the density spread or peak location. 
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Figure 1. The uncertainty distribution due to constellation changes (y-axis, in %) as a function of the 

daily precipitation (x-axis, in mm day−1) for two constellation configurations, during June-July-

August of 2014, across the 55° N/S global zones and over-land surfaces. Panels show density scatter-

plots (colored scale), superimposed by the IQR distribution (black lines), of the relative error (a,b) 

vs. the daily accumulated precipitation (log-scale distributed). Outliers are represented by blue dots. 

2.2.2. Sampling Uncertainties 

The computation of daily 1° × 1° accumulation generates a simple uncertainty arising 

from the limited number of geostationary images used in the computation. In this context, 

geostationary images play a key role in the sampling uncertainty computation, for 

providing for instance the space and time rain/no-rain (detection) samples. The 

uncertainties due to sampling is akin to variance uncertainty of the mean and was 

developed under the Megha-Tropiques mission research efforts [36]. The associated error 

model S, is described at length in [20] and reads as follows: 

� =
�

�
�
��
�
�

 
(2)

where σ is the space/time indicator variance of the instantaneous geostationary pixels in 

a degree (surface A) during a day (duration T), multiplied by a conditional precipitation 

rain rate (see [20] for details). The d and τ scales are autocorrelation scales, in space and 

time, respectively, obtained from the calculations of space and time variograms. These are 

required to estimate the number of independent samples for the estimation of the variance 

uncertainty of the mean. The daily precipitation accumulations and the associated 

sampling uncertainties, from the TAPEER product [19,23], were considered. To assess this, 

we maintained a specific period of samples from the period June-July-August (JJA) of 2014 

over the 30° S 30° N region, which is a product coverage zone (Tropics). Given that the 

uncertainty distributions did not differ considerably according to the surface type, as 

demonstrated by Roca et al. [22], we chose to focus on the ocean surface, which provides 

a larger sample size (larger number of grids). 

Figure 2 shows the density scatterplot of the uncertainty distribution due to 

sampling, as a function of the daily precipitation intensity, for the JJA of 2014 over the 

tropics (30° N/S) over oceanic surfaces. In general, and as described by Chambon et al. 

[23], the relative sampling errors, which by definition are always positive, decrease as the 

rain accumulation intensity increases. In addition, the uncertainties have a large spread 

for lower precipitation amounts. The RE spread decreased markedly from 200% at 1 mm 

day−1 to 80% at 10 mm day−1, reaching about 40% at precipitation amounts of greater than 



Remote Sens. 2022, 14, 3726 6 of 19 
 

 

50 mm day−1. Following that, the maximum RE density values were between 60% and 80% 

at lower precipitations (around mm day−1), decreasing to about 35% at 10 mm day−1 and, 

subsequently, to 15% for large amounts (>80 mm day−1). Consequently, the same 

decreasing distribution, as a function of the precipitation, was also observed in the IQR, 

in which Q1 (Q3) shifted downward from 65% (150%) to roughly 10% (20%) from low to 

large precipitation amounts, respectively. The IQR range diminished from 85% to 

approximately 10%. The median demonstrated a decreasing range of about 85% as 

precipitation intensity increased, varying from 100% (at 1 mm day−1) to roughly 15% (>80 

mm day−1). Indeed, the overall error sampling distributions were preserved regardless of 

the surface type condition (land and ocean). The main surface type contrasts that can be 

accounted for are the larger RE spread at low-to-moderate (large) precipitation 

accumulations over ocean (land, not showed). 

 

Figure 2. The uncertainty distribution due to sampling (y-axis, in %) as a function of the daily 

precipitation (x-axis, in mm day−1) for June-July-August of 2014, between 30° N/S and over oceanic 

surfaces from TAPEER product. Panel shows the density scatterplot (colored scale) superimposed 

by the log-binned IQR distributions (in black) of the relative error vs. the daily accumulated 

precipitation (log-scale distributed). Outliers are represented by blue dots. 

The misrepresentation of the sampling errors, as a component of the error budget, 

can propagate to the final daily precipitation distributions [20]. This would impact both 

the detection and the quantification of a certain daily precipitation intensity category [23]. 

