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Abstract: The majority of planning algorithms used are based on the occupancy grid maps, but in
complicated situations, the occupancy grid maps have a significant search overhead. This paper
proposed a path planner based on the visibility graph (v-graph) for the mobile robot that uses sparse
methods to speed up and simplify the construction of the v-graph. Firstly, the complementary grid
framework is designed to reduce graph updating iteration costs during the data collection process in
each data frame. Secondly, a filter approach based on the edge length and the number of vertices
of the obstacle contour is proposed to reduce redundant nodes and edges in the v-graph. Thirdly, a
bidirectional breadth-first search is combined into the path searching process in the proposed fast
path planner algorithm in order to reduce the waste of exploring space. Finally, the simulation results
indicate that the proposed sparse v-graph planner can significantly improve the efficiency of building
the v-graph and reduce the time of path search. In highly convoluted unknown or partially known
environments, our method is 40% faster than the FAR Planner and produces paths 25% shorter than
it. Moreover, the physical experiment shows that the proposed path planner is faster than the FAR
Planner in both the v-graph update process and laser process. The method proposed in this paper
performs faster when seeking paths than the conventional method based on the occupancy grid.

Keywords: visibility graph; computational geometry; path planning; mapping

1. Introduction

With the popularity of the robotics industry, simultaneous localization and mapping
(SLAM) technology has developed rapidly. SLAM technology can be divided into three cat-
egories, i.e., LiDAR-SLAM [1–4], visual-SLAM [5–8] and LiDAR fusion visual SLAM [9–11],
and it is widely used for robot navigation tasks. In the application of robot navigation,
a by-product of SLAM is the map, including metric and topological maps. The metric
map emphasizes accurately representing the positional relationships of objects, while the
topological map emphasizes the relationships between map elements.

In smaller spaces, such as corridors and houses, occupancy grid maps [12] are preferred
over topological maps. The topology maps, on the other hand, are more appropriate for
path planning in large areas where the occupancy grid maps are computationally expensive.
In this paper, the visibility graph [13], a topology-based type of map, will be constructed
for route planning and navigation.

Path planning has been an emerging trend in research nowadays to cater to the needs
of autonomous systems. The visibility graph (v-graph) is an efficient map representation
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for path planning, which allows the robot to move from one node to another, but it has
some drawbacks. Firstly, it is not only hard to map the visibility graph completely in the
3D world [14], but it is also difficult to extract the outlines of obstacles. Secondly, when the
number of nodes in the graph increases, the associated edges will be doubled, which causes
increased computational cost in terrain where complex obstacles exist [15]. In this case, it is
necessary to simplify complex obstacles to reduce vertices and edges for path planning.

Most existing v-graph generation methods [16–21] store the pointcloud explored by
the LiDAR into the local grid and then perform plane mapping to extract the vertices of
the polygon. However, these algorithms, such as [17–20], face the following problems.
Firstly, if the local grid is too sparse, the sampling accuracy will be decreased. On the other
hand, if the local grid is dense, the shape of a polygon will be more accurately determined,
but the amount of calculation will increase dramatically. Secondly, the quantity of vertices
and edges affects how complicated the v-graph-based path search algorithm is. There will
be a lot of redundant vertices and edges in maps with a lot of intricate barriers, which
makes path search a time-consuming task. Finally, the large number of vertices and edges
in the v-graph slows down its traversal speed, which leads to a decrease in the maintenance
speed of the v-graph. Although WonheeLee et al. [21] proposed a v-graph-based obstacle
avoidance strategy, they did not address the issue of dense v-graph in complicated scenes.
A sparse v-graph-based path planner is proposed as a solution to these issues, which
lowers the cost of v-graph maintenance, increases the effectiveness of v-graph building,
and decreases space waste during the path search. Overall, the main contributions of the
paper are summarized as follows:

• Compared to existing methods for storing a laser pointcloud, this paper proposes
a complementary holed structure for iteratively updating the local grid. Basically,
only half of the pointcloud data needs to be processed in each data frame to update
the map. The pointcloud data are subjected to image blurring after planar mapping,
and then key vertices are extracted from the blurred image.

• For obstacles with complex contours, this paper proposes a filtering method based
on the edge length and the number of vertices of the obstacle contour. The method
effectively reduces the number of vertices in the v-graph and the maintenance cost
of the v-graph by performing vertex filtering on large complex obstacles. Since the
v-graph and the path search algorithm are tightly coupled, the efficiency of the path
search algorithm will also be improved.

• A bidirectional breadth-first search algorithm was introduced since exploring un-
charted territory requires a lot of search space. In this paper, the edge between the goal
point and the existing vertices in the v-graph is established by geometric checking.
Therefore, the bidirectional breadth-first search algorithm could reduce the waste of
exploration space in navigation.

2. Related Work

The current mainstream of path planning research is divided into the following
categories: search-based, sampling (probability)-based, genetic algorithm (GA)-based,
and learning-based. According to the planning results, it is further divided into complete
planning algorithms and probabilistic complete planning algorithms.

Search-based planning methods: These methods mainly include Dijkstra [22] and its
variants, such as A* [23], D* [24], etc. The Dijkstra and A* algorithms are often used to
search on discrete grids. Such algorithms are re-initialized for each search cycle, thus taking
a long time to plan routes. An incremental version of the Dijkstra-derived algorithm was
proposed to reduce re-planning time by adjusting the local information to the planning
result in the previous cycle. However, similar to D* Lite [25], when encountering complex
environments, the computational load of the incremental algorithm to re-evaluate the
current environment is even greater than that of A* without increment. Many improved
A* algorithms have been proposed to decrease the memory space and achieve a better
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trajectory [26,27], but they are all based on the occupancy grids and thus cannot avoid the
shortcomings of the occupancy grids.

Random sampling planning methods: These methods mainly include rapidly expand-
ing random tree (RRT)[28] and a series of its variants, such as RRT* [29], informed RRT* [30],
and RRT-Connect [31]. These methods are designed for a known environment. Some al-
gorithms derived from RRT are used for planning in an unknown or partially known
environment. These methods must perform maintenance or regeneration of random trees
frequently to account for newly observed environments.

