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Abstract: In point-based heterologous image matching algorithms, high-quality interest point de-

tection directly affects the final image matching quality. In this paper, starting from the detection 

mechanism of each interest point detector, optical images and SAR images with different resolutions 

and covering different areas are selected as experimental data. The five state-of-the-art SAR-Harris, 

UND-Harris, Har-DoG, Harris-Laplace and DoG interest point detectors are analyzed in terms of 

scale difference adaptability, nonlinear intensity difference adaptability, distribution uniformity, 

image registration alignment performance and detection efficiency. Then, we performed registra-

tion experiments on images from different sensors, at different times, and at different resolutions to 

further validate our evaluation results. Finally, the applicable image types of each detector are sum-

marized. The experimental results show that SAR-Harris has the best performance in scale differ-

ence adaptability, and UND-Harris has the weakest performance. In terms of nonlinear intensity 

difference adaptability, SAR-Harris and UND-Harris are comparable, and DoG performance is the 

weakest. The distribution uniformity of UND-Harris is significantly better than other detectors. Alt-

hough Har-DoG is weaker than Har-Lap and DoG in repeatability, it is better than both in final 

image alignment performance. DoG is superior in detection efficiency, followed by SAR-Harris. A 

comprehensive evaluation and a large amount of experimental data are used to evaluate and sum-

marize each detector in detail. This paper provides a useful guide for the selection of interest point 

detectors during heterologous image matching. 
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1. Introduction 

With the continuous development of synthetic aperture radar (SAR) imaging tech-

nology towards high resolution and wide swath, the application potential of SAR image 

data in many fields has gradually been reflected. Using high-precision heterogenous im-

ages as a reference, registering SAR images is a hot spot in the field of remote sensing 

image matching. Image matching is the geometric alignment of two or more images from 

the same area; usually, these images are obtained under different imaging conditions (dif-

ferent sensors, different imaging times, etc.). Matching methods are mainly divided into 

two types: intensity-based methods and feature-based methods [1]. Intensity-based meth-

ods usually adopt the idea of template matching. This involves selecting a template win-

dow on the reference image, and then searching within a certain search area on the image 

to be matched. The similarity measure (such as cross-correlation, mutual information, 

sum of squared differences, etc.) is calculated between the template window and the pixel 

intensity corresponding to the search area window on the image to be matched to obtain 

the peak value of the similarity measure function, and finally the matching position is 

determined. Feature-based methods consist of three steps: feature extraction, feature de-

scription, and feature matching. In the feature extraction stage, the common features 
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between the two images should be detected as much as possible, and the types of these 

common features include point features, line features, and area features. Feature descrip-

tion is to generate feature descriptors (that is, feature vectors with a certain length) for the 

extracted features. The final feature matching is to find the same features by calculating 

the similarity measure (such as Euclidean distance) between the descriptors based on the 

feature descriptors, and estimate the image transformation matrix. 

The advantage of the intensity-based method is that only the corresponding simi-

larity measure needs to be selected, and additional feature detection and description are 

not required. However its disadvantage is also obvious; it needs to calculate the similarity 

measure of all pixels in the template window, which is very time-consuming. Due to the 

strong nonlinear intensity difference between heterologous images, the search surface be-

comes non-smooth, and it is easy to fall into the local optimal value during the search 

process. Therefore, it is not suitable for the matching of heterologous images. Compared 

with the former pixel-by-pixel calculation, the feature-based method only needs to detect 

some salient features in the image, so it can achieve higher efficiency than the former, and 

this method can easily achieve scale and rotation invariance. The disadvantage is that dif-

ferent feature extraction methods will have a greater impact on the final matching result, 

so for a specific application, choosing an appropriate feature extraction method is partic-

ularly important. In the feature-based method, the point feature is easier to locate accu-

rately on the image than the line feature and the area feature, and its detection complexity 

is also lower than the latter. Therefore, the point-based matching method is currently the 

most widely used [1,2]. Point features include corner points and blob points, which corre-

spond to different interest point detectors. In recent years, quite a few scholars have eval-

uated the performance of interest point detectors in different application fields. 

In the field of computer vision, Zukal, M. et al., explored the influence of Harris, 

Hessian and DoG interest point detectors by illumination and histogram equalization [3]. 

Cordes, K. et al., analyzed the localization accuracy of alternative interest point detector 

(ALP) and DoG interest point detector, and the results show that ALP is better than DoG 

[4]. To verify the combined performance of different interest point detectors, Ehsan, S. et 

al., proposed an evaluation metric based on the spatial distribution of interest points, and 

extended it to provide a measure of complementarity of pairwise detectors. Experimental 

results show that the scale-invariant feature detectors dominate whether used alone or in 

combination with other detectors [5]. Ruby, P.D. et al., used the survival rate as the eval-

uation indicator to explore the detection performance of four classical interest point de-

tectors under a series of image sequences such as rotation, scaling and blurring [6]. In 

addition to the repeatability, Barandiarán, I. et al., introduced two indicators, the number 

of interest points and the detection efficiency, and conducted a comprehensive evaluation 

of nine classical interest point detectors [7]. For specific applications, in order to explore 

the performance of interest point detectors in real-time visual tracking, Steffen, G. et al., 

designed a video sequence dataset containing various geometric changes, lighting 

changes and motion blur. Taking this dataset as a benchmark, they comprehensively an-

alyze all relevant factors affecting real-time visual tracking by combining interest point 

detectors and feature descriptors [8]. In a simultaneous localization and mapping (SLAM) 

application, Gil, A. et al., evaluated the repeatability of interest point detectors and the 

invariance and saliency of descriptors on different 3D scene image sequences [9]. Prˇibyl 

et al., studied the performance of interest point detectors on high dynamic range (HDR) 

images, using interest point distribution and repeatability as indicators, and the results 

showed that current interest point detectors cannot handle HDR images well [10]. For 

