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Abstract: Rain-fed agriculture is easily affected by meteorological disasters, especially drought.
As an important factor of risk formation, actively carrying out agricultural drought vulnerability
assessments is conducive to improving food security and reducing economic losses. In this study,
an SE-DEA model with regional exposure and drought risk as input factors and the maize yield
reduction rate and drought-affected area as output factors is established. The aim is to evaluate and
zone the drought vulnerability of the maize belt in the Songliao Plain. The results show the following:
(1) From 2000 to 2019, the drought vulnerability of maize showed a fluctuating increasing trend.
The vulnerability in Harbin and central Jilin Province is high, which is extremely unfavorable for
maize production. (2) Comparing the historical disaster data with the drought vulnerability map
generated using the SE-DEA model, it could be found that the results obtained using the SE-DEA
model are reliable. (3) The Tobit model shows that the proportion of the effective irrigated area is
more important to alleviate vulnerability. For drought vulnerability zoning using a cluster analysis,
we suggest that regulated deficit irrigation should be actively developed in high-vulnerability areas
to ensure maize yield while improving water efficiency. The results of this study can provide a basis
for the development of drought mitigation and loss reduction strategies, and they provide new ideas
for future research.

Keywords: super-efficiency data envelopment analysis; drought; vulnerability; Tobit model; maize

1. Introduction

Climate change has a widespread and significant impact on agricultural production,
and it increases the instability of agricultural production, changes the planting structure
and layout, and even increases the frequency of regional agrometeorological disasters [1–6].
Northeast China is located in the middle and high latitudes, and it has a complex geo-
graphical environment and geomorphological features, and a great spatial variability of
heat resources [7,8]. Under the control of the monsoon climate in East Asia, the spatial
and temporal distribution of precipitation is uneven, with high inter-annual variability
and frequent drought disasters [9–12]. Over the past 20 years, more than one-quarter of
the crops in Northeast China have been affected by drought each year [13]. Among them,
maize yields were reduced by 20–30% due to drought, and the economic loss was as high
as about 8.9 × 108 yuan [14]. The crop water resources in Northeast China are very scarce,
and the risk of drought in the region will be exacerbated by sustained global temperature
increases in the future [15,16]. Determining how to address the adverse effects of drought
on maize production and identifying how to stabilize or improve maize yield are urgent
problems for maize production in Northeast China.
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Drought is a necessary condition for the formation of disasters, and vulnerability is the
fundamental reason for the transformation of a “drought” into a “disaster”. Vulnerability
is a state of the disaster-bearing body, which is related to its own attributes and the effect
of disaster-causing factors on the disaster-bearing body [17,18]. As the key and linking
factor of risk assessments, seeking ways to reduce vulnerability can achieve the ultimate
goal of disaster reduction. Currently, the research on vulnerability is mainly divided into
qualitative research and quantitative research. Qualitative research focuses on the causes
of vulnerability, but regional vulnerability assessments often lack a systematic approach
and scientific validity. Therefore, on the basis of qualitative research, many scholars
have established vulnerability assessment models and classified vulnerability levels using
mathematical methods [19–22].

Guo et al. used the Environmental Policy Integrated Climate (EPIC) model to simulate
the drought intensity and vulnerability curves of rice in different future periods so as to
evaluate the impact of drought on global rice yield [23]. Zhu et al. used the AquaCrop
model to examine the drought vulnerability of major maize-producing areas in China,
simulating water stress and corresponding yield changes in maize under different irrigation
scenarios [24]. Farhangfar et al. quantified the drought vulnerability of crops in Iran in
current and future periods by establishing the United Nations Environmental Program
(UNEP) Aridity Index (AIU) [25]. Yildirim et al. used graphic superimposition to assess
the vulnerability of agricultural floods in Iowa by using flood-inundated maps and crop
grid data [26]. Hoque et al. proposed a spatial multi-criteria integrated approach, which
combines geospatial techniques and an analytical hierarchy process (AHP), to draw a
comprehensive drought vulnerability map of Bangladesh [27].