Genetic algorithm methods (GA): This algorithm performs path planning through
crossover and mutation of chromosomes. Tu et al. [32] proposed a method for generating
collision-free paths based on GA. Chen et al. [33] proposed an improved GA to minimize
the total distance of the UAV. The method in [34] combined deep learning and GA to design
a followable path for multi-robots. Moreover, there are many different improvements to
GA [35–37] to achieve better results. In the genetic algorithm, the choice of parameters such
as crossover rate and mutation rate has a significant impact on the quality of the solution,
but these values are typically chosen based on experience.

Planning by deep learning: These methods [38–40] require a large number of ground-
truth labels for training. For example, the essence of training based on deep learning is
to encode and decode environmental information. During testing, these methods can
handle scenarios similar to the training environment; the essence of training based on
reinforcement learning is to encode and map the information of the state of motion every
time. During testing, the results are output according to the encoded motion state informa-
tion. GuichaoLin et al. [41] proposed a collision-free model based on deep reinforcement
learning to allow robots to avoid obstacles. Tutsoy et al. [42] provided a minimum time
path for a balancing task through reinforcement learning, and [43] considered the energy
consumption to design a general dynamic control model based on deep reinforcement
learning. However, learning-based methods are inherently data-driven, and the magnitude
of the data limits their ability to scale to different environments.

The majority of the aforementioned path planning techniques, including common
search-based algorithms, RRT algorithms, and evolutionary algorithms, are based on
occupancy grids. When the scope of the searched scene is large, the drawbacks of occupancy
grids will constrain the speed of these algorithms, i.e., as shown in Figure 1, in a 10× 10 grid
map, the algorithm based on the occupancy grid map traversed 20 grids to reach the goal,
while the algorithm based on the v-graph only traversed five vertices of the obstacle. This
paper mainly studies the visibility graph-based and path-planning methods. Although the
literature [13,44–46] studied the use of the visibility graph for robot navigation, and FAR
Planner [19] applied the theoretical part to the exploration and navigation of the actual
3D world, the maintenance of a graph in complex situations is still expensive, and the
way-point generated in unknown environments is easy to detour. In order to address these
issues, a sparse v-graph path planner is proposed. This path planner enhances the efficiency
of v-graph building while decreasing space waste and v-graph maintenance costs.

Figure 1. Comparison of the occupancy grids and the visibility graph.
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Similar to FAR Planner [19], the pointcloud is extracted from obstacles and mapped
into polygons, from which vertices and edges are extracted to construct the v-graph for
navigation. The improvement of our approach is that each data frame of pointcloud in the
local area does not fully participate in the construction of the global layer. The complemen-
tary hole structure for iteratively updating the local grid is used to store the pointcloud
information in the current local area, which means that only half of the points in each data
frame need to be processed each time. The method continuously updates the pointcloud
information on each data frame until a global map is formed. Compared with the original
algorithm of FAR Planner, the proposed algorithm can reach the target point within a
shorter distance and take less time.

In simulation experiments, the feasibility of the method is evaluated through the
simulated physical environment. The environment of the simulation experiment includes
medium-scale, complex-scale, and large-scale environments in the Autonomous Explo-
ration Development Environment provided by CMU [47], and medium-scale indoor envi-
ronments and complex large-scale indoor environments provided by Matterport3D [48].
In the physical experiment, the LiDAR, and an Inertial Measurement Unit (IMU) are
coupled to generate state estimation of the mobile robot [4], and the proposed replacednav-
igationnavgiation algorithm will be tested in a real garage.

3. Sparse Visibility Graph-Based Path Planner

Define Q ⊂ R3 as the robot navigation space, and S ⊂ Q as the sensor data from
obstacles. A down-sample strategy is used to update and maintain the v-graph, denoted
as G, and the grid to store pointcloud is denoted as L. Define the position of robot as
Probot ∈ Q, the goal Pgoal ∈ Q.

The flow chart of the path planner proposed in the paper is shown in Figure 2. And the
process consists of three parts: (1) generating the geometric contours of obstacles by
LiDAR-to-plane mapping; (2) aggregating and simplifying complex obstacle information
to maintain the v-graph at a low cost; and (3) searching for nodes and edges to generate the
path from the start point to the goal through the v-graph.

Figure 2. The main flow chart of the path planner based on the v-graph.

3.1. Pointcloud Extraction Structure

We denote the process of extracting and mapping the pointcloud to geometric contours
as extract

{
Pk

cloud ⊂ Q |k ∈ Z+
}

, and the grid as Grid, respectively. In most laser-based
SLAM, grids are used for accessibility analysis, which means that pointcloud information
needs to be recorded in the global layer Lglobal and local Llocal . Although an incremental
method of updating the pointcloud is proposed, in the case of complex terrain and high-



Remote Sens. 2022, 14, 3720 5 of 31

resolution grids, the computational resources used to update the pointcloud are still very
high. Therefore, a general sparsification module denoted as F is used to create the holed-
structure local grid and incrementally update the pointcloud.

The dilated convolutional module [49] is usually used in neural networks to enlarge
the receptive field in the picture, and its whole structure gives another way to deal with
the pointcloud in the local grid: as shown in Figure 3, the pointcloud will be stored in the
complementary hole grid.

Figure 3. A schematic diagram of the holed grid structure used for the local update. The pointcloud
is updated through the complementary holed grids between every two data frames and merged into
the global layer.

The holed-structure local grid is defined as Gridd, and the F contains Sub ⊂ Gridd;
when obstacles are detected by the LiDAR, the sensor data S is transferred to Sub, all Sub
forms the Gridd. We denote the voxel size as VS, and this value will affect the density
of pointcloud. In this paper, the value of VS is set to 0.15 m. When the Gridd is formed,
a PCL filter with a kernel size of (VS, VS, VS) will be applied to reduce the size of the
pointcloud. S ′ is the remaining pointcloud in the Gridd. After the local pointcloud is
formed, the S ′ are classified as obstacles or free, and we denote the classified S ′ as

{
Pk

cloud

}
.

At this step, the fully classified Gridd is denoted as Llocal , then integrates Llocal to Lglobal .
The complementary hole grids will be generated respectively in different data frames, so
that the final Lglobal still contains all the information of the pointcloud. The module F is
shown in Algorithm 1.