HDR image processing, Melo, W.A. et al., proposed an improved interest point detector 

and tested with a large number of HDR images, finally verifying the effectiveness of the 

proposed algorithm [11]. Gunashekhar, P.K. et al., applied the contrast stretching tech-

nique to the multi-scale Harris and multi-scale Hessian detectors, and proved through 

experiments that the improved detectors have improved repeatability in terms of illumi-

nation, viewing angle, and scale [12]. Kazmi et al., conducted an experimental study on 
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the performance of interest point detectors applied to image retrieval and classification. 

By combining detectors with descriptors, it was concluded that interest point detectors 

can achieve high accuracy in building recognition [13]. Molina et al., studied the perfor-

mance of interest point detectors applied to infrared image and visible image face analy-

sis. The experimental results show that compared with SIFT, ORB and BRISK, SURF 

shows better performance in terms of repeatability and accuracy [14]. 

Although a large number of researchers in the field of computer vision have evalu-

ated the performance of many mainstream interest point detectors, the data used in their 

research are mainly close-range images or ordinary data camera images, and the main 

influencing factors are scale, viewing angle, lighting, and additive noise. In contrast to 

close-range images, heterologous remote sensing images are usually taken at high alti-

tude, and the types of ground objects they cover are more complex. Due to the different 

imaging modes and imaging conditions of heterologous images, there are obvious geo-

metric distortions and grayscale differences between images. This puts forward higher 

requirements on the performance of interest point detectors, which must be able to reflect 

the common features between images to the greatest extent. In the field of remote sensing 

image matching, Wang et al., used SSIM (Structural Similarity Image Measurement) and 

PSNR (Peak Signal to Noise, PSNR) as image quality metrics. The relationship between 

image quality and repeatability of interest point detector applied to remote sensing im-

ages is studied. The results show that the repeatability decreases as the image quality de-

creases, and under certain conditions this relationship can be modeled with some simple 

functions [15]. The following year, Ye et al., used remote sensing images as experimental 

data to evaluate the performance of mainstream interest point detectors in the computer 

vision field [16]. 

To the author’s knowledge, the comparative research on the performance of interest 

point detectors used in heterogeneous remote sensing image matching is relatively lim-

ited. In the existing research, the detector scope of its research does not include the latest 

research progress, and the evaluation indicators used are relatively single. 

In this paper, optical images and SAR images are used as experimental data to eval-

uate the performance of interest point detectors in five aspects: scale difference adaptabil-

ity, nonlinear intensity difference adaptability, distribution uniformity, image registration 

alignment performance and detection efficiency. Finally, we conduct comprehensive im-

age registration experiments to further validate our evaluation results. Considering that 

SAR-Harris, UND-Harris and Har-DoG show good detection performance in the field of 

remote sensing image matching, as well as Harris-Laplace and DoG are widely used de-

tectors in the field of computer vision [17]. Therefore, this paper will evaluate the perfor-

mance of these five detectors. 

2. Methodology 

2.1. Interest Point Detectors 

2.1.1. Harris-Laplace Detector 

Harris-Laplace (Har-Lap) combines scale space theory and Harris corner detection 

detector to make scale invariant [18]. It uses the Harris function to detect corners in the 

scale space and uses the LoG operator [19] for scale localization. The interest point detec-

tion process is shown in Figure 1. 
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Figure 1. Har-Lap detection process. 

Firstly, Gaussian kernels of different scales (that is, different standard deviations) are 

used to continuously smooth the input image to obtain a Gaussian scale space. Then, the 

Harris function response is calculated in the image space of each layer scale image, as 

shown in the following equation: 

          
2
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I D I D
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Among them, M is the scale-adaptive second-order moment matrix of the image, that 

is 
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σD and σI are the differential and integral scales, respectively, and satisfy σD = 0.7σI. x 

represents the pixel coordinate vector of the image. Lx (x, σD) and Lx (x, σI) represent the 

first-order difference horizontal and vertical gradients of the pixel at the position in the 

Gaussian kernel blurred image with standard deviation σD, respectively. GσI represents the 

Gaussian kernel with standard deviation σI, and ∗ is the convolution operation. Several 

corner points can be extracted by setting the Harris function response threshold. Finally, 

in order to obtain the scale attributes of the corner points, one needs to calculate the La-

placian-of-Gaussian (LoG) values of all scale layer images, and judge whether the LoG 

value of the scale where each corner point located is larger than the LoG values of the 

scales of the upper and lower layers; if the condition is met, the point is retained. The 

filtered corner points have the scale attribute. The corner points extracted by the Har-Lap 

detector are shown in Figure 2a. 

   

(a) (b) (c) 
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Figure 2. Schematic diagram of interest points corresponding to five detectors: (a) Har-Lap. (b) DoG. 

(c) Har-DoG. (d) SAR-Harris. (e) UND-Harris. 

2.1.2. DoG Detector 

Differently from Har-Lap, DoG additionally performs corresponding down-sam-

pling operations on the basis of smoothing with Gaussian kernels in order to satisfy the 

continuity of scale changes. The schematic diagram of the construction of DoG scale space 

is shown in Figure 3. 