According to Roca et al. [22], at intense precipitation accumulations the sampling relative 

uncertainty varies from 15% to 20%. Accordingly, the final daily precipitation amounts 

can be better represented, benefiting from the large range in the PMW 

observations/sampling, including the sounder platforms (e.g., SAPHIR), which lead to 

better spatial and temporal detection of those precipitating events that contribute to the 

daily precipitation accumulations, e.g., over the tropical zones [19]. Furthermore, the 

appropriated representation of such sampling error distributions throughout a statistical 

model is not a trivial task, since the RE distribution can assume different density shapes 

depending on the precipitation intensity. 

2.2.3. Uncertainties Obtained by Comparisons with Rain-Gauge Network 

Beyond the intrinsic error sources identified above, the uncertainty of the 

accumulated daily integrated precipitation estimation is often assessed, in bulk, by 

conducting a comparison of rain-gauges networks. It is useful to estimate if the satellite 

product is characterized by a bias with respect to the in-situ measurements. To illustrate 

the simple modelling of this source of uncertainty, we used the JAXA’s Global Satellite 
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Mapping of Precipitation (GSMaP, [37]) near-real-time version 6 (NRT V6) product. The 

hourly 0.1° original data were averaged over 1° × 1° grid cells and accumulated over one 

day, from 12Z to 12Z to match the rain-gauge network reporting convention. 

In this section, the analyses were carried out considering, as ground reference, the in-

situ data from several daily accumulated precipitation observations (12Z–12Z) distributed 

over Brazil. After applying multiple and sequential quality control checks, also performed 

by the Centre for Weather Forecasting and Climatic Studies of Brazil (CPTEC/INPE) and 

the HYdro-geochemistry of the AMazonian Basin (HYBAM), daily accumulated gridded 

precipitation fields were created by computing the arithmetic average of all available 

stations within a pre-defined grid cell of 1° × 1° of spatial resolution. The approach 

considers the number of available gauges inside each grid cell (i.e., at least 5 rain gauges) 

as well as the standard error, in order to reduce the impact of the ground truth 

uncertainties [15]. Although these Brazilian gauge observations have long-term 

availability, the analyses here focused on the period from December to March across 3 

years (2014, 2015 and 2016)—which represents the rainy season in much of Brazil [38]. 

Figure 3 depicts the RE distribution of the GSMaP NRT satellite-based precipitation 

product as a function of the daily precipitation intensity. A large amount of low-to-

moderate daily precipitation accumulations were observed, especially due to the 

substantial contribution of the RE overestimations that reached, for instance, up to +500% 

at 1 mm day−1. This dispersion tends to decrease considerably as the precipitation intensity 

increases. However, the RE density peaks were often located in the underestimation 

portion throughout the precipitation intensity range. From 1 to 10 mm day−1, the RE 

density peaks were mostly observed at about −90%, whereas for precipitation 

accumulations greater than 10 mm day−1 the RE density peaks were located around −50%. 

This pattern was also followed by the negatively biased IQR distributions, in which Q3 

and Q2 presented a constant decrease from +50% to −10% and from −10% to −55%, 

respectively. No significant changes were observed for the Q1 component (values were 

constant at −75%, varying between ±5%). Yet, it is noteworthy that the RE density 

distribution changed from a non-normal distribution (highly positive skewed) at low-to-

moderate precipitation intensities, to normal distributions at high precipitation 

intensities, both of which were negatively biased. 

 

Figure 3. The relative difference distribution between satellite (GSMaP NRT) and ground-based 

data (y-axis, in %) as a function of the daily precipitation (x-axis, in mm day−1) over Brazil (land 

only) for December-January-February-March of three consecutive years (May 2014, June 2015 and 

July 2016). Panel shows the density scatterplot (colored scale) superimposed by the log-binned IQR 

distributions (in black) of the relative error vs. the daily accumulated precipitation (log-scale 

distributed). Outliers are represented by blue dots. 
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This overall uncertainty distribution scenario, for satellite-based daily accumulated 

precipitation products, can be explained by the impact and influence of different 

uncertainty sources [39]. According to Roca et al. [20], assuming the various uncertainty 

sources to be independent, the error budget can be defined according to sampling, 

algorithmic and calibration error terms. In addition, as described by Maggioni et al. [40], 

L3 satellite-based precipitation products can be affected by other errors that are linked, 

for instance, to the characteristics of the rain (i.e., intensity and occurrence), the climate 

and the environmental conditions, such as the seasonality, topography surface type, etc. 