Algorithm 1 Module F .
Input: Sensor data S
Output: S ′

1: input S
2: for every data f rame do
3: Generate Gridd
4: for each Sub ⊂ Gridd do
5: store pointcloud ∈ S
6: end for
7: end for
8: Apply PCL f ilter to point ∈ Gridd
9: classi f y point ∈ Gridd

10: S ′ = remain pointcloud in Gridd
11: Update Gridd to Llocal

As shown in Figure 4, the Sub is a cell in the grid, and it stores a part of the pointcloud
information in the 3D space. The standard practice is to form a grid from all cells, but in
this paper, a grid with holed structure, as shown in Figure 5a,b, is used to let only part of
the cells participate in the calculation. In fact, for a grid of a certain size, the number of
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cells depends on its resolution. As shown in Figure 6, the higher the resolution, the more
cells there are, and the denser the grid, the better its mapping effect. However, the amount
of computation increases dramatically. Therefore, this kind of holed-structure grid can
save the calculation cost very well because it mainly requires half cells to participate in the
calculation in each data frame.

(a) Point cloud (b) Local grid

Figure 4. (a) is the spatial 3D pointcloud; (b) is the mapping of the pointcloud information in the
local grid.

(a) Holed structure-based grid1 (b) Holed structure-based grid2

Figure 5. The complementary grids with holed structure.

(a) Grid with higher resolution (b) Grid with lower resolution

Figure 6. Grid with (a) higher resolution, and (b) lower resolution.
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For the obstacle extraction process and obstacle vertices reconstruction process in the
v-graph, the sensor information S is gridded and stored by the module F to obtain S ′ .
After that, the S ′ will be converted to a binary image I . To enhance robustness, the image
I will be blurred, then obstacle vertices will be extracted through image processing [50] to
generate polygons

{
Pk

contour ⊂ Q |k ∈ Z+
}

. The polygon extraction algorithm is shown in
Algorithm 2.

To define the kernel size of the box filter in Algorithm 2, the equation is as follows,
where RW and RL are the width and length of the robot, respectively, and VS is the voxel
size. In this paper, VS is set to 0.15 m:

(kernel width, kernal height) = max(b
max(RW , RL)

2 + VS

VS
e, 5) (1)

Figure 7 demonstrates the blurred picture of LiDAR-mapped obstacle geometry and
the time consumption of the laser process. As can be seen from Figure 7a, the hollow
structure (using module F ) does not affect the image after blurring. Compared with the
original (without using a hollow structure), it can be found that our generated contour
approximates the original image. The projected outline of the obstacle is thicker because of
the blurred image, and the details inside the outline are lost.

The time required for the laser process, according to Figure 7b, includes gathering the
raw pointcloud and downsampling. For the same area, the time consumed by using the
holed structure is more gentle, while the processing process without the holed structure is
steeper and its curve fluctuates greatly. The time it takes to process an image is depicted in
Figure 7c. The total time of the image process includes mapping the pointcloud in Llocal
into the image I , blurring the image, and initially extracting the obstacle contour points.
About 20% of the total image processing time is spent on blurring the outline of obstacles.

(a) Blurred image comparison

(b) Laser process consumption (c) Image process

Figure 7. (a) shows blurred images, the vertices of the obstacle will be extracted through the blurred
image. The FAR Planner generates images without holed structure, and ours generates pictures
through the holed structure. (b) shows the consumption of the laser process and (c) shows the
consumption of the image process.
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Algorithm 2 Polygon Extraction.

Input: S ′ ∈ Llocal

Output: Polygons :
{

Pk
contour

}
1: input S ′

2: Create binary image I f rom points in S ′

3: Apply box f ilter with kernal size o f (kernel width, kernal height) to blur image I
4: Extract polygons

{
Pk

contour

}
based on [50]

5: for each Pk
contour do

6: Downsample vertices in Pk
contour based on [51]

7: end for

3.2. Simplified Complex Contours Algorithm

In the previous Section 3.1, the Lwas constructed to obtain the pointcloud from LiDAR.
In this section, the polygons will be extracted and simplified based on L.

For the graph update method of the two-layer architecture, shown in Figure 8, we
define Glocal and Gglobal . Between them, Glocal is the local layer around the robot, and Gglobal
is the layer set of the entire observation environment. Glocal will be generated by the
sensor information S for each data frame and then merged into Gglobal For each data frame,
the sensor information S will generate Glocal and then be merged with Gglobal , noting that
since the module F is used to store the sensor information S , now S ′ ∈ Llocal can be used
to merge Gglobal at a lower cost.

Figure 8. A two-layer update structure, where the blue grid is the global map, and the turquoise grid
is the local map. The local map is located in the red boxed area in the global map.

It is known that the computational complexity involved in constructing a v-graph is
O(n2 log n) [52], where n is the number of vertices in the graph. In normal case, the cost of
building a local graph in the environment is small enough so that computational resources
can be allocated to each data frame in an incremental update manner. However, redundant
nodes will also be generated during each v-graph update if the environment has numerous
complex obstacles, leading to a significant increase in the number of edges connecting
the nodes. To ensure the effectiveness of the v-graph update, a method for further sparse
operation on complex contours is required.

Constructing local layers: The S ′ ∈ Llocal will be converted into local polygons{
Pk

contour

}
, and use

{
Pk

contour

}
to construct a local visualization graph Glocal . Note that

for complex polygons, as shown in Figure 9, the polygon contains many vertices composed
of short edges. Adding redundant vertices will construct more useless edges; thus, a lot of
computing resources are wasted on unnecessary vertices and edges in the process of path
search in complex terrain.
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Figure 9. The red solid lines are redundant edges which connect with the robot, and the purple lines
are the redundant edges from obstacles themselves.

A threshold η is set to control the number of vertices for complex large local polygons.
When the number of vertices of the polygon

{
Pk

contour

}
is greater than η, the vertices will

be reduced, which not only optimizes the geometric outline of large and complex obstacles,
but also retains the geometric characteristics of small obstacles. As shown in Figure 10,
the continuous vertices inside those red circles in Figure 10a should be eliminated, but the
current method does not eliminate them well, resulting in more vertices and edges in the
v-graph. Compared to Figure 10a, the optimized version in Figure 10b has fewer vertices.