In previous studies, most vulnerability assessments have needed to assign weights
to each factor [28,29]. However, the acquisition of weight often has great subjectivity. It is
difficult to demonstrate the importance of one factor relative to another. This highlights
the advantages of the data envelopment analysis (DEA) model, namely, the absence of
subjective judgement and the improved fault tolerance [30]. The DEA model was first
proposed in 1957 and has since been continuously developed [31,32]. DEA is an effective
method used to evaluate the efficiency of decision-making units (DMUs) with multiple
inputs and outputs. Based on the concept of relative efficiency, it evaluates the relative
effectiveness of DMUs using mathematical programming and statistical data. Essentially,
DEA is an evaluation model of the “input–output” operational efficiency of a system [33,34].
The occurrence of natural disasters is the result of the operation of regional disaster systems,
and it can also be regarded as an “input–output” system. The occurrence of disasters
is the result of the comprehensive action of disaster-causing factors, hazard pregnant
environment, and disaster-bearing bodies. Therefore, vulnerability can be regarded as
a reflection of the “efficiency” level of disaster generation (Figure 1). The greater the
vulnerability, the higher the “efficiency” of regional disasters, and the easier it is for a
serious disaster situation to develop.
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efficiency data envelopment analysis (SE-DEA), and the network data envelopment analysis
(NDEA) in natural disaster analyses is still in the exploratory stage [40–42]. Therefore,
this study proposed the inputs and outputs of an SE-DEA system to assess maize drought
vulnerability. Furthermore, the rationality of the evaluation results was verified and
drought vulnerability zoning was carried out. The Tobit model was used to determine the
main factors affecting disaster prevention and mitigation in various regions, providing a
reference for improving the efficiency factors of drought resistance in the Songliao Plain.
At the same time, it can provide methodology for the application in other regions of China
(and other countries).

2. Materials
2.1. Study Area

The main maize-producing areas of the Songliao Plain are located in Northeast China,
at 40◦12′–46◦18′N, 120◦42′–127◦36′E, with a total area of 1.74× 105 km2. The altitude is low
in the south, high in the northwest, and higher in the southeast and eastern margins. The
area belongs to a temperate continental monsoon climate, with a high temperature, a rainy
summer, and a cold and dry winter. The land is fertile, and it is one of only three regions
of black soil in the world. The grain output in Northeast China accounts for one-third of
China’s total output, and it is an important production base of maize, soybean, and animal
husbandry (Figure 2).
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2.2. Data Sources
2.2.1. Daily Meteorological Data

The daily meteorological data of the Songliao Plain from 2000 to 2019 were collected
from the National Meteorological Information Center (http://data.cma.cn/, accessed on 4
January 2020), and the data included the maximum temperature, minimum temperature,
rainfall, relative humidity, solar radiation, and wind speed. Data were obtained from 17
Chinese national ground observation stations in the study area, and the accuracy rate was
nearly 100% after quality control. In this study, the required meteorological data were
gridded to 4 km × 4 km.

2.2.2. Agricultural, Social, Economic, and Drought Disaster Data

This data were mainly from the Liaoning Provincial Statistical Yearbook (http://tjj.
ln.gov.cn/, accessed on 4 January 2020), the Jilin Provincial Statistical Yearbook (http:
//tjj.jl.gov.cn/, accessed on 4 January 2020), the Harbin City Statistical Yearbook (http:
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//www.harbin.gov.cn/, accessed on 4 January 2020), the Tongliao City Statistical Year-
book (http://tjj.tongliao.gov.cn/, accessed on 4 January 2020), and the China Regional
Economic Statistical Yearbook (http://www.stats.gov.cn/, accessed on 4 January 2020)
for the years 2000–2019. By collecting and collating relevant data, we obtained the total
power of agricultural machinery, the proportion of effective irrigated area, the fiscal fund
for assisting agriculture, the per capita income of rural households, the consumption of
chemical fertilizer, and the proportion of the agricultural population. Data on the maize
drought-affected area from 2000 to 2019 were collected from the China Meteorological
Disasters Dictionary (https://xueshu.baidu.com/, accessed on 4 January 2020) and the
Resource Discipline Innovation Platform (http://www.data.ac.cn/, accessed on 4 January
2020) for the years 2000–2019. In this study, the 4 km × 4 km grid was used as the basic
evaluation unit, and the vector plane data were converted into grids of the same size so as
to achieve the unification of scale.

