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Abstract: Clouds in optical remote sensing images are an unavoidable existence that greatly affect
the utilization of these images. Therefore, accurate and effective cloud detection is an indispensable
step in image preprocessing. To date, most researchers have tried to use deep-learning methods
for cloud detection. However, these studies generally use computer vision technology to improve
the performances of the models, without considering the unique spectral feature information in
remote sensing images. Moreover, due to the complex and changeable shapes of clouds, accurate
cloud-edge detection is also a difficult problem. In order to solve these problems, we propose a
deep-learning cloud detection network that uses the haze-optimized transformation (HOT) index and
the edge feature extraction module for optical remote sensing images (CD_HIEFNet). In our model,
the HOT index feature image is used to add the unique spectral feature information from clouds
into the network for accurate detection, and the edge feature extraction (EFE) module is employed
to refine cloud edges. In addition, we use ConvNeXt as the backbone network, and we improved
the decoder to enhance the details of the detection results. We validated CD_HIEFNet using the
Landsat-8 (L8) Biome dataset and compared it with the Fmask, FCN8s, U-Net, SegNet, DeepLabv3+
and CloudNet methods. The experimental results showed that our model has excellent performance,
even in complex cloud scenarios. Moreover, according to the extended experimental results for the
other L8 dataset and the Gaofen-1 data, CD_HIEFNet has strong performance in terms of robustness
and generalization, thus helping to provide new ideas for cloud detection-related work.

Keywords: cloud detection; deep learning; semantic segmentation; HOT index; edge feature; optical
remote sensing image

1. Introduction

With the rapid development of remote sensing technology, the field of satellite remote
sensing has entered the era of Big Data [1–3]. Remote sensing is now widely used in
environmental protection, land resource surveys, disaster monitoring and other fields [4–6].
According to the long-term observations of the International Satellite Cloud Climatology
Project (ISCCP), more than 60% of the Earth’s surface is regularly covered by clouds [7].
Therefore, optical remote sensing images are easily disturbed by the atmosphere and clouds,
and many images are occluded by clouds. Due to cloud occlusion, the information for
ground objects can be attenuated or even lost and the texture of and spectral information
from the images may be changed at the same time, which adversely affects the subse-
quent production of images and seriously reduces the utilization rate of remote sensing
images [8,9]. Furthermore, studying the distribution of clouds is helpful for investigations
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of climate change trends, and it is also significant for the assessment of the global surface ra-
diation budget [10–12]. Therefore, cloud detection is key to subsequent image identification,
classification and interpretation, and it is the premise that guarantees the production of
seamless spatiotemporal remote sensing products [13]. Moreover, effective cloud detection
is also an important step in cloud removal [14,15]. Cloud detection can also be used to
eliminate images with excessive cloud coverage in order to reduce the burden on data
storage and improve product production efficiency. Efficient and accurate cloud detection
in remote sensing images has also become a hot issue in the field of remote sensing.

Cloud detection is a semantic segmentation process for pixel-level image classification
based on actual semantic information, and it is also a binary classification problem based
around distinguishing cloud and non-cloud areas. In the past few decades, much research
has been undertaken on cloud detection using different methods. These methods include
the spectral threshold method, the texture analysis method and the machine-learning
method [16–18]. The spectral threshold method mainly relies on the spectral characteristics
of clouds and involves designing different combinations of various bands for detection.
This method is widely used with MODIS data and Landsat data. Jedlovec [19] used
19 channels of MODIS data and terrain data for cloud detection in the popular MODIS
Cloud Mask cloud detection method. Irish et al. [20] proposed an automatic cloud cover
assessment (ACCA) algorithm for Landsat 7 images that uses spectral characteristics to
perform the first scan and then the radiance and temperature characteristics to perform
the second scan and obtain cloud detection results. Subsequently, Zhu et al. [21] proposed
the function of mask (Fmask) algorithm to extract clouds and cloud shadows with high
accuracy in Landsat data. In recent years, in view of the variability in remote sensing
images, a dynamic threshold has been developed as part of the spectral threshold method
to obtain more accurate detection results [22,23]. However, most of these methods require
the use of many bands, and threshold determination is complicated. Moreover, most of
them are designed for specific sensors and cannot be generalized to other sensors, so it is
difficult to for these methods to be universal.

With the continuous improvement in the spatial resolution of remote sensing images,
the texture features of clouds and ground objects are becoming more obvious in images.
Therefore, cloud detection methods based on texture analysis have also attracted the
attention of many scholars. The most widely used texture features of clouds are the gray
level co-occurrence matrix (GLCM), the fractal dimension and the boundary feature [17].
Kittler and Pairman [24] used the GLCM to construct the feature space of clouds, and this
method was able to effectively distinguish cloud and non-cloud areas. However, the method
still misjudged thin cloud areas. Cao et al. [25] constructed a two-dimensional feature space
with the fractal dimension and GLCM and used a plane classifier to distinguish clouds
and ground objects in order to achieve fast and accurate cloud detection. Wang et al. [26]
adopted four edge features for cloud recognition, which reduced the misjudgment rate for
some mountainous and snowy areas, but it was difficult to distinguish clouds in completely
white images of snow. Although this method has improved accuracy compared to the
threshold method, the extraction of texture features entails significant computation costs
and it still does not address the problem of threshold determination.

Cloud detection methods based on machine learning can be divided into traditional
machine-learning methods and deep-learning methods. Although traditional machine-
learning methods, such as clustering [27], artificial neural networks [28], support vector
machines [29] and random forest algorithms [30], can solve the threshold problem and
improve cloud detection accuracy, they require manual selection of features and cannot
complete end-to-end learning. In recent years, deep learning has been developing with un-
precedented speed. Compared to traditional algorithms, deep learning has strong learning
portability and can extract complex nonlinear features. As a typical deep-learning method,
convolutional neural networks (CNNs) are widely used in natural language processing,
image classification and other fields. Since fully convolutional networks (FCNs) [31] were
proposed in 2014, semantic segmentation networks have become the dominant method
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for image segmentation, including cloud detection. Mohajerani et al. [32] applied an FCN
for cloud detection in Landsat data and obtained an accuracy of 88%, but the types of
underlying surfaces studied in this method were limited, resulting in poor generalization.
Lu et al. [33] used SegNet with multi-scale filters to reduce the probability of identifying
other objects as clouds, but the ability to distinguish clouds and snow still required im-
provement. Peng et al. [34] found that DeepLabv3+ has high accuracy and stability for
cloud recognition because of the atrous spatial pyramid pooling (ASPP) module, which
makes it possible to obtain advanced features of different scales, but it has the shortcomings
including spatial information loss and overly smooth boundaries.

Researchers have also explored networks specifically designed for cloud detection.
Zhan et al. [35] added low-level spatial information to a network to improve cloud discrim-
ination. Mohajerani et al. [36] redesigned a fully convolution network to combine global
and local features for cloud detection, naming the new method CloudNet. In addition,
some studies have also found that fusing CNNs with handcrafted features can improve the
performance of cloud detection networks. Zhang et al. [37] added Gabor-filtering feature
extraction and channel attention modules to U-Net so that the network could learn rich
details and the accuracy of cloud detection could be improved. Guo et al. [38] fused mean,
Gabor and Laplacian features to make the network more advanced and accurate. The
deep-learning method can achieve end-to-end learning and has high accuracy and univer-
sality, but the existing semantic segmentation networks still need improvements for cloud
detection. A general segmentation network is mainly divided into two parts: the encoder
and decoder. In the encoder part, in order to obtain the