(a) Extract vertices (b) Optimization after extracting vertices

Figure 10. (a) shows the obstacle vertices extracted after pointcloud mapping. (b) shows the remaining
obstacle vertices after optimizing the (a).

When the number of vertices of an obstacle is greater than η in the local layer, the al-
gorithm preferentially records the distance between the two longest vertices in the ob-
stacle. For example, the distance between the longest two vertices is distmax. The algo-
rithm traverses the three consecutive vertices vertexi−1, vertexi, vertexi+1 in the obstacle
and calculates the length between the two vertices, respectively. The distance between
them is denoted as dist(i,i−1) and dist(i,i+1). If both dist(i,i−1) and dist(i,i+1) are less than
0.1× distmax, it means that vertexi is an invalid vertex (excess vertex), in which case we
delete vertexi and destroy its connection edges edge(i−1,i) and edge(i,i+1).
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Since the simplified complex contours algorithm only works on the Glocal , the v-graph
update process will not be slowed down by the accumulation of the number of nodes in
the Gglobal .

Update the global layer: After Glocal is constructed, the Glocal and the Gglobal are fused.
The strategy is: take out the overlapping parts of Glocal in Gglobal , and associate the vertex
position in the Glocal to the Gglobal . The Euclidean distance is used to associate vertices in
two layers, and the associated vertices are recorded. The entire graph updating algorithm is
as follows in Algorithm 3, and the final obstacle contours and edges are shown in Figure 11.

For the given two points a(ax, ay, az) and b(bx, by, bz), the distance(a, b) in Algorithm 3
is defined as followed:

distance(a, b) =
√
(ax − bx)2 + (ay − by)2 + (az − bz)2 (2)

Algorithm 3 Visibility Graph Update.

Input: S ′ ∈ Llocal , graph G
Output: Update graph G
1:

{
Pk

contour

}
← Polygon Extraction(S ′ ); // f rom Algorithm2

2: for each Pk
contour do

3: if the number o f vertices > η then
4: for each vertex in contour do
5: distmax = max(distance(vertexi, vertexi+1))
6: end for
7: while true do
8: for each vertex in vertices do
9: dist(i,i−1) = distance(vertexi−1, vertexi)

10: dist(i,i+1) = distance(vertexi, vertexi+1)
11: if dist(i,i±1) < 0.1× distmax then
12: Eliminate vertexi
13: Eliminate unnecessary edge(i−1,i) and edge(i,i+1)
14: end if
15: end for
16: if all dist(i,i±1) ≥ 0.1× distmax then
17: break
18: end if
19: end while
20: else
21: continue
22: end if
23: end for
24: Associate vertices Pk

contour in the Gglobal
25: Upate to visibility graph G
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Figure 11. An illustration of sparse v-graph. The edge (orange) that head into at least one polygon
from the shaded angle are eliminated, and the blue one will be kept. After eliminating those green
vertices, the dot blue edge will be removed from the Glocal .

3.3. Path-Planning Based on Bidirectional Breadth-First Search

In FAR Planner, the goal point Pgoal is used as a vertex, and the Euclidean distance
is used as the score to update the parent node of Pgoal . Although the path can be found
in an unknown environment, its spatial search range is obviously wasted. The strategy
adopted by the robot in many cases is to explore many unnecessary spaces until it finally
reaches the goal. As shown in Figure 12, the robot travels from position 0 (start) to position
1, resulting in unnecessary exploration space.

A bidirectional breadth-first search (bidirectional BFS) structure is combined with
the v-graph to search for a path, selecting a vertex of a connecting edge of the robot in
the forward search while simultaneously beginning a backward search from the Pgoal to
find the path to the robot’s current position. This minimizes the amount of unnecessary
exploration space.

In the planning, assume that there are no obstacles in the unknown area where the
Pgoal is located. The Pgoal uses geometric collision checking to establish edges with existing

vertices
{

Pnode | Pnode ⊂ Gglobal

}
in the v-graph, and then the Pgoal will be connected to the

vertices of the discovered obstacles in the v-graph as shown in Figure 13a. The one-way
BFS usually wastes some search space in unknown or partially known environments. This
is because the one-way BFS starts from the nodes connected to the robot, calculates the
target point according to the cost, and then iterates to the robot position according to the
parent node of the target point.

As shown in Figure 13b,c, the one-way BFS enters a fork in the planning of the global
path from the starting point to the ending point, resulting in an increase in the search space.
The result is shown in Figure 13d, from the red point to the green point, the one-way search
wastes a huge amount of space. Therefore, this paper embeds the goal in the v-graph and
associates it with the existing vertices in the graph, and adopts a bidirectional breadth-first
algorithm for path search.
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Figure 12. The robot travels from position 0 to position 1, and the red dotted box represents the
wasted exploration space during navigation.

The bidirectional BFS structure shows in Algorithm 4, in which the two BFS are divided
into forward and backward according to the direction of the search (forward searches from
the robot position to the Pgoal , and backward searches from the Pgoal to the robot position).

In the Algorithm 4, parentF(·) and parentB(·) are the functions returning the forward
and backward parent of a node. QF and QB are the min-priority queues in forward and
backward ones, respectively, and QF is ordered by gF, QB is ordered by gB. µ is the cost of
the best path found so far (initially, µ is set to ∞). Whenever the robot reaches a node and
expands in the other search, µ will be updated if a better path goes through the node. gF is
the current distance from start and gB is the current distance from Pgoal . topF and topB are
the distances to the top nodes in the forward and backward queues, respectively. The STEP
function in Algorithm 5 is responsible for advancing the search through the v-graph and
updating µ.

One of the benefits of bidirectional search is that it can, to some extent, avoid the
wasted search space caused by entering invalid forks. As shown in Figure 13e, the globally
planned path no longer passes through the fork, thus avoiding excessive searching. As a
result, as shown in Figure 13f, compared to Figure 13d, the distance traveled by the robot is
greatly reduced.

It is not possible to use a vertex that has just been extracted from the v-graph G as a
point of navigation directly; instead, a transform is used to turn the vertex into a way-point.
As Figure 14 shows, in the obstacle where the point is located, the vertices connected to
the point at the polygon will be extracted to calculate the direction vector of the point (in
Algorithm 6, they are

−→
dir f ront and

−→
dirback, respectively, and the direction vector of the point

is the
−−→
sur f dir).