2.2.3. Maize Production Data

Data on the maize development period were obtained from the Academy of Agricul-
tural Sciences, and the data mainly include the date of sowing, jointing, tasseling, milk-ripe,
and maturity from 2000 to 2019. In this study, we counted the historical development
period data of each county and city within the study area and calculated the annual average
value for each growth period of maize.

2.2.4. Soil Data

Soil data were obtained by conducting field tests for many years, and each soil pa-
rameter was treated with a 4 km × 4 km grid (Figure 3). The soil parameters measured in
this study were soil bulk density, soil wilting moisture, and soil gravimetric water content.
The depth of measurement was 1 m, with one layer for every 10 cm and four replicates for
each layer. Following the method used by Zhou [43,44], soil was collected layer by layer,
weighed, and recorded. The sample soil was boxed and brought back for baking, and the
soil bulk density was calculated. Subsequently, the gravimetric water content of the soil
was determined. The maize seedlings were then planted into measuring cups closed on the
soil surface. When all leaves wilted, the air humidity was close to saturation. At the same
time, when the leaves could not recover under the condition of minimum transpiration, the
soil moisture in the container was determined as the wilting moisture.

(1) Soil bulk density (ρ)

V = πr2h (1)

where V is the volume of the ring cutter (cm3), r is the inner radius of the ring cutter (cm),
h is the height of the ring cutter (cm), and π is the circumference of the circle (3.1416).

ρ = G× 100/V
(
100 + W′

)
(2)

where ρ is the soil bulk density (g/cm3), G is the weight of the wet sample in the ring
cutter (g), V is the volume of the ring cutter (cm3), and W′ is the moisture content of the
sample (%).

(2) Soil wilting moisture (Wc)

The maize was cultivated in containers until it began to wilt permanently due to
the lack of water; then, the maize and 2 cm of soil were removed from the surface. The
remaining soil moisture content was the soil wilting moisture, and it was determined using
the drying method.

(3) Gravimetric water content of soil (W)

W = (WW −WD)/(WD −WA)× 100% (3)

http://www.harbin.gov.cn/
http://www.harbin.gov.cn/
http://tjj.tongliao.gov.cn/
http://www.stats.gov.cn/
https://xueshu.baidu.com/
http://www.data.ac.cn/
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where W is the gravimetric water content of the soil, WW is the sum of the weight of the wet
clay and the aluminum box, WD is the sum of the weight of the wet clay and the aluminum
box, and WA is the weight of the aluminum box.
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3. Methodology
3.1. Super-Efficiency DEA Model

DEA is a linear programming method; it uses the observed valid sample data, takes
each evaluation object as a DMU, and ultimately evaluates the effectiveness of the DMU [45].
Suppose there are n DMUs, each of which has m types of inputs and s types of outputs. The
input is Xj, and the output is Yj.

Xj =
(
x1j, x2j, · · · , xmj

)
, Yj =

(
y1j, y2j, · · · , ysj

)
where xij > 0 represents the input quantity of the ith (i = 1,2, . . . , m) type of the input of
the j (j = 1,2, · · · , n) DMUj. yrj > 0 represents the output quantity of the rth (r = 1,2, · · · , s)
type of the output of the j DMUj. The C2R model used to evaluate the effectiveness of the
j0th DMUj0 is as follows: 

minθ = VD
n

∑
j=1

λjXj + S− = θX0

n

∑
j=1

λjYj − S+ = Y0

λj ≥ 0, j = 1, 2, · · · , n
S− ≥ 0, S+ ≥ 0

(4)

where Xj and Yj denote the input and output indicators, respectively, and λj is the weight
variable for the jth indicator. S− and S+ are slack variables, and θ is the criterion for judging
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whether DMUj is effective. If θ = 1, then this means that the input effect of the DMU is
the best.