Downsampling

Scale
(First octave)

Scale
(Second octave)

Gaussian

Difference of Gaussian 
(DoG)

DoG space
(First octave)

DoG space
(Second octave)
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Figure 3. Schematic diagram of DoG scale space construction. 

The Gaussian pyramid is divided into several octaves, and each octave contains sev-

eral layers. Within each octave, Gaussian kernels with different standard deviations were 

used for blurring. Between different octaves, corresponding down-sampling operations 

are performed, and the first layer of the next octave is obtained by twice down-sampling 

the third-to-last layer of the previous octave. The difference of Gaussian scale (DoG) scale 

space is obtained by subtracting the Gaussian blurred images of two adjacent scales in the 

same octave. The extreme point detection is performed in the DoG space to obtain Blob 

points. The schematic diagram of extreme point detection is shown in Figure 4 [20]. 
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Figure 4. Schematic diagram of extreme point detection of DoG detector. 

Compare the pixel value of the extreme point to be detected with its current 8 neigh-

bors on the DoG layer and the 18 neighbor pixel values of its upper and lower DoG layers 

(26 neighbors in total); if the point is a local extreme point (maximum or minimum), it is 

used as a candidate interest point for the next stage. Since DoG will generate a strong edge 

response, it is necessary to remove low-contrast extreme points and unstable edge re-

sponse points on the basis of the previous step to obtain the final interest points. The in-

terest points extracted by DoG are shown in Figure 2b. 

2.1.3. Har-DoG Detector 

Har-DoG is proposed by Ye, Y. on the basis of Har-Lap and DoG [21], which com-

bines Har-Lap corner points and DoG Blob points. According to the condition that DoG 

is an approximation of LoG, DoG is used instead of LoG to complete the scale positioning 

in the process of corner detection, and Blob point detection can also be performed in DoG 

space. The overall detection process is divided into the following three steps: 

Step 1: Construct Gaussian scale space and DoG scale space. 

Step 2: Harris corner points detection is performed in the Gaussian scale space, and 

the scale of the corner is determined by the DoG response. 

Step 3: Blob points detection in DoG space. 

The interest points extracted by Har-DoG are shown in Figure 2c. 

2.1.4. SAR-Harris Detector 

SAR-Harris was proposed in the SAR-SIFT [22] algorithm. Aiming at the problem 

that the differential gradient operator is easily interfered by the multiplicative speckle 

noise when applied to the SAR image, the ROEWA operator is introduced to calculate the 

horizontal and vertical gradient. 
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In the equation above, αn is the corresponding scale factor, (x, y) represents the coor-

dinate of the image pixel whose gradient needs to be calculated, M and N are the calcula-

tion window size of ROEWA operator, which are related to the scale factor αn; the larger 

the αn, the larger the window. Similar to Har-Lap, the first-order differential gradient is 

replaced by the ROEWA gradient to obtain the SAR-Harris function, which can be calcu-

lated by: 
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In the above equation, �√���  is a Gaussian kernel with a standard deviation of √2αn. 

The interest points extracted by SAR-Harris are shown in Figure 2d. 

2.1.5. UND-Harris Detector 

The traditional multi-scale Harris detector relies on Gaussian blur, which suffers 

from two key drawbacks: (1) The Gaussian kernel used is isotropic, and different image 

geometric structures are blurred to the same degree. This may lead to a situation where 

some interest points that can be correctly matched cannot be extracted in the feature de-

tection stage. (2) The extracted interest points cannot be evenly distributed in the image 

space. For images with local geometric distortion, the uneven distribution of interest 

points will reduce the quality of image matching. 

The Harris interest point detector based on uniform nonlinear diffusion (UND-Har-

ris) [23] uses nonlinear diffusion filtering instead of Gaussian filtering to better preserve 

the edge and detail information of the image while suppressing noise. The comparison 

between nonlinear diffusion filtering and Gaussian filtering is shown in Figure 5 below. 

     

(a) 

     
(b) 

Figure 5. Results of nonlinear diffusion filtering and Gaussian filtering: (a) Gaussian filtering. (b) 

Nonlinear diffusion filtering. 

In order to make the extracted interest points evenly distributed in scale space and 

image space, feature scale and block strategy are introduced. The number of interest 

points for each scale layer is determined using the following equation: 
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Among them, Ntotal is the total number of interest points to be extracted, Nm is the num-

ber of interest points to be extracted for the m-th scale layer, and Fm is the ratio of m-th layer 

interest points number to the total number of interest points. Fm can be calculated by 
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α0 and αm represent the initial scale and the scale corresponding to the m-th scale 

layer, respectively. C represents the ratio between the two scale layers. In order to make 

the interest points extracted in each scale layer evenly distributed in the image space, each 

scale layer is divided into n × n non-overlapping sub-blocks. The number of interest points 

to be extracted for each sub-block in the m-th scale layer is 


2

m
N

h
n

 (11)

In the actual extraction of interest points, the calculation of the corner response func-

tion and the setting of the threshold are consistent with the multi-scale Harris detector. 

The Harris response of each sub-block in the image of each scale layer is calculated sepa-

rately, and h points with larger response intensities are selected as the interest points ex-

tracted in the sub-block. 