Such performance distributions were summarized by Maggioni et al. [11] for the Tropical 

Rainfall Measuring Mission (TRMM) Era. Gosset et al. [15] highlighted the importance of 

the density of gauges and its qualities as a reference for satellite-based precipitation 

assessments, as it is crucial for the success of categorical and continuous verification. In 

Brazil, the L3 satellite-based precipitation uncertainties, especially in terms of relative 

bias, were demonstrated to be associated with distinct conditions, such as the surface type, 

precipitation regime, topography, gauge density, etc. [41–44]. 

2.3. The Gaussian Mixture Model 

Gaussian mixture model (GMM) is a probabilistic function that tends to group 

multiple Gaussian distributions into a single distribution and can be defined as: 

�(�� ∨ ��, µ�, ��) = � ���

�

���

 (3)

where �� is the data sample, �� represents the weight of each component (mixture) m = 

… 1, …, M. The components, also referred to as the modes, are represented as a normal 

distribution with parameters’ mean µ� and standard deviation �� values. 

GMM are widely applied for fitting as well as to identify subgroups that compose a 

given distribution. In meteorology, GMM has been considered, for instance, for forecast 

verification [45], polarimetric radar-based rainfall-rate estimation [46], predicting 

precipitation events [47], density estimation and the feature identification of Atmospheric 

Lagrangian Particle Dispersion Models [48]. Several studies have been conducted so far 

on the development and improvement of an evolutionary GMM algorithm that 

automatically fits the distribution by minimizing the given distribution error [49–51]. 

Here, the GMM method was implemented thanks to the evolutionary “Distribution 

Optimization” algorithm [51] which separates the M (modes) that composes the mixture 

of gaussians. The algorithm involves multiple and sequential steps (i.e., creation of 

GMMs’ population, fitness calculation, filter, mutation, recombination and final check for 

GMM selection). Finally, the algorithm is complete after a fixed number of iterations by 

returning the GMM distribution with the highest fitness and its correspondent parameters 

(i.e., µ, σ, α and Bayesian decision borders) which can be independently used as input 

parameters. The final algorithm output includes both the individual gaussian elements 

(M) and the associated statistics responsible for describing the overall GMM distribution, 

which is derived from the sum of all individuals M. In order to find the GMM with the 

highest fitness, the Distribution Optimization algorithm considers, as a core, an adjustable 

error function X2 based on chi-square statistics and the probability density function (PDF). 

To minimize the associated distribution error, the fitness function considers multiple 

statistics, such as best root-mean-square (RMS), the standard deviation, the overlap error, 

etc. Thus, for each individual GMM element (M = 1, 2, …), the µ, σ, α, the Bayesian 

decision borders and other associated goodness-of-fit statistics (e.g., Similarity Error, 

Overlap Error, Mixed Distribution Error) can be retrieved via the Distribution 

Optimization algorithm. The automated genetic machine-learning GMM “Distribution 

Optimization” algorithm is available in the R library “DistributionOptimization” 

(https://cran.r-project.org/package=DistributionOptimization, accessed on 1 February 

2021) and a detailed description is provided by Lerch et al. [51]. 
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For this study, the GMM distribution fit parameters (i.e., µ, σ, α and Bayesian 

decision borders) were retrieved to reconstruct and assess the uncertainties using two 

Gaussians (M = 2). The results were contrasted with a single gaussian model (M = 1). The 

number of iterations adopted was 100 (sensitivity tests were performed on the number of 

iterations starting from 100, with M = 1,…, 5, 10 gaussian modes, and revealed no 

significant gains on the goodness-of-fit results). The goodness-of-fit statistics, such as the 

Akaike Information Criterion (AIC, [52]), were also computed, in order to demonstrate 

the final GMM distribution performances across the precipitation bins. The residuals ε 

between the estimated uncertainty distributions from the models (GMM and Gaussian) 

and the actual uncertainty distribution values OBS were estimated as follows: 

� = �����[���,��������] − ��� (4)

3. Satellite Precipitation Uncertainty Distribution Approximation 

In this section, the three above-described satellite-based precipitation uncertainty 

distribution types, i.e., (i) constellation change-induced uncertainties; (ii) sampling 

uncertainty and (iii) comparison with rain-gauges network, were explored using the 

aforementioned GMM model. The performances of the GMM model were also contrasted 

with that of a simple Gaussian model as a function of the precipitation accumulation. 