However, when the Charnes–Cooper–Rhodes model (C2R model) is used for eval-
uation, there will be multiple effective DEA cases. The DMU with the highest efficiency
value of “1” cannot be distinguished, and the superiority among the DMUs cannot be
judged [45,46]. The SE-DEA effectively distinguishes the situation of multiple high-
efficiency DMUs by comparing the evaluated DMU with the linear combinations of all
other DMUs in the sample and then ranking them [47]; the formula is as follows:

minθ′ = VD
n

∑
j=1,j 6=k

λjXj + S− = θ′ Xk

n

∑
j=1,j 6=k

λjYj − S+ = Yk

λj ≥ 0, j = 1, 2, · · · , n
S− ≥ 0, S+ ≥ 0

(5)

where θ′ is the super-efficiency value; the other symbols have the same meaning as those in
Equation (4).

3.2. Tobit Model

In this study, the Tobit model was introduced to analyze the vulnerability values
of each DMU calculated using the SE-DEA model in order to determine the correlation
between the vulnerability and vulnerability explanatory variables [48,49]. The Tobit linear
regression model is expressed as follows:

Yi =

{
βiXi + εi, Y∗i = βiXi + εi > 0

0, Y∗i = βiXi + εi ≤ 0
(6)

where Yi is the observed dependent variable, and Y∗i is the latent variable selected by the
state. When Y∗i > 0, Y∗i ∼ N(0,σ) is satisfied. Xi is the explanatory independent variable,
β is the parameter vector, and ε is the random error vector. The maximum likelihood (ML)
was used to obtain β and ε.

3.3. Construction of Drought Vulnerability Evaluation Index System of Maize
3.3.1. Input Index

(1) Regional exposure

Maize is a disaster-bearing body in the Songliao Plain, and the maize-planted area of
each city can represent the regional exposure degree. The larger the maize-planted area, the
greater the exposure and the higher the drought vulnerability. The larger the proportion
of the agricultural population in the whole region, the more widespread the impact of a
drought and the more people who suffer losses. Moreover, the lower the economic value
created by the agricultural population, the less the capital that can be invested after a
disaster. Therefore, the greater the proportion of the agricultural population, the higher the
exposure and the vulnerability of the drought.

(2) Drought hazard

The Songliao Plain is a rain-fed, maize-growing area, and drought is mainly caused by
a lack of natural precipitation, failing to meet the demand for water of maize. Therefore,
establishing an index of the crop water demand satisfaction degree of external available
water can determine the occurrence of agricultural drought and the degree of disaster. The
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crop water deficit index (CWDI) as an index used to characterize agricultural drought, and
it is recognized by many scholars [50–52].

CWDIwpi =

{
1− We+Pei+Ii

ETCi
0

ETCi ≥We + Pei + Ii
ETCi < We + Pei + Ii

(7)

ETCi =

n

∑
i=1

kci × ET0i (8)

We = 0.1hρ(W−Wc) (9)

where CWDIwpi is the crop water deficit index, We is the effective soil moisture at 20 cm
at maize seedling emergence (mm), Pei is the sum of daily effective precipitation from the
beginning of seedling emergence (mm), and ETCi is the sum of crop water requirements
from emergence (mm). Ii is the sum of the daily irrigation amounts from seedling emergence
(mm). The Songliao Plain area is dominated by rain-fed agriculture, and irrigation amounts
are ignored. Kci is the crop coefficient: sowing–jointing = 0.378, jointing–tasseling = 0.689,
tasseling-milk-ripe = 1.185, and milk-ripe–maturity = 0.759 [50,53]. n is the number of days
from seedling emergence to maturity, h is the soil thickness (cm), and ρ is the soil bulk
density (g/cm3). W is the gravimetric water content of the soil (%), and Wc is the wilting
moisture (%). ET0i is the reference evapotranspiration (mm), and it was calculated using
the Penman–Monteith equation recommended by the Food and Agriculture Organization
of the United Nations (FAO); the calculation formula is detailed in [54–56].

Pei =

m

∑
u=1

(αu × Pu) (10)

where Pu is the total amount of precipitation (mm) for a given precipitation event, and αu
is the effective use factor. Pu < 5 mm, αu = 0; 5 mm < Pu ≤ 50 mm, αu = 0.9; Pu > 50 mm,
αu = 0.75.