2.2. Evaluation Metrics 

2.2.1. Repeatability 

For image matching applications, if the interest points detected in the reference image 

can also be detected in the sensed image, this is very beneficial for the subsequent match-

ing process. Therefore, the repeatability of interest points is introduced as the performance 

indicator of interest point detectors. The higher the repeatability, the greater the possibil-

ity that the interest points can be correctly matched later [24,25]. The equation for calcu-

lating the interest point repeatability is as follows: 


min( , )

K
R

M N
 (12)

In the equation above, R is the repeatability, K represents the number of correspond-

ing point pairs between two images. M and N are the number of interest points detected 

on the reference image and the sensed image, respectively, and these points must be lo-

cated in the same area of two images. min (∙) represents the minimum operation. The 

equation for calculating M and N is: 

   
1

( )|
i i

M num P T P I  (13)

   1

2
( )|

j j
N num P T P I  (14)

T represents the transformation matrix from the reference image to the sensed image. 

Pi and Pj represent the interest points in the reference image and the sensed image, 
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respectively. min (∙) represents the number of interest points. I1 and I2 are the pixel coordi-

nate ranges of the reference image and the sensed image, respectively. 

For the discrimination of corresponding point pairs, it is necessary to restrict from 

the two criteria of position and scale. 

(1) Location criteria 

 ( , )
j i

dist P T P r  (15)

where r is the distance threshold, generally set to 1.5 pixels, dist (∙) represents the distance 

operator between two points. 

(2) Scale criteria 

When multi-scale interest point detection is performed in the scale space, the scale 

attribute of the corresponding point pairs should also be considered, and the scale differ-

ence between the corresponding point pairs in two images satisfies εs < 0.4, and 

 


 
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2 2

2

2 2

min( , )
1

max( , )

i j

s

i j

S  (16)

In the above equation, σi and σj are the scales corresponding to the two interest points 

respectively. S is the scale ratio of the two images (S ≥ 1). 

2.2.2. Distribution Uniformity 

Due to the local geometric distortion in the remote sensing image, if the correspond-

ing point pairs are not uniformly distributed on the images (concentrated in some areas), 

the quality of the final image matching tends to be degraded [26]. Therefore, in the feature 

detection stage, the distribution uniformity of interest points is also an important indicator 

to evaluate the performance of interest point detectors. In this paper, the distribution uni-

formity [27] is introduced as a criterion for evaluating the spatial distribution of interest 

points on the image. 

This criterion needs to complete three steps: (1). Image sub-region division; (2). Count 

the number of interest points in each sub-region, and calculate the variance of the number 

of interest points in ten sub-regions; (3). Calculate the distribution uniformity. 

First, the image area is divided in five directions to obtain ten sub-areas, as shown in 

Figure 6 below, and the two sub-areas obtained by each division are equal in area. 

   

(a) (b) (c) 

  

 

(d) (e)  

Figure 6. Schematic diagram of sub-region division: (a) Vertical direction. (b) Horizontal direction. 

(c) 45° direction. (d) 135° direction. (e) Center and periphery. 
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Then, count the number of interest points in each sub-region Nregion_i, i = 1, 2, …, 10. 

Normalize Nregion_i and compute the standard deviation Nstd as an indicator of distribution 

uniformity, The smaller Nstd is, the more evenly the interest points are distributed. 

2.2.3. Image Registration Alignment Performance 

This is a subjective evaluation metric that matches heterologous images by com-

bining interest point detectors with feature descriptors. The two registered images are su-

perimposed to display the corresponding mosaic map, and the alignment performance at 

the junction of the images in the mosaic map is observed and qualitatively scored. 

2.2.4. Detection Efficiency 

Under the premise of detecting the same number of interest points, the less the de-

tection time consumed by the detector, the higher the detection efficiency. By adjusting 

the detection threshold, the number of interest points detected by each detector is the 

same, and the time consumption of the detectors is calculated for comparison. 

3. Experiments 

3.1. Scale Difference Adaptation 

This group of experiments tests the adaptability of the interest point detector to the 

difference in image scale. Airborne high-resolution SAR images and spaceborne medium-

resolution SAR images were selected, respectively. The images of both resolutions are lo-

cated in an airport area; the high-resolution image has a resolution of 0.2 m and a size of 

1300 × 1300. Medium resolution images have a resolution of 10 m and a size of 600 × 600. 

Each set of data contains five images, where the scale difference is achieved by manual 

scaling, taking 1.5, 2, 2.5, and 3 times the scale difference, respectively. The experimental 

data are shown in Figure 7 below. 

    
(a)  (b)  (c)  (d)  

Figure 7. SAR image with scale difference: (a) Airborne SAR reference image. (b) Airborne SAR 3× 

scale image. (c) Spaceborne SAR reference image. (d) Spaceborne SAR 3× scale image. 

Figure 8 shows the repeatability of each interest point detector on the above data. As 

the scale difference increases, the repeatability of all detectors shows a monotonically de-

creasing trend. For images of two resolutions, among the five detectors, the repeatability 

of SAR-Harris is the highest compared with other detectors (when the scale difference is 

between 1.5 and 2.5). UND-Harris is the lowest. In addition, the repeatability of DoG is 

higher, followed by Har-DoG and Har-Lap. 
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(a) (b) 

Figure 8. The effect of scale difference on repeatability: (a) Airborne SAR images. (b) Spaceborne 

SAR images. 

3.2. Nonlinear Intensity Difference Adaptation 

Due to the different imaging modes, there is a large nonlinear intensity difference 

between heterogeneous images. This group of experiments studies the adaptability of the 

interest point detector to this difference. The selected image data information is shown in 

Table 1. GSD in Table 1 stands for ground truth spacing and there are no scale and rotation 

differences between each pair of images. All images are shown in Figure 9. The experi-

mental results of the three sets of data are shown in Figure 10. 