3.1. The GMM Model Distributions and Performances 

Figure 4 shows an example of the observed uncertainty distributions compared with 

the GMM and a simple Gaussian fit model for two daily precipitation categories/bins, i.e., 

at low 1.04–1.25 mm day−1 (Figure 4a) and large 69.39–83.3 mm day−1 (Figure 4b) 

accumulations, through the C99 and the CREF experiments. As mentioned, with increasing 

rainfall intensity, the right-skewed uncertainty distribution shape began to acquire a more 

symmetrical distribution shape with the median centered at zero (less unbiased). For 

instance, in the low accumulation case, the RE distribution presented a negative median 

of about −9.8%, while the median for precipitation intensity was −2.7%. 

At low daily precipitation amounts (Figure 4a), the outperformance of the GMM 

model was clearly observed in representing both the RE under- and over-estimations 

compared to the Gaussian model. However, the models’ representations of the RE 

distributions at low to moderate daily precipitations were more problematic due its larger 

sample and the heterogeneity of observations that led to the highest densities (peak 

numbers and locations). This consequently resulted in larger residuals, especially at the 

RE underestimations where the maximum densities were found, as the main factor 

responsible for the precipitation underestimations at this precipitation classes. In contrast, 

the uncertainty overestimations (positive RE) were well fitted by the GMM model. Yet, 

despite still being positively skewed, the Gaussian model density peak was more shifted 

around zero, while the GMM and observed density peaks were approximately −25%. At 

large precipitation accumulations (Figure 4b), both the Gaussian model and the GMM 

model could reproduce the unimodal RE distributions, resulting in significantly small 

residual magnitudes, especially at the density peak, and with only slight differences 

between each other. 
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Figure 4. An example of over-land global uncertainty distributions (x-axis, in %) during the JJA of 

2014 for the daily precipitation bins (a) 1.04–1.25 mm day−1 and (b) 69.39–83.3 mm day−1, resulted 

from the comparison between the C99 and the CREF experiments. The GMM fit with M = 2 (blue line) 

is contrasted with a simple Gaussian fit (red line) to represent the observed distribution (black line). 

Note that GMM “modes” (M#1 and M#2) are in grey filled area dashed curves. The perpendicular 

dashed lines indicate the Bayesian boundaries between the two GMM modes (in blue) and its 

correspondent mean values (in grey). 

Systematic performance, by comparing the GMM and Gaussian models, and as a 

function of the precipitation accumulation in addition to the contrast between the three 

types of uncertainty, was better illustrated in the AIC goodness-of-fit statistics (Figure 5). 

Overall, the GMM skills varied according to precipitation intensity, which was linked to 

the nature of the precipitation uncertainty source. This also included the constellation 

changing assumption that presented the largest sensitivity to the AIC results and stability 

between multiple satellite precipitation products. The superior goodness-of-fit statistics 

were found for the most part for large precipitation accumulations (substantially 

increasing greater than 10 mm day−1) regardless of the satellite error source. The maximum 

AIC results were observed in the range from 5 to 10 mm day−1, except for the sampling 

error (Figure 5b), which also presented high and constant AIC values at precipitation 

accumulations of 0.5–10 mm day−1. The more different the constellation configuration, the 

more the model is prone to overfitting (higher AICs) the uncertainty representation 

(Figure 5a). Figure 5c shows that the GMM proved to be well suited to represent the 

uncertainties of satellite products when compared to rain gauges, resulting in lower AIC 

values overall. To better illustrate that, we expanded the AIC performance evaluation to 

multiple NRT satellite-only precipitation products. In addition to the GIRAFE and the 

GSMaP NRT precipitation products, the Climate Prediction Center (CPC) morphing 

technique Version 1.0 RAW (CMORPH-RAW, [53]), the Integrated Multi-satellitE 

Retrievals for GPM V06—the Early/precipitationCal version (IMERG V06E, [54]), the 

Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 

Version 7 Real Time (TMPA-RT, [55]), the TAPEER Version 1.5 (TAPEER 1.5, [20,23]) and 

the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks (PERSIANN, [56,57]), were also assessed. Although the main distributions of 

uncertainty as a function of precipitation accumulation were retained between the 

products, more apparent AIC goodness-of-fit differences (second-order uncertainty) were 

detected for low-to-moderate precipitation accumulations. This can be attributed to 

various factors, including the algorithm itself as well as the source of observations (e.g., 

PMW rain rates, IR images and so on), which can be the subject of further investigations. 
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Figure 5. The GMM goodness-of-fit through the Akaike information criterion (AIC) statistics, as a 

function of the precipitation (x-axis, in mm day−1). Comparisons between the three error sources 

considered: (a) due to constellation changes induced uncertainties, (b) due to sampling uncertainty 

and (c) through a comparison between multiple satellite-based with rain-gauges network. AIC 

results were normalized by the maximum value of all error sources. 

3.2. Constellation Changes-Induced Uncertainties 

Systematic analysis of the accumulated precipitation from 0.5 to 100 mm day−1 

confirmed the case study and revealed the better performance of the mixed model than 

for the single Gaussian model. The better representation of the observed RE density 

distributions provided by the GMM model is not related to the experimental 

configuration (Figures 6 and 7), despite the better performance for the RE_C04 experiment 

(seen the AIC goodness-of-fit comparisons in Figure 5). In the cases of more intense 

accumulation, even if gain is not as dramatic when using the mixture, the two Gaussian 

fit outperformed the single Gaussian approach. 

Overall, the largest residual concentrations were of up to 10 mm day−1 and were more 

prominent in the single Gaussian model. The Gaussian model largely overestimated 

(underestimated) the positive (negative) RE distributions, especially in the RE range from 

25% to 60% (from −30% to 0%), which presented ε of greater (lower) than ±0.2. The 

Gaussian model also overestimated both the maximum peak (mode) and median of the 

uncertainty density distributions in about 20% of low-to-moderate rain accumulations. In 

addition, the Gaussian model was not able to represent the uncertainty distributions at 

extremes precipitation accumulations (i.e., ≥100 mm day−1). In this case, the Gaussian 

model uncertainty distributions were less biased (density peak centered roughly the 

zero—less positively skewed), overestimating the density peak of roughly 17% of 

uncertainties ranging from −5 to 15%. This occurred differently than for the observed RE 

distributions (seen in Figure 1a), which had a slightly right-skewed distribution. To offset 

that, given the different density distribution shape compared to that which was observed, 

the Gaussian model also led to an underestimation of the negative uncertainties ranging 

between 15% and 30%. 

On the other hand, the GMM model could better fit the entire precipitation 

accumulation range (Figure 6b,d). The outperformance of the GMM model is evidenced 

in multiple aspects (e.g., residual, density peak, median distribution) and indicates that 

the uncertainties remain, mainly, in representing the maximum density peaks at 

approximately up to 10 mm day−1 (in the range of −8% RE on average). Above the 

precipitation accumulation of 80 mm day−1, the GMM model slightly overestimated the 

density peak (less than 5%) surrounding the 0 and −20% RE range. The maximum 

underestimations (lower than −0.2), were found to be of lower than 1 mm day−1 (in the 

−16% RE range). In general, no considerable (greater than 0.2) RE overestimations were 

found using the GMM model for both the RE_C99 and RE_C04 (Figure 7) experiments. The 

GMM model also stood out by being well suited to more unimodal and leptokurtic 
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distributions over the entire precipitation range (i.e., the RE_C04 case), despite slightly 

underestimating the density peaks. The Gaussian model poorly reproduced the 

uncertainties across the entire range of precipitation, underestimating the observed 

distribution peaks at about −5% RE. The RE_C04 Gaussian distributions were negatively 

skewed rather than positively skewed. 

 

Figure 6. Density scatterplot of the (a) Gaussian and the (b) GMM (with M = 2) models and their 

respective residuals (c,d) in representing the relative error distributions (y-axis, in %) as a function 

of precipitation (x-axis, in mm day−1) for the RE_C99 experiment, during the JJA of 2014 and over 

land surfaces (between 55° N/S global zones). Black crosses indicate residual values above/below 

the ±0.2 density values. Solid and dashed black lines in c-d correspond to the differences between 

the model and the observed median (Q2) and the density peaks (DP), respectively. 
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Figure 7. Density scatterplot of the (a) Gaussian and the (b) GMM (with M = 2) models and their 

respective residuals (c,d) in representing the relative error distributions (y-axis, in %) as a function 

of the precipitation (x-axis, in mm day−1) for the RE_C04 experiment, during the JJA of 2014 and over 

land surfaces (between 55° N/S global zones). Black crosses indicate residual values above/below 

the ±0.2 density values. Solid and dashed black lines in c-d correspond to the differences between 

the model and the observed median and the density peaks, respectively. 