3.3.2. Output Index

In this study, the drought-affected area and maize yield reduction rate were used as
disaster loss indicators [57,58]. The yield reduction rate is the percentage of rain-fed yield
deviating from the potential yield, which can be calculated using the following formula:

yP =
Y− y

Y
× 100% (11)

where yP is the yield reduction rate; Y is the potential yield (kg/hm2) (the yield of a given
variety in a certain area without water and fertilizer restriction during the entire growth
period); and y is the yield under rain-fed conditions at full fertility (kg/hm2) (the yield of a
given variety of fertilizer in a certain area), the whole growth period of which is rain-fed
without restriction.

3.3.3. Disaster Prevention and Mitigation Capacity

(1) The total power of agricultural machinery (kW): this refers to the total power of all
kinds of power machinery, which mainly includes all kinds of machinery used in
agriculture, forestry, animal husbandry, and fishery.

(2) The proportion of effective irrigated area (%): this refers to the ratio of the effective
irrigation area to the total cultivated land area.

(3) The fiscal fund for assisting agriculture (yuan): this refers to all levels of government
budget arrangements for the support of agriculture and rural production expenditure,
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agriculture, forestry and water, and other departments, and it is used to determine
the special expenditure funds.

(4) The per capita income of rural households (yuan): this refers to the total income of
rural residents in the year from various sources and is used to deduct the sum of
consumer spending and savings.

(5) The consumption of chemical fertilizer (tons): this refers to the actual amount of
fertilizer used in agricultural production per year.

3.4. Ward Clustering Method

The Ward clustering method was proposed by Ward [59], and its main idea originates
from the analysis of variance. Assume that the n samples are divided into k classes G1,
G2, · · · , Gk, with Xit denoting the vector of variable indicators for the ith sample in Gt. nt
denotes the number of samples in class Gt, and Xt denotes the centre of gravity of Gt; then,
the sum of squares of the deviations of the samples in Gt is

St =

nt

∑
i=1

(
Xit − Xt

)′(Xit − Xt
)

(12)

If Gp and Gq are merged into a new class Gr, the sums of the squares of the intra-class
deviations are as follows:

Sp =

np

∑
i=1

(
Xip − Xp

)′(Xip − Xp
)

(13)

Sq =

nq

∑
i=1

(
Xiq − Xq

)′(Xiq − Xq
)

(14)

Sr =

nr

∑
i=1

(
Xir − Xr

)′(Xir − Xr
)

(15)

If the distance between Gp and Gq is closer, the deviation square and the Sr − Sp − Sq
increase after merging will be smaller and vice versa. In the Ward clustering method, the
distance between samples is obtained using the Euclidean distance.

4. Result
4.1. Temporal and Spatial Distribution of Maize Drought Vulnerability in Songliao Plain

Figure 4 shows the change in the drought vulnerability index in the Songliao Plain
from 2000 to 2019. Overall, except for 2011 and 2013, the drought vulnerability index of all
provinces showed an increasing trend year by year. The drought vulnerability of Liaoning
Province reached the maximum value (0.521) in 2019. The maximum value in Jilin Province
was in 2016 (0.508). Harbin, Heilongjiang Province, reached the maximum value (0.754) in
2017. The maximum value of Tongliao in Inner Mongolia was in 2014 (0.721). The drought
vulnerability index of Tongliao fluctuated the most. Drought vulnerability in the Songliao
Plain reached the maximum value (0.733) in 2017, and the minimum value was 0.35, which
occurred in 2000. The drought vulnerability in the Songliao Plain was serious in 2000, 2012,
and 2017.
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We aimed to understand the spatial distribution of maize drought vulnerability in the
Songliao Plain. In this study, the inverse-distance-weighted interpolation (IDW) method
in ArcGIS 10.2 was used to obtain the spatial distribution of the drought vulnerability
index of maize year by year. Then, the natural breaks (Jenks) were used to classify drought
vulnerability into four classes, namely, high, higher, moderate, and low, and to count the
area of each class (Figure 5).
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The area of the high-drought-vulnerability area increased year by year, reaching
9.84 × 104 km2 in 2013. The area of the higher grade region fluctuated and reached the
maximum value (10.29 × 104 km2) in 2004. With the aggravation of drought vulnerability,
the area of moderate drought vulnerability decreased year by year, especially in 2008,
when the area was 9.14 × 104 km2. The reduction was more pronounced in areas of low
vulnerability. In most years, the area of low vulnerability was less than 4 × 104 km2.
Overall, the drought vulnerability of maize in the Songliao Plain is becoming more and
more serious, along with the continuous reduction of moderate and low areas, which is
very detrimental to the development of the maize industry.