A detailed description is shown in Algorithm 6. In Algorithm 6, the parameter of
searchdist is set to constrain the searching area, and the neardist is a step parameter which
extends the way-point from

−−→
sur f dir direction, and RW and RL are the width and length of

the robot, respectively. When the way-point extends, the maxextend is set to constrain the
length of the extension. The NearOBS(·) function is to obtain a range of obscloud from
Lglobal , with Pway−point as center and searchdist as the radius. Check_Collision is used to
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detect if the expanded Pway−point collides with surrounding obstacles, and the detail of the
Check_Collision function is shown in Algorithm 7.

(a) Embeded goal point (b) One-way BFS

(c) The process of one-way BFS (d) Overall view

(e) bidirectional BFS (f) Overall view

Figure 13. The blue area of the map represents the part that has been explored by LiDAR and is
considered known. (a) shows the connection between the endpoint and the existing node, represented
by a solid yellow line. (b,c) show the path planning using one-way BFS. (d) is the result of one-way
BFS. The red dot is the starting point, and the green dot is the endpoint. (e,f), respectively, show the
path planning and the final result using bidirectional BFS. The globally planned path appears on the
map as a thick blue line.
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Algorithm 4 Bidirectional BFS.
Input: Pstart, Pgoal , Visibility Graph: G
Output: path :

{
Ppath

}
1: QF, QB← make min− priority queues f or the nodes initially containing only Pstart and

Pgoal
2: expandedF, expandedB ← make f orward and backward lookup tables
3: searchF ← (QF, expandedF, parentF)
4: searchB ← (QB, expandedB, parentB)
5: µ← ∞
6: initialize G, associate Pgoal in G
7: path← none
8: while topF + topB < µ do
9: if at least one queue is non− empty then

10: choose the search to advance
11: else
12: return path
13: end if
14: if f orward search was chosen then
15: (path, µ)← STEP(searchF, searchR, path, µ)
16: else
17: (path, µ)← STEP(searchR, searchF, path, µ)
18: end if
19: end while
20: return path

Algorithm 5 STEP (search1, search2, solution, µ).

1: // 1 denotes the chosen direction and 2 is other direction
2: // c(·) is the cost function, in this paper, manhattan distance is used
3: // c(u, v) = |ux − vx|+ |uy − vy|+ |uz − vz|
4: µ← pop the min g1 node f rom Q1
5: for v ∈ parent1(u) do
6: if v /∈ expanded1 ∪Q1 or g1(u) + c(u, v) < g1(v) then
7: g1(v)← g1(u) + c(u, v)
8: Add v to Q1
9: if v ∈ expanded2 and g1(v) + g2(v) < µ then

10: path← reconstruct the path through u and v
11: µ← g1(v) + g2(v)
12: end if
13: end if
14: return (path, µ)
15: end for

In Algorithm 6, the normalize(Pa, Pb) and normalize(·) are defined as followed:

normalize(Pa, Pb) =
Pb − Pa

||Pb − Pa||
(3)

normalize(
−→
V ) =

−→
V

||−→V ||
(4)
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Figure 14. The schematic diagram of generating a way-point.

Algorithm 6 Way-point generation.
Input: Pstart, Path, Lglobal
Output: Pway−point

1: vertex = Path[0]
2: Path = Path[1 :]
3: searchdist = max(2.5×max(RL, RW), 5)
4: neardist = min(min(RL, RW), 0.5)
5: Pway−point = vertex
6: maxextend = min(searchdist, distance(Pstart, Pway−point)

7:
−→
dir f ront = normalize(polygonk(i− 1), polygonk(i))

8:
−→
dirback = normalize(polygonk(i + 1), polygonk(i))

9: if Pway−point is a convex point then

10:
−−→
sur f dir = −normalize(

−→
dir f ront +

−→
dirback)

11: else
12:

−−→
sur f dir = normalize(

−→
dir f ront +

−→
dirback)

13: end if
14: obscloud = NearOBS(Lglobal , searchdist, Pway−point)
15: obscloud = setInputCloud(obscloud) //setInputCloud is a pcl library function to build

the KDTree of a set of pointcloud
16: temp = Pway−point +

−−→
sur f dir × neardist

17: is_collide = Check_Collision(temp, obscloud) //from Algorithm 6
18: extenddist = neardist
19: while is_collide is f alse and extenddist < searchdist do
20: temp+ =

−−→
sur f dir × neardist

21: extenddist+ = neardist
22: is_collide = Check_Collision(temp, obscloud)
23: if extenddist < maxextend then
24: Pway−point = temp
25: end if
26: end while
27: if is_collide is true and extenddist > max(RW , RL) then

28: Pway−point =
Pway−point+vertex−

−−→
sur f dir×neardist

2
29: return Pway−point
30: else
31: return drop this vertex and re− search path
32: end if



Remote Sens. 2022, 14, 3720 16 of 31

Algorithm 7 Check_Collision.
Input: point P, obscloud
Output: f alse or true
1: radius = neardist/2 + VS
2: thre = neardist/VS
3: KDTree → radiusSearch(P, radius, indices, dis) // search points with P as center and

radius as the search radius, return the number of points in indices and the distance
between each point and P.

4: if indices > thre then
5: return true
6: else
7: return f alse
8: end if

4. Experiments and Results

The paper uses the same experimental parameters as FAR Planner [19], (uniform sensor
parameters, the robot speed is set to 2 m/s). A highly complex channel network tunnel,
a parking garage with multiple floors, and a forest of trees with many irregularly shaped
trees are all included in the simulated experimental environment. The indoor is moderately
complex but easy to detour. Additionally, Matterport3D [48] provides a simple environment
17DRP5sb8fy (denoted as 17DR), a slightly complex environment PX4nDJXEHrG (denoted
as PX4n), and a large complex environment 2azQ1b91cZZ (denoted as 2azQ).