Table 1. Image pairs with Nonlinear intensity difference. 

Area 
Dataset Description 

Reference Image Sensed Image Image Characteristic 

1 

Sensor: GF-3 Sensor: Airborne SAR 

The imagery covers an airport and 

its surrounding area. There is a sig-

nificant intensity inversion between 

the optical image and the SAR im-

age. 

GSD: 3 m GSD: 3 m 

Size: 600 × 600 Size: 600 × 600 

Sensor: Google Earth Sensor: Airborne SAR 

GSD: 1 m GSD: 1 m 

Size: 1744 × 1541 Size: 1744 × 1541 

Sensor: Google Earth Sensor: Airborne SAR 

GSD: 3 m GSD: 3 m 

Size: 600 × 600 Size: 600 × 600 

2 

Sensor: GF-3 Sensor: Airborne SAR 

The imagery covers an area of 

ponds, and all three types of images 

have a significant aggregate struc-

ture in this area. 

GSD: 3 m GSD: 3 m 

Size: 600 × 600 Size: 600 × 600 

Sensor: Google Earth Sensor: Airborne SAR 

GSD: 1 m GSD: 1 m 

Size: 1495 × 1535 Size: 1495 × 1535 

Sensor: Google Earth Sensor: Airborne SAR 

GSD: 3 m GSD: 3 m 

Size: 600 × 600 Size: 600 × 600 

3 

Sensor: GF-3 Sensor: Airborne SAR The imagery covers the river and 

surrounding farmland. There is a 

certain temporal difference between 

the three types of images, and the 

farmland boundaries are not obvi-

ous on the SAR images. 

GSD: 3 m GSD: 3 m 

Size: 1466 × 1466 Size: 1466 × 1466 

Sensor: Google Earth Sensor: Airborne SAR 

GSD: 1 m GSD: 1 m 

Size: 3720 × 3720 Size: 3720 × 3720 
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Sensor: Google Earth Sensor: Airborne SAR 

GSD: 3 m GSD: 3 m 

Size: 1466 × 1466 Size: 1466 × 1466 

4 

Sensor: GF-3 Sensor: Airborne SAR 

The imagery covers an area of sea-

side buildings, about half of the im-

agery is the sea surface, and there 

are different boats on the sea surface 

on the three images. 

GSD: 3 m GSD: 3 m 

Size: 1375 × 1375 Size: 1375 × 1375 

Sensor: Google Earth Sensor: Airborne SAR 

GSD: 1 m GSD: 1 m 

Size: 3474 × 3474 Size: 3474 × 3474 

Sensor: Google Earth Sensor: Airborne SAR 

GSD: 3 m GSD: 3 m 

Size: 1375 × 1375 Size: 1375 × 1375 

 

    
(a1) (a2) (a3) (a4) 

    

(b1) (b2) (b3) (b4) 

    
(c1) (c2) (c3) (c4) 

Figure 9. Image pairs with nonlinear intensity difference: (a1–a4) Airborne SAR images. (b1–b4) 

Spaceborne SAR images. (c1–c4) Optical images. 

   

(a) (b) (c) 

Figure 10. Influence of nonlinear intensity difference on repeatability: (a) Spaceborne SAR-to-Air-

borne SAR. (b) Optical-to-Airborne SAR. (c) Optical-to-Spaceborne SAR. 
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For each detector, we count the average of its repeatability across 12 image pairs ob-

tained from four different regions and three different sensors as the final measurement 

indicator. The statistical results are shown in Table 2. 

Table 2. Average repeatability of five detectors. 

Interest Point Detector Average Repeatability/% 

UND-Harris 10.375% 

Har-Lap 7.2277% 

SAR-Harris 11.9614% 

Har-DoG 6.5823% 

DoG 5.4669% 

It can be seen from Table 2 that the average repeatability of SAR-Harris is the highest, 

followed by UND-Harris and Har-Lap. DoG is the lowest, and Har-DoG is between Har-

Lap and DoG. From the results of the three sets of experimental data in Figure 10 alone, the 

five detectors have higher repeatability on area 2 and lower repeatability on area 3 and 4. 

The three types of images in area 2 have prominent geometric structures and clear 

edge structures, which is conducive to the extraction of interest points. In area 3 and 4, 

there is a temporal difference between the images, and the texture information is weaker 

than the other three areas. It is not difficult to see that SAR-Harris has better repeatability 

than other operators on airborne SAR image and spaceborne SAR image data (SAR-Harris 

was proposed to solve the problem of heterogeneous SAR image matching), while in the 

other two sets of data It is comparable to the repeatability exhibited by UND-Harris. Since 

DoG detects Blob points, and speckle noise on SAR images can easily be mistakenly de-

tected as Blob points, the repeatability of DoG is the lowest among the five detectors. The 

repeatability of Har-DoG in each pair of images is between Har-Lap and DoG, because 

Har-DoG is essentially a combination of the two. 

3.3. Distribution Uniformity 

For image matching application, the uniformity of the location distribution of interest 

points on the image will affect the final image matching accuracy. Therefore, the interest 

point detector is required to detect relatively uniformly distributed interest points on both 

the reference image and the sensed image. This group of experiments uses three sets of 

image data in the nonlinear intensity difference adaptability experiment. For each sensor 

and different areas, the distribution uniformity Nstd corresponding to the reference image 

and the sensed image are calculated, respectively. The average value of N
—

std from two im-

ages is used as the final distribution uniformity indicator on this image pair. The experi-

mental results of three sets of data are shown in Figure 11. Taking the spaceborne SAR 

image as an example, the detection results of the five detectors are shown in Figure 12. 