Figure 6 shows the maximum, minimum, median, and probability distribution of the
maize drought vulnerability index in cities in the Songliao Plain from 2000 to 2019. The
drought vulnerability of Changchun and Harbin was more serious, with average values
of 0.457 and 0.429, respectively. The median values were 0.402 and 0.399, respectively.
The areas with lower median values were Benxi (0.104), Liaoyuan (0.126), Yingkou (0.132),
Liaoyang (0.135), and Panjin (0.156). The regions with low drought vulnerability were
mainly concentrated in the southeast of Liaoning Province. The drought vulnerability of
Harbin and the central part of Jilin Province was more serious.
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4.2. Validation of Evaluation Results

We aimed to verify the applicability of the SE-DEA model in this study. Taking 2003,
2007, 2011, 2015, and 2019 as cases, the spatial distribution of maize drought vulnerability
was obtained and compared with historical disaster data (Table 1) to verify the applicability
of the evaluation results (Figure 7).

In Figure 7, it can be observed that the spatial distribution of the drought vulnerability
in the Songliao Plain increased year by year. In 2003, drought vulnerability was relatively
low, only Harbin, Changchun, Tongliao, and southern Jinzhou experienced drought. The
situation in 2007 was similar to that in 2015, with high-value areas distributed in midwestern
Jilin Province, Harbin, and the western parts of Liaoning Province. In 2011, the drought
vulnerability in Harbin and Changchun was high, and the low-value area was located in
the southern part of the study area. In 2019, except for the northwest of Baicheng, Liaoyang
and Benxi were in low-value areas. At the same time, the rest of the region faced a high
drought threat, particularly the western parts of Liaoning Province, including Tongliao,
Fuxin, and Jinzhou.
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By comparison with Table 1, the spatial distribution of the drought vulnerability
obtained in this study is more consistent with historical disaster data, especially in 2007,
2011, and 2019. Therefore, it can be stated that the SE-DEA model selected in this study has
good applicability and scientific validity in the evaluation of maize drought vulnerability
in the Songliao Plain.

Table 1. Records of historical drought disasters in the Songliao Plain.

Year Period of Drought Damage Caused by Drought

2003 May–June
Heilongjiang Province suffered from a severe drought, which affected a large area,

severely reduced grain production, and caused an economic loss of more than
2.27 × 106 yuan.

2007 June–August
In Liaoning Province, 55% of the arable land was affected by drought, with economic

losses of 4.39 × 106 yuan. The drought-affected area in Jilin Province accounts for 77.6%
of the crop sown area.

2011 January–March Northern Heilongjiang and central Jilin suffered from a rare winter–spring drought.

2015

June
In Liaoning Province, 6.78 × 106 people were affected by drought, with 1.43 × 106 hm2

of crops affected and 2.33 × 105 hm2 of crops lost, resulting in a direct economic loss of
6.08 × 106 yuan.

July

In Liaoyuan, Baicheng, Jilin, and Tonghua, 4.02 × 106 people were affected, with
7.0 × 107 hm2 of crops affected and a direct economic loss of 7.36 × 106 yuan. In

Dongfeng county, 1.82 × 107 people were affected, with 5.2 × 104 hm2 of crops affected
and a direct economic loss of 2.9 × 108 yuan.

July–August
In Tongliao city, Inner Mongolia, 1.78 × 105 people were affected, with 1.17 × 105 hm2 of

crops and 1.8 × 105 hm2 of grassland affected, resulting in a direct economic loss of
4.4 × 108 yuan.

2019 May–August

In Jilin Province, 1.25 × 106 hm2 were affected by drought, and 0.4 × 106 hm2 were not
harvested, especially in the central region. In early May, some areas in western Liaoning
experienced a severe drought, which prevented spring sowing. From the beginning of
July, Dalian and Yingkou had different degrees of meteorological drought. Most areas

had severe drought, and some areas of Dalian had reached the level of special drought.
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5. Discussion

We aimed to further explore what factors influence maize drought vulnerability in
the Songliao Plain and to what extent. We used the Tobit model to analyze each disaster
prevention and mitigation indicator for 2019 as an example. We aimed to identify the
factors that play a positive role in mitigating drought vulnerability in the study area. Then,
a cluster analysis was used to regionalize maize drought vulnerability in 2019.