In the simulation environment, all methods run on a 2.6Ghz i7 laptop, and the v-graph-
based methods use images at 0.2 m/pixel resolution to extract points to form polygons.
The local layer on the v-graph is in a 40 m × 40 m area with the robot in the center.
The threshold of the length of each visibility edge is set to 5 m. Finally, the simulated mobile
robot is 0.6 m long, 0.5 m wide, and 0.6 m high.

In the physical environment, ours runs on an embedded device, and the robot speed
is set to 0.7 m/s. To adapt to the real environment, the local layer of the v-graph is set to
20 m × 20 m. The length, width, and height of the mobile robot are set as 0.32 m, 0.25 m,
and 0.31 m, respectively.

4.1. Simulation Experiment
4.1.1. Laser Process Simulation Experiment

In the laser process simulation experiment, seven different types of environments
are used to compare the holed structure with the original one. The experimental results
are shown in Figure 15. The robot moves according to a fixed route, and the experiment
analyzes the time of the laser processing process. The laser processing process refers to the
whole process of extracting and storing the pointcloud information of the local layer into
the grid and classification (obstacle pointcloud or free pointcloud).

As shown in Figure 15, for example, in the indoor environment, the robot will start
from 0 (start) and pass through the target points 1, 2, 3, 4, 5, and 6 in sequence. The initial
state of the robot is set to be in an unknown environment, and the known information in the
environment is continuously accumulated through exploration. The program records the
time of receiving and processing the pointcloud data from LiDAR during the movement of
the robot.

Figure 16a is a summary of the average time of laser processing in different envi-
ronments. It can be clearly seen from Figure 16a that our method used less time in the
processing of the pointcloud information in every data frame. Figure 16b–h show that using
the grid with the holed-structure leads to the smooth processing of the laser pointcloud.
Compared with the original grid, the use of the holed structure can improve the processing
speed of the pointcloud by 30.5∼44.5%.
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Figure 15. The overall view of seven different environments.

(a) Overall average process consumption (b) Laser process(indoor)

(c) Laser process(garage) (d) Laser process(forest)

Figure 16. Cont.
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(e) Laser process(tunnel) (f) Laser process(PX4nDJXEHrG)

(g) Laser process(17DRP5sb8fy) (h) Laser process(2azQ1b91cZZ)

Figure 16. (a) is the summary of the average time of laser processing in different environments.
(b–h) show the process time of pointcloud in each data frame.

4.1.2. Visibility Graph Update Simulation Experiment

Different values of η, ranging from 5 to 25, are set in representative indoor and
outdoor environments in order to select an appropriate value. The robot in the simulation
experiment travels throughout the entire environment to count all of the vertices in the
v-graph and logs the average update speed. As the Table 1 shows, it can be seen that
the number of vertices in the v-graph and the update speed of the v-graph are positively
correlated with the value of η, but η is not as small as possible.

Table 1. Relevances among η, total vertices besides the speed of v-graph update.

Test Without η η = 25 η = 20 η = 15 η = 10 η = 5

total vertices (Indoor) 904 873 725 714 695 630

v-graph update (Indoor) 21.48 ms 20.64 ms 14.13 ms 13.88 ms 13.82 ms 12.81 ms

total vertices (Forest) 3976 3589 2893 2838 2743 2334

v-graph update (Forest) 71.25 ms 54.23 ms 39.12 ms 38.97 ms 36.82 ms 35.64 ms

Theoretically, a smaller η value should lead to fewer vertices in the v-graph. However,
a value of η that is too small will have some drawbacks. The function of collision detection
may be affected when some minor obstacles are ignored, as shown in Figure 17a, and this
phenomenon also occurs in forest environments. When η is equal to 5, there are two small
trees missing from the v-graph in Figure 17b. When η is greater than or equal to 15 and less
than or equal to 20, with the increase of η, the outline of the obstacle is well guaranteed,
and the update speed of the v-graph is also relatively fast. When η is greater than 25,
the number of vertices in the v-graph gradually increases toward the direction of none η.
After several rounds of testing, a preliminary conclusion can be drawn that when the value
of η is between 15 and 20, the algorithm is most suitable for generating obstacle vertices.
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(a) Indoor environment

(b) Forest environment

Figure 17. Different η in the indoor and forest environment.

In the v-graph update simulation experiment, seven different environments are used
to compare our v-graph update method with FAR Planner’s, and the parameter of η is set
to 20. In different environments, a series of target points are established for the mobile
robot to travel. These points are fixed, and both methods let the mobile robot pass through
them in sequence. For example, in the indoor environment, the robot will pass through
the six target points 1, 2, 3, 4, 5, and 6 in sequence. During the driving process of the
robot, the update speed of the v-graph will be recorded, and similarly, all the vertices in the
v-graph will be recorded. The experimental results are shown in Figure 18.
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(a) Overall view (b) Contours and edges

(c) Visibility graph update (d) Total vertices in graph

Figure 18. (a) shows that the robot runs in different environments and passes through a series of
target points. (b) shows the geometric outline of obstacles and the connection of edges, red points are
valid vertices, and cyan lines represent effective edges. The last one in (b) is the optimized global
map. (c) shows the update speed of our method and the original method in different environments.
(d) shows the number of vertices in the v-graph after running the same trajectory.

In each environment in Figure 18a, the robot passes through a series of target points,
and the known environment information is reset after reaching each target point. Figure 18b
shows the optimized nodes and edges for complex irregular objects. For complex obstacles,
ours simplifies the vertex information of the obstacle. When the redundant vertices are
reduced, the redundant edges will also be correspondingly reduced. As shown in Fig-
ure 18b, the cyan and blue edges and red nodes in the optimized v-graph are significantly
reduced, respectively.

Figure 18c shows the average speed of the v-graph update, and Figure 18d shows
the total number of vertices in the v-graph. For simple terrain and most of the obstacles
with simple shapes and corners, such as the tunnel and 17DRP5sb8fy, our method obtains
similar results to FAR Planner, and the improvement is only 10∼20%; for large-scale maps
containing complex obstacles, such as the forest, 2azQ1b91cZZ, PX4nDJXEHrG, indoor, etc.,
our method significantly improves the efficiency by 40∼60% compared to FAR Planner.