   

(a) (b) (c) 

Figure 11. Distribution uniformity of interest points: (a) Spaceborne SAR-to-Airborne SAR. (b) Op-

tical-to-Airborne SAR. (c) Optical-to-Spaceborne SAR. 
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(a) (b) (c) 

  

 

(d) (e)  

Figure 12. Detection results of five detectors on spaceborne SAR images: (a) Har-Lap. (b) SAR-Har-

ris. (c) DoG. (d) Har-DoG. (e) UND-Harris. 

In general, it is not difficult to see that UND-Harris has the best distribution uni-

formity, followed by DOG and SAR-Harris, and the worst is Har-Lap. Har-DoG is be-

tween Har-Lap and DoG. 

As mentioned in scale differences adaptability, although UND-Harris performs 

poorly on scale differences, due to its use of block strategy and feature scale to constrain 

the spatial position of interest points, the distribution uniformity of interest points is ob-

viously better than the other four detectors. Har-Lap and SAR-Harris achieve corner ex-

traction by thresholding the response function, with the result that when they are applied 

to SAR images, corners are mostly concentrated in areas with strong scattering targets 

(corresponding to very bright areas on the image, as shown in Figure 12a,b). Therefore, 

the distribution uniformity of both is not good. Among them, SAR-Harris uses ROEWA 

to suppress speckle noise, so that it can detect some corners with obvious geometric struc-

tures but weaker intensity than speckle noise. Therefore, the distribution uniformity of 

SAR-Harris is better than Har-Lap. 

Since speckle noise is distributed evenly on SAR images, it is easily mistaken by DoG 

as Blob points (as shown in Figure 12c). The distribution uniformity of DoG is second only 

to UND-Harris in Figure 11a,c containing spaceborne SAR images (the signal-to-noise ra-

tio of spaceborne SAR image is lower than that of airborne SAR image). Since Har-DoG 

integrates DoG and Har-Lap, its distribution uniformity is also between two detectors. 

3.4. Image Alignment Performance Evaluation 

Based on the experiments in Section 3.2, we use five different detectors for the image 

data in Table 1, and combine feature descriptor for image registration to further display 

the mosaic map. Since the SIFT feature descriptor has poor performance when applied to 

heterogenous images, and the phase consistency (PC) is more robust to non-linear inten-

sity differences between images, here we adopt the PCSD feature descriptor in [23] for 
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feature description. Limited to the length of the article, we select a pair of images from the 

three sets of spaceborne SAR-to-airborne SAR, optical–to-airborne SAR and optical-to-

spaceborne SAR data, respectively. The mosaic map is displayed after the final registra-

tion is completed. The results of the experiment are shown in Figure 13. 

     

(a1) (b1) (c1) (d1) (e1) 

     

(a2) (b2) (c2) (d2) (e2) 

     

(a3) (b3) (c3) (d3) (e3) 

Figure 13. Mosaic map of registration results: (a1–a3) SAR-Harris. (b1–b3) UND-Harris. (c1–c3) Har-

DoG. (d1–d3) Har-Lap. (e1–e3) DoG. The red circle in the figure represents the stitching details of 

the image. 

We scored the five detectors according to the alignment effect of the area marked by 

the red circle in the figure, and the obtained results are shown in Table 3 below. 

Table 3. Image Alignment Performance Score. 

Interest Point 

Detector 

Spaceborne SAR-to-

Airborne SAR 
Optical-to-Airborne SAR 

Optical-to-Space-

borne SAR 

SAR-Harris ★★★★★ ★★★★☆ ★★★★★ 

UND-Harris ★★★★☆ ★★★★☆ ★★★★☆ 

Har-DoG ★★★☆☆ ★★★☆☆ ★★★☆☆ 

Har-Lap ★★☆☆☆ ★★☆☆☆ ★★☆☆☆ 

DoG ★☆☆☆☆ ★☆☆☆☆ ★☆☆☆☆ 

“★” only represents the qualitative relationship, and does not quantitatively describe the perfor-

mance of the detector. 

In Figure 13, the misalignment at the image junction corresponding to the mosaic 

image from the far left to the far right is increasing, which indicates that the quality of 

image alignment is deteriorating. As can be seen from Table 3, among the three types of 

image matching, SAR-Harris and UND-Harris are better aligned. Among them, SAR-Har-

ris is comparable to UND-Harris in Optical-to-Airborne SAR data, and both types of im-

ages are better than the latter. Unexpectedly, Har-DoG, after being compared with the 

experimental results in Section 3.2, is finally better than the other two in image alignment 

quality, although Har-DoG is lower than Har-Lap and DoG in repeatability. 
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In the image alignment performance evaluation experiments, except for Har-DoG, 

the rest of the detectors’ performance rankings are consistent with the experimental re-

sults in Section 3.2. Because blob points are seriously disturbed by speckle noise in SAR 

images, its repeatability is lower than that of corner point, and the repeatability of Har-

DoG combining the two is inevitably lower than that of Har-Lap. However, for the image 

matching application, the addition of blob point detection introduces more information to 

some extent (although it will further reduce the computational efficiency). Therefore, the 

performance comparison of interest point detectors cannot be based on repeatability 

alone. 