5.1. Analysis of Influencing Factors of Drought Vulnerability

The total power of agricultural machinery, the proportion of effective irrigated area,
the fiscal fund for assisting agriculture, the per capita income of rural households, and
the consumption of chemical fertilizer were selected to analyze the factors affecting maize
drought vulnerability. The characteristics of the variables are shown in Table 2.

Table 2. Statistical description and expected impact of indicators of factors influencing maize
drought vulnerability.

Variable Average Maximum Minimum Standard Deviation

Total power of agricultural machinery (×106 kW) 5.36 11.49 1.43 2.02
Proportion of effective irrigated area (%) 37.22 72.01 10.11 17.69

Fiscal fund for assisting agriculture (×108 yuan) 47.76 114.59 11.59 27.54
Per capita income of rural households (×104 yuan) 1.58 1.89 1.12 0.2

Consumption of chemical fertilizer (×104 tons) 33.68 100.66 1.2 28.16

The Tobit model was used to analyze the influencing factors of maize drought vulnera-
bility in the Songliao Plain. The vulnerability value obtained using the SE-DEA model was
taken as the dependent variable to establish a Tobit linear regression model using Eviews
6.0 software (USA, QMS), and the results are shown in Table 3.

Table 3. Tobit regression analysis results.

Variable Coefficient Estimate Standard Deviation Z Value p Value

Constant (C) 0.119 0.149 0.8 0.0000
Total power of agricultural machinery (X1) −0.321 0.26 −0.082 0.0025
Proportion of effective irrigated area (X2) −0.672 0.193 2.45 0.0038
Fiscal fund for assisting agriculture (X3) −0.217 0.288 −0.405 0.0102

Per capita income of rural households (X4) −0.189 0.221 −0.362 0.0255
Consumption of chemical fertilizer (X5) 0.19 0.28 0.68 0.5100

Table 3 shows that all the influencing factor variables passed the 5% significance test,
except for consumption of chemical fertilizer; this indicates that fertilizer application has a
small effect on maize drought vulnerability in the Songliao Plain. The other factors have a
strong influence on drought vulnerability. According to Table 3, the regression equation of
the Tobit model was obtained as follows:

Y = 0.119 − 0.321 X1 − 0.672 X2 − 0.217 X3 − 0.189 X4

According to the Tobit regression equation, the relative magnitude of maize drought
vulnerability in the Songliao Plain can be found by each influencing factor. Through the
above equation, the following conclusions were obtained:

(1) The coefficient of the total power of agricultural machinery is negative, and its ab-
solute value is relatively large, which indicates that it is more important to reduce
the vulnerability to drought. The better developed the power of the agricultural
machinery, the higher the level of agricultural modernization and the stronger the
ability to reduce drought vulnerability. Mechanized drought resistance can reduce
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the ineffective evaporation of soil water and promote the rational utilization of wa-
ter resources.

(2) The proportion of effective irrigated area to vulnerability has a negative effect, and the
coefficient estimation is the largest. The results show that emergency preparedness
has the greatest impact on maize drought vulnerability among all the influencing
factors. Increasing the irrigated area can greatly reduce regional vulnerability and
mitigate the adverse effects of drought, thus reducing yield and economic losses.

(3) The fiscal fund for assisting agriculture has a negative effect on drought vulnerability,
and by investing in agricultural support, regional vulnerability can be reduced to a
large extent, thus reducing the losses caused by drought disasters. Additionally, it also
demonstrates the importance that local governments attach to agriculture. Govern-
ment decision makers will also be more systematic and complete in the formulation
of relevant disaster prevention and mitigation policies.

(4) The per capita income of rural households has a relatively small and negative im-
pact on drought vulnerability. This indicates whether residents have the financial
capacity to manage a drought. The more economic investment that can be invested
in pre-disaster prevention, response, and post-disaster reconstruction, the lower the
vulnerability to drought.