It is evident from Figure 19 that for environments with complex terrain, our method
greatly reduces the number of vertices for obstacles in the v-graph. In Figure 19e,f, the orig-
inal method has a total of 73 vertices while our method has only 49 vertices.
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(a) FAR Planner (b) Ours

(c) FAR Planner (d) Ours

(e) FAR Planner (f) Ours

Figure 19. From (a–f) is the comparison result of the extracted obstacle vertices.

4.1.3. Path Planning Simulation Experiment

For the path exploration in the unknown environment, we compared the slightly
complex indoor environment and the tunnel environment with complex network structures,
respectively. Similar to the graph update simulation experiment, a series of waypoints are
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set up in each environment, allowing the robot to pass one by one. Define the robot to
accumulate environmental information while exploring the unknown environment.

FAR Planner (v-graph-based), A*, and D* Lite (occupancy grid-based) are all added
for comparison with our algorithm. Figure 20 shows the trajectory paths generated by our
algorithm and other algorithms in navigation. In the case of reaching the same navigation
point, our algorithm can avoid unnecessary exploration space to a greater extent than the
FAR Planner and A*, D* Lite, so as to achieve a shorter distance and less time.

(a) Indoor (b) Tunnel

(c) Travel Time (Indoor) (d) Travel Time (Tunnel)

(e) Travel Distance (Indoor) (f) Travel Distance (Tunnel)

(g) Path Search Time (Indoor) (h) Path Search Time (Tunnel)

Figure 20. (a,b) show that the trajectory of the robot using different algorithms to navigate in
indoor and tunnel simulation environments respectively and passes through a series of target
points. (c,d) show the time consumption for each target point. (e,f) show the distance robot takes to
travel to each target point. (g,h) show different path-searching algorithms’ time consumption.

Figure 20c–f show the time and distance it takes for the robot to travel from one
navigation point to another, and the robot accumulates map information during driving.
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Tables 2 and 3 (FAR Planner denoted as FAR) gives a summary of the overall travel time,
distance, and search time used for each map robot navigation.

As can be seen from Figure 20a for the indoor environment, the search space is wasted
to varying degrees when using FAR Planner, A*, and D* Lite to navigate from point 1 to
point 2. They are more inclined to explore the place where point 3 is located and then turn
back after finding that there is no passage leading to point 2. The possible reason for this
is that most of their cost functions only refer to the cost of the current node itself and the
cost of the Euclidean distance between the endpoint and the current node. This causes the
robot to tend to drive towards the node with the lowest total cost in a single direction, even
though that node may not be able to reach the goal.

For adjacent navigation points with relatively short distances, such as from navigation
point 4 to navigation point 5 in an indoor environment, the time and distance consumed by
all algorithms are not much different.

The A* and D* Lite are known for their search integrity in finding the optimal path.
However, those methods are difficult to scale as the computational cost increases sig-
nificantly when environments are large and complex [19]. For the tunnel environment,
although the environment contains a series of complex #- and T-shaped structures, there
are almost no dead ends, that is, the goal can be reached in any direction, so the robot
hardly needs to be turned back during the running process. For traditional A* and D* Lite,
due to the increase in scene scale, the number of grids that need to be calculated increases
sharply, and the cost of algorithm operation increases significantly in large-scale scenes.
However, for us, the use of bidirectional BFS allows us to avoid some bifurcations and
travel a shorter distance to the destination point.

Table 2. The overall time spent by the robot using different algorithms in [s] in Indoor environment.

Test Overall Time [s] Overall Distance [m] Average Search Time [ms]

FAR(baseline) 455.31 824.1 1.43

A* 486.4 906.3 44.21

Compare to FAR +6.7% +9% +2991%

D* Lite 498.1 896.6 29.6

Compare to FAR +9.4% +8.8% +1967%

OURS 357.2 633.1 0.81

Compare to FAR −21.5% −19.5% −43.3%

Table 3. The overall time spent by the robot using different algorithms in [s] in Tunnel environment.

Test Overall Time [s] Overall Distance [m] Average Search Time [ms]

FAR(baseline) 1038.2 1914.4 2.05

A* 833.6 1543.8 332.95

Compare to FAR −19.7% −19.3% +16,141%

D* Lite 1119.8 2109.8 162.3

Compare to FAR +7.8% +10.2% +7817%

OURS 763.8 1420.4 1.44

Compare to FAR −26.4% −25.8% −29.7%

As shown in Figure 20a,b, our planner is able to search for shorter paths and generate
effective trajectories. Table 2 shows that in the indoor case, our method reduces travel time
by 23% compared to A*, 28% compared to D* Lite, and 21% compared to FAR Planner’s
original algorithm. In terms of increased time, FAR Planner has the most time wasted
due to ineffective exploration, while A* and D* Lite are time-consuming when the robot is
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constantly swinging back and forth in a certain position, but what all three have in common
is wasted search space between some navigation points. Table 3 shows that in the tunnel
case, our method produces the shortest distance, which is 8% shorter than A*, 32% shorter
than D* Lite, and 25% shorter than FAR Planner.

Tables 2 and 3 show that our planning algorithm can run faster because of the use of a
hole-structured mesh to update the graph and vertex optimization for complex obstacles.
Compared to FAR Planner, our search algorithm update rate is 43% faster.

4.2. Physical Experiment

The physical experiment uses the mobile robot platform in Figure 21 with the speed
set to 0.7 m/s. The mobile robot is equipped with a Velodyne-16 LiDAR and an Inertial
Measurement Unit (IMU) 9250. The entire autonomous system is built on Robot Operating
System [53], and the Raspberry Pi 4B is the master and the laptop is the slave. In the
autonomous system, the master is used to transmit LiDAR data, run the CMU autonomous
exploration interface [47], and drive the stm32. The navigation algorithm runs on the slave.
The camera at 640 × 480 resolution in the mobile robot is only used to obtain pictures of
the environment. The LiDAR and IMU are coupled to generate the state estimation of the
robot through Lego-LOAM [4]. The main system structure of the mobile robot is shown in
Figure 22, the autonomy system incorporates navigation modules from CMU autonomous
development interface, e.g., terrain analysis and way-point following as fundamental
navigation modules.

Figure 21. The mobile robot.