3.5. Detection Efficiency 

In this section, we study the feature detection efficiency of five detectors, select the air-

borne SAR and optical image sequences in Table 1, and manually adjust the detection 

threshold of each detector to control the detection of 1000 interest points on the reference 

image and the sensed image. The time consumption of each detector is shown in Figure 14. 

Image size increases

 

Figure 14. Time-consuming of five detectors. 

As can be seen from the figure, as the image size increases, the differences in time-

consuming of the five detectors are also greater. The detection efficiency of DoG is the 

highest, followed by SAR-Harris, and Har-DoG is the lowest. When the image size is 

small, Har-Lap outperforms UND-Harris, but when the image size is large, the two are 

opposite. 

Although DoG performs poorly in adaptability to nonlinear intensity difference, it is 

significantly better than the other four operators in terms of detection efficiency. All five 

detectors need to establish a scale space. Since DoG down-samples the image when con-

structing the scale space and uses DoG instead of LoG when performing scale space local-

ization, its detection time is shorter than other detectors. Although SAR-Harris is similar 

to Har-Lap, it needs to construct a SAR-Harris scale space, but it has obtained the scale 

attribute of interest points while completing the extreme value detection, so its detection 

efficiency is better than that of Har-Lap. Because the number of layers in the scale space 

constructed by Har-Lap is positively correlated with the image size, the detection effi-

ciency of Har-Lap shows different pros and cons compared to UND-Harris when the im-

age sizes are different. Har-DoG needs to detect corner points and Blob points at the same 

time, so its feature detection time takes the longest and has the lowest efficiency. 
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3.6. Comprehensive Evaluation 

In order to more intuitively reflect the performance of the five detectors in above 

experiments, the performance evaluation table shown in Table 4 is made. As can be seen 

from the table, SAR-Harris shows the best repeatability under scale changes and nonlinear 

intensity difference between images. Although it was originally proposed to solve the 

multiplicative speckle noise in SAR image matching, it can still show good performance 

when applied to optical image and SAR image matching. This can also be derived from 

the score of image alignment performance. UND-Harris is proposed for matching optical 

images and SAR images. Although its repeatability is comparable to SAR-Harris on im-

ages with nonlinear intensity difference, the detector is sensitive to scale changes. The 

distribution uniformity of the interest points detected by UND-Harris is the highest 

among the five detectors, so when there is a large geometric distortion in the heterologous 

image, this detector is used to improve the final image matching quality. 

Har-DoG combines Har-Lap and DoG to detect complementary corner points and 

blob points in an image, so it improves the density of interest points. Moreover, Har-DoG 

is better than Har-Lap and DoG in image alignment performance. However, the nonlinear 

intensity difference and speckle noise between optical image and SAR image are not fully 

considered in Har-DoG. Although DoG has poor adaptability to nonlinear intensity dif-

ference of heterologous images, it has high detection efficiency, good scale difference 

adaptability and distribution uniformity. Therefore, DoG is suitable for the coarse match-

ing step in the two-stage matching strategy. 

Table 4. Comprehensive performance evaluation of five detectors. 

Interest Point  

Detector 

Scale Difference  

Adaptability 

Nonlinear Intensity Difference 

Adaptability 

Distribution  

Uniformity 

Detection  

Efficiency 

SAR-Harris ★★★★★ ★★★★★ ★★★☆☆ ★★★★☆ 

UND-Harris ★☆☆☆☆ ★★★★☆ ★★★★★ ★★★☆☆ 

Har-Lap ★★☆☆☆ ★★★☆☆ ★☆☆☆☆ ★★☆☆☆ 

Har-DoG ★★★☆☆ ★★☆☆☆ ★★☆☆☆ ★☆☆☆☆ 

DoG ★★★★☆ ★☆☆☆☆ ★★★★☆ ★★★★★ 

“★” only represents the qualitative relationship, and does not quantitatively describe the perfor-

mance of the detector. 

4. Discussion 

Since the ground responses from different sensors and at different times are different, 

we show the performances of the co-registration of images with different scales and dif-

ferent sensors. In this section, we also combine PCSD feature descriptor and interest point 

detectors to register images and compare the impact of five different detectors on the final 

registration accuracy. The experiment uses images from different sensors, time and scales, 

and the image data information used is shown in Table 5. 

Table 5. Image registration experimental data. 

Dataset Description 

 Reference Image Sensed Image Image Characteristic 

Test 1 

Sensor: GF-3 Sensor: Airborne SAR The imagery covers the suburban farmland, the overall 

texture information is weak, and there is strong speckle 

noise on the spaceborne SAR image. There is a 3× scale 

difference and a time difference of nearly two years be-

tween the two images. 

GSD: 1.5 m GSD: 4.5 m 

Size: 2248 × 1391 Size: 983 × 856 

Date: November 2021 Date: 2020.03 

Test 2 

Sensor: Google Earth Sensor: Airborne SAR The imagery coverage area is relatively complex, in-

cluding buildings, ponds, roads, etc., and the texture 

information is relatively rich. There is a 2× scale 

GSD: 1 m GSD: 2 m 

Size: 1500 × 1500 Size: 731 × 769 



Remote Sens. 2022, 14, 3724 18 of 21 
 

 

Date: May 2019 Date: 2021.04 
difference and a time difference of nearly two years be-

tween the two images. 