(5) The consumption of chemical fertilizer did not pass the 5% significance test, indicating
that it had no significant effect on maize drought vulnerability. However, some studies
have shown that the proper application of fertilizers can promote the growth of crops
at the early stage of growth and enhance their vitality, thus improving their ability
to resist adverse environments [60]. However, an excessive application of fertilizers
affects soil quality, damages soil physical and chemical properties, and reduces soil
productivity, thereby causing damage to crops, or even death [61,62].

5.2. Recommendations for Drought Risk Management in Maize

As a widespread natural disaster, drought poses a serious threat to agricultural pro-
duction. We identified the main factors of the mitigation of maize drought vulnerability in
the Songliao Plain using the Tobit model (Figure 8). This was followed by maize drought
vulnerability zonation using Ward’s cluster analysis (Figure 9). The aim of using Ward’s
cluster analysis (Figure 9) was to provide a reference for regional disaster mitigation.

The areas with high drought vulnerability were mainly concentrated in Liaoning
Province and the south-central part of Jilin Province (Figure 9). The economic level, ir-
rigation water consumption, and agricultural development in these areas are generally
low, especially in Tongliao and Siping (Figure 8). These areas should actively develop
irrigated agriculture and reduce the proportion of rain-fed agriculture, thus reducing the
dependence of crops on natural precipitation and the disaster sensitivity of agricultural
systems. By developing regulated deficit irrigation techniques, increasing the root depth of
crops, and making full use of deep soil moisture, water supply for the normal growth and
development of crops can be ensured when drought occurs [63–65].
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For a long time, the agricultural irrigation mode used is mainly full irrigation. While a
lot of irrigation water is consumed, irrigation efficiency and economic benefits are often not
significantly improved. Therefore, it is undoubtedly a wise choice to implement regulated
deficit irrigation in arid areas with low precipitation and high evaporation. Regulated
deficit irrigation reduces irrigation water during the non-critical period and concentrates
water resources during the critical period of crop water demand [66]. As far as corn is
concerned, it has strong drought resistance at the seedling stage [67]. Moderate water
deficit treatment at this stage can enhance drought resistance and water use efficiency.
However, some studies have pointed out that it is not advisable to regulate deficits too
early in the seedling stage; otherwise, water stress will harm the growth of seedling roots.
This affects the compensation effect after rehydration, resulting in a decrease in dry matter
accumulation. Full irrigation should be carried out at the maize jointing and tasseling
stages to ensure dry matter accumulation in later stages [68–71].

In actual production, a suitable water deficit will improve maize yield and water use
efficiency. However, the photosynthetic physiological characteristics of maize are different
in each growth stage, and planting area conditions and climatic conditions are also different.
There is no definite standard for determining the degree of water deficit, but it should be
adapted to local conditions. We suggest to increase the investment of scientific research
funds and technical personnel and to determine a suitable deficit irrigation scheme for each
region by conducting a large number of experiments. Only by constantly combining the
maize regulation deficit irrigation system with modern agricultural technology can it be
further systematized and become more efficient and intelligent. Only in this way can we
find a way out for maize production in arid areas and provide strong support for the precise
control of yield and quality, as well as the promotion of social sustainable development.
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6. Conclusions

A vulnerability evaluation can provide scientific reference for disaster prevention and
mitigation decisions. In this study, we used the SE-DEA model to assess maize drought
vulnerability in the Songliao Plain from 2000 to 2019. The drought vulnerability of the
Songliao Plain increased year by year, and the area of high vulnerability increased. It
was suggested that regulated deficit irrigation should be adopted, and the investment of
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disaster prevention funds and human resources should be continuously increased. The
evaluation results were validated with historical disaster data, and it was found that the
SE-DEA model can provide scientific and reasonable results. We used the Tobit model to
explore the factors influencing drought vulnerability. Analyzing the changes in regional
vulnerability and the causes of regional differences will be helpful for the implementation
of regional disaster prevention and mitigation. In this study, for the output indicators
of the SE-DEA model, we only considered the undesirable outputs. Therefore, in future
research, output indicators can be selected from two aspects, namely, undesirable outputs
and desirable outputs, and, as a result, the accuracy and application value of the research
results will be greatly improved.
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