Figure 22. The main structure of autonomous system.
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As shown in Figure 23a,b, obstacles are mapped as polygons in exploration, and solid
edges are formed from each relevant vertex. In Figure 23c, colored pointclouds of obstacles
are displayed to better show the details; orange lines denote the obstacles’ outlines, while
cyan lines denote the relationships between the edges of various obstacles.

In the navigation, as shown on the left side of Figure 23d, the mobile robot started from
point 1 and arrived at points 2, 3, and 4 in sequence and on the right side of the Figure 23d
shows pictures when the mobile robot navigates to the corresponding position.

(a) Path planning and exploration (b) Garage overview

(c) Details of v-graph

(d) Navigate in the garage

Figure 23. (a,b) show the path planning and exploration of the garage. (c) shows the details of
exploration, and (d) shows the entire navigation in the garage.
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As shown in Figure 24, our algorithm is compared with FAR Planner in the physical
experiment. The processing speed of the laser data, the update speed of the v-graph,
and the operation speed of the search algorithm are recorded every 0.5 seconds.

(a) Laser process time in the physical experiment

(b) V-graph update time in the physical experiment

(c) Path search time in the physical experiment

Figure 24. Data recorded when the path planning algorithm runs.
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In Figure 24a, The mean and standard deviation for the laser processing of FAR Planner
are 60.95 ms and 16.59 ms, respectively, while our method’s mean and standard deviation
of the laser processing are 41.59 ms and 9.93 ms, respectively. Not only is ours 31.76%
faster on average than FAR Planner, but the time taken by the algorithm is also more
stable. As shown in Figure 24b, both approaches will take longer to update the v-graph
because of the unexpected rise in obstacles, but ours is on average 37.12% quicker than
FAR Planner. In Figure 24c, ours is on average 18.06% faster than the FAR Planner on the
search algorithm.

5. Discussion
5.1. Grid in Mapping

In the process of robot simultaneous localization and mapping, grids can be used
to store pointcloud data [12,54–58], and can also be used as occupancy grid maps for
robot navigation [56,59–63]. As mentioned in Lau, B et al. [58], the processing speed of
a computer is limited by the resolution of the grid. When the grid resolution is higher,
the information represented by each cell is more accurate, but the calculation time is longer.
In Homm et al. [61], they use a Graphics Processing Unit (GPU) to speed up the formation
of fine grids, and in A. Birk et al. [56], they use multiple robots to jointly maintain grid
maps, an approach that indirectly speeds up the construction of the grid map.

The aim of the work in this paper is to use a discrete hollow grid to convert pointcloud
information into a binary image and extract obstacle vertices. Therefore, the focus of
this paper is on how to quickly extract the grid to generate the vertices of obstacles. For a
30 m× 30 m local grid, the processing speed of a high-resolution grid, such as 0.5 m× 0.5 m
per cell, is much slower than that of a low-resolution grid, such as 1 m × 1 m per cell.
Therefore, a grid with spaced hollow structures is designed to speed up the processing
of high-resolution grids. Since the use of hollow structures will affect subsequent images,
such as the discontinuous edges of obstacles, it is necessary to blur the generated images.
Blurring the image can cover empty spots caused by hollow structures. Additionally,
a complementary hollow-structured grid is also considered, storing a set of complementary
hollow-structured grids under adjacent data frames and integrated into the local map.

It is foreseeable that the grid application with this sparse structure can significantly
reduce the amount of computation and shorten the computation time in three-dimensional
space. In future work, the authors hope to use this sparse structure for 3D grids.

5.2. The Reduced Visibility Graph

The v-graph is a topology map that is widely used for path planning since it is
constructed using the vertices of obstacles. The difficulty of calculating and maintaining
the v-graph mainly depends on the number of vertices in the graph; thus, many researchers
focus on how to simplify the v-graph [19,64–70].

In Nguyet et al. [69], he proposed a method for clustering small obstacles according
to their volume, which can well reduce the number of vertices in the v-graph, thereby
improving the efficiency of the path search algorithm. However, this method needs to
calculate the total area of the global map for each iteration, which wastes a lot of time for
multiple small-volume obstacles. In Yang et al. [19], an angle ζ is set to limit the visibility
of each obstacle vertex, which can well reduce the number of edges of the obstacle vertex.
The method used in this paper combined Yang’s method [19] and proposed a method of
simplifying obstacle vertices that only act on the local map. Compared with [69], the speed
of the algorithm proposed in this paper is not affected by the global map, and it effectively
reduces invalid vertices and redundant edges.

5.3. Uncertainties in the Path Planning

The path planning is based on the produced map (they can be occupancy maps,
topological maps, or semantic maps), and the localization of the robot is very important
for constructing the map. In the simulation experiment, we can easily obtain the relevant
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data of the robot, such as the simulated IMU sensor information and the simulated LiDAR
information, and this information is accurate and unbiased in the simulated environment
to estimate the state of the robot. How well the robot is positioned determines whether the
map used for navigation is available. However, in real life, we cannot obtain such unbiased
data; therefore, we used Lego-LOAM for the state estimation of the robot. If the robot’s
state estimation data has a large error, the v-graph it builds will deviate from the real world.

As shown in Figure 25, in the real world, the mobile robot made an error in the state
estimation, and the white pointcloud newly scanned by the LiDAR was obviously offset
from the colored obstacle pointcloud. This will lead to the establishment of an unreliable
v-graph, thus affecting the effect of path planning.

Figure 25. The unreliable v-graph.

6. Conclusions

This paper proposed a sparse visibility graph-based path planner based on the FAR
Planner framework. Our method is far superior to the FAR Planner in terms of the efficiency
of v-graph maintenance and generation. Our method can be used for navigation in known
environments and exploration in unknown environments. Moreover, a complementary
hollow grid is designed for local layer updates and merges the local layer into the global
layer. For complex obstacles in the environment, a method was proposed to reduce the cost
of maintaining the v-graph by simplifying the vertices and edges of polygons. For small
obstacles, their information is still preserved in the graph. Moreover, the paper proposed
a path planning method based on a bidirectional breadth-first search combined with
the v-graph. By comparing the original algorithm of FAR Planner and the traditional
search algorithms A* and D* Lite, ours achieves the optimal path planning in unknown
environments, and the speed of the path search algorithm is faster than that of FAR Planner.
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