Test 3 

Sensor: Google Earth Sensor: GF-3 The imagery coverage area contains a large number of 

rivers, and there is a clear intensity inversion between 

the optical image and the SAR image. There is a 2× 

scale difference and a time difference of more than a 

year between the two images. 

GSD: 10 m GSD: 20 m 

Size: 1000 × 1000 Size: 487 × 512 

Date: May 2020 Date: 2021.09 

The registration results of the three pairs of images are shown in Figure 15 below. In 

order to quantitatively compare the final performance of the five detectors, we calculated 

the root-mean-square error (RMSE) and the number of correct matching points (NCM) of 

the registration, respectively. The results are shown in Table 6. 

      

(a1) (a2) (a3) 

      

(b1) (b2) (b3) 

      

(c1) (c2) (c3) 

      

(d1) (d2) (d3) 

      

(e1) (e2) (e3) 

Figure 15. Registration result and mosaic diagram: (a1–a3) UND-Harris. (b1–b3) SAR-Harris. (c1–

c3) Har-Lap. (d1–d3) Har-DoG. (e1–e3) DoG. Where the red lines denote the corners, and the green 

lines denote the blobs. 

Table 6. Registration accuracy of five detectors. 

Interest Point Detector 
Test 1 Test 2 Test 3 

NCM RMSE NCM RMSE NCM RMSE 

UND-Harris 20 2.0967 61 1.6798 48 1.7084 

Har-Lap 21 2.5621 38 2.7128 27 2.8641 

SAR-Harris 19 1.6854 47 1.7009 49 1.7451 

Har-DoG 25 2.4073 40 2.5188 33 2.7826 

DoG 12 3.3828 23 2.9839 18 3.3743 

In Figure 15, it can be seen that all detectors can finally complete the image regis-

tration, and the matching points detected by UND-Harris and DoG are more uniform. As 

can be seen from Table 6, the RMSE of both UND-Harris and SAR-Harris is better than 
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the other three detectors on the three pairs of images. Furthermore, in test 1, the RMSE of 

SAR-Harris is better than that of UND-Harris, while in test 2 and test 3, the accuracy of 

the two is comparable. Among the latter three detectors, Har-DoG has the highest accu-

racy and DoG has the lowest accuracy. It can be seen that the NCM of Har-DoG is larger 

than the other two. 

From the final registration experimental results, compared with the previous exper-

iments, the experimental results are consistent with the experimental results in 3.5. For 

Har-DoG, although its repeatability is between Har-Lap and DoG, both RMSE and NCM 

are better than the other two in registration experiments. This further shows that using 

both corner points and blob points for detection can indeed improve the registration ac-

curacy of the final image and the density of matching point pairs. Comprehensive regis-

tration experiments further demonstrate that repeatability alone is not comprehensive 

enough as a criterion for evaluating detector performance. 

5. Conclusions 

Interest points, as key features on images, have been widely used in image matching. 

In order to select the most suitable interest point detector for specific applications, this 

paper starts from the application requirements of heterogeneous image matching, and in-

tegrates fives factors (scale difference adaptability, nonlinear intensity difference adapta-

bility, interest point distribution uniformity, image registration alignment performance 

and detection efficiency), to evaluate the performance of five detectors: Har-Lap, DoG, 

Har-DoG, SAR-Harris, and UND-Harris. Experimental results show that the performance 

of interest point detectors varies for different evaluation aspects. In terms of scale differ-

ence and nonlinear intensity difference adaptability, SAR-Harris outperforms other de-

tectors, among which DoG is second in scale difference adaptability, and UND-Harris is 

the weakest. UND-Harris is second only to SAR-Harris in adaptability to nonlinear inten-

sity differences. In terms of distribution uniformity, UND-Harris showed the best perfor-

mance, followed by DoG and SAR-Harris, and Har-Lap was the weakest. In terms of fea-

ture detection efficiency, DoG is the highest, followed by SAR-Harris. Har-DoG has the 

lowest efficiency due to the detection of two types of interest points. In terms of image 

alignment performance, Har-DoG is better than Har-Lap and DoG. In the other three as-

pects, the performance of Har-DoG is between Har-Lap and DoG. Regarding the image 

alignment performance as well as the final comprehensive registration results, only Har-

DoG showed different results than adopting the repeatability metric. Therefore, SAR-Har-

ris is optimal considering the five aspects of scale difference adaptability, nonlinear inten-

sity difference adaptability, distribution uniformity, image registration alignment perfor-

mance and detection efficiency. Although UND-Harris is weaker than SAR-Harris in de-

tection efficiency and scale difference adaptability, its uniformity of interest point distri-

bution makes it suitable for heterogeneous images with large local geometric distortion. 

In addition, when the sensed image contains a large number of textureless areas (such as 

water surfaces), the effect of using UND-Harris is not as good as SAR-Harris (UND-Harris 

will extract a large number of unreliable interest points in these areas of the image). There-

fore, SAR-Harris is suitable for images with fewer effective texture areas, while UND-

Harris is suitable for images with many effective texture areas. The excellent detection 

efficiency of DoG makes it more suitable for the coarse matching process in the two-stage 

matching method. Har-DoG is suitable for complementary detection when there are few 

corner points or blob points in the image to improve the density of interest points. 

Choosing an optimal detector to carry out one’s own research cannot just rely on a 

single criterion. It is difficult to use a quantitative index to evaluate all detectors. There-

fore, in actual research, we need to combine several evaluation indexes to select detectors 

according to our actual research needs. This paper also provides a reference for the selec-

tion of interest point detectors in the process of heterologous image matching. 
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