3.3. Sampling Uncertainties 

In the same manner, Figure 8 depicts the performance differences between a single 

Gaussian model and the mixed Gaussians model, but for the sampling uncertainties (over-

ocean) scenario. Although both the Gaussian and GMM models were able to reproduce 

the general observed sampling error distributions (seen in Figure 2), considerable 

performance differences were observed, especially in capturing the distribution 

maximum densities. The positive skewness of the sampling error distributions, especially 

at low-to-moderate precipitation rates (Figure 2), was not properly captured by 

considering a single Gaussian model. The main impact was observed on the density peak 

location, which consequently contributed to large positive and negative residuals (>0.2). 

An alternation between under- and over-estimations, indicating a considerable skewness, 

was observed for the Gaussian model. Although it tended to decrease as a function of the 

precipitation accumulation, this feature remained throughout the entire precipitation 

range. Such distribution had a strong impact at precipitation accumulations of up to 20 

mm day−1, for which the uncertainty distributions presented an overestimation for both 

the density peak (from 50% to 10%) and the median (between 7% and 15%). 

In short, the GMM model could better approximate the sampling uncertainties, being 

consistent for the most part of the precipitation range. GMM slightly overestimated the 

density peak at precipitation and at accumulations of lower than 1 mm day−1. The 

outperformances were clearly evident for precipitation amounts of greater than 20 mm 

day−1, where the RE distributions became more symmetrical (less skewed). The GMM 

model could well represent the sampling uncertainties, providing less residuals and 

correctly matching the medians and density peaks. The uncertainty underestimations at 
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about +50%, for precipitation of up to 5 mm day₋1, are worth noting. No considerable 

residuals (>±0.2) were observed over much of the precipitation range. 

 

Figure 8. Density scatterplot of the (a) Gaussian and the (b) GMM (with M = 2) models and its 

respective residuals (c,d) in representing the relative error distributions (y-axis, in %) as a function 

of the precipitation (x-axis, in mm day−1) for the error sampling (by TAPEER1.5 product), during the 

JJA of 2014 and over ocean surfaces (between 35° N/S global zones). Black crosses mean the residual 

values above/below the ±0.2 density values. Solid and dashed black lines in c-d correspond to the 

differences between the model and the observed median (Q2) and the density peaks (DP), 

respectively. 

3.4. Comparison with Rain-Gauges Network 

The ability to approximate the observed satellite-gauge uncertainty (relative bias) 

distributions using a single versus a mixture of two Gaussians is presented in Figure 9. As 

mentioned in Section 2.2.3, the main feature of the observed uncertainty distributions is 

the systematic underestimations found throughout the entire precipitation range (seen in 

Figure 3). Overall, the GMM model is clearly a more suitable choice compared to the single 

Gaussian model.  

The single Gaussian model showed several weaknesses, especially in representing 

the observed underestimation peaks—the highest densities of which were found at −30% 

RE (Figure 3). Although there was a tendency for the concentration of residues to decrease 

as precipitation increased, the pattern of uncertainty was persistent throughout the range 

of precipitation accumulation. In fact, the Gaussian model tended to increase the 

weaknesses (less high-skewed) distributions, over- (under-)estimating the positive 

(negatives) uncertainties and varying as a function of the precipitation accumulations. In 

addition, an upward shift of the RE medians and density peaks distributions of about 

+60% and +80%, respectively, was observed at precipitation accumulations of up to 10 mm 

day−1. 

In contrast, the GMM model properly captured the general uncertainty distribution 

in all precipitation bins (from 1 to 80 mm day−1), especially the large positive weakness 
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shapes of low-to-moderate precipitation amounts (e.g., 1–10 mm day−1). At high 

precipitation amounts, GMM had an opposite residual performance with a more 

positively skewed distribution than the Gaussian model (less right-skewed). The density 

peak as well as the median were correctly located at the negative RE distribution portion. 

Nonetheless, although presenting an overall lower residual feature with nearly constant 

and unbiased median differences, the GMM model slightly shifted the RE density peaks 

upward (overestimated) in roughly +7% of precipitation of up to 20 mm day−1. According 

to Tian et al. [17], such error modeling weaknesses at large precipitation amounts can be 

attributed to the model’s difficulty in capturing the nonlinear behavior due to satellite 

data clustering saturation. 

 

Figure 9. Density scatterplot of the (a) Gaussian and the (b) GMM (with M = 2) models and its 

respective residuals (c,d) in representing the relative error distributions (y-axis, in %) as a function 

of precipitation (x-axis, in mm day−1) for the relative bias from the GSMaP NRT V6 precipitation 

product compared with the ground-based over Brazil (land-only) during the period of DJFM of 

2014/5/6. Black crosses indicate residual values above/below the ±0.2 density values. Solid and 

dashed black lines in c-d correspond to the differences between the model and the observed median 

(Q2) and the density peaks (DP), respectively. 

4. Discussions and Conclusions 

A simple statistical model was introduced to characterize the distribution of 

uncertainty in gridded multi-platform satellite precipitation products. This Gaussian 

Mixture Model was shown to outperform a more simplistic single Gaussian model under 

a variety of ranges of daily accumulated precipitation. It also performed well across a 

variety of error sources, spanning the classic comparison to gauge networks, to the 

sampling uncertainty including more recently expressed, constellation configuration-

based errors. 

Formulating such a simple model provides an additional understanding of using, for 

instance, a Look Up Table. Firstly, as exemplified in our companion paper on the changes 

of the constellation and the time-series, it is straightforward to formulate a stochastic 
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perspective on the uncertainty. Oliveira et al. [28] indeed used the Gaussian mixture and 

a bootstrap technique to estimate the uncertainty distribution over the last two decades 

and to highlight the relatively stronger impact of moderate-to-high rain accumulation of 

the evolution of the constellation configuration. Secondly, the suitability of the Gaussian 

mixture to characterize the uncertainty distribution may provide insights into the 

processes from which the uncertainty arises. Indeed, our results show that two additive 

processes can explain the full uncertainty distribution. To further illustrate this 

perspective, a comparison with the Brazil surface network (Section 3.2) was performed for 

the GIRAFE product using different detection thresholds in the process of retrieval 

(Figure 10). The mean of the first mode of the mixture did not reveal considerable 

sensitivity to this important algorithm assumption. Its variability across the accumulation 

amount range remained similar for each threshold, despite its slightly decreasing 

tendencies as a function of the detection threshold. On the other hand, the variance of the 

mode was strongly impacted by the selection of the threshold, particularly during low-to-

moderate accumulation (<10 mm day−1). For M#2, the situation was similar with the 

impact being stronger in the range of low-to-moderate accumulation for both the mean 

and the variance. This suggests that for M#1 and #2, the impact of the detection step is to 

add random uncertainty and does not generate much bias at larger rain accumulation (>10 

mm day−1).  

Such preliminary analysis emphasizes that improving the L2 precipitation detection 

will likely decrease the random uncertainty of the multi-platform product when 

compared to the rain gauge network. Further analysis should explore the sensitivity of 

the mixture parameters to other algorithms’ intrinsic parameters, such as the propagation 

of the bias in the L2 estimate in the mixture parameters. The sampling uncertainty is likely 

to also benefit from the mixture analysis although more work is required to assess this. 

The current analysis was restricted to a given additive error model framework, but 

such a simple model could also be used to explore alternatives such as a multiplicative 

error framework or rainfall-runoff hydrological simulations [58]. 

 

Figure 10. Sensitivity of GMM (with M = 2) mean (µ, upper panels) and standard deviation (σ, 

bottom panels) parameters as a function of the precipitation (x-axis, in mm day−1) and according to 

different PMW detection thresholds of 0. 5, 1.0, 1.5 mm h−1 (from left to right panels), from the 

GIRAFE precipitation product. The weight (α) parameters, for both the M#1 and M#2, are shown in 

the top right of the figure (upper panels) and represent their respective averages as a function of 

precipitation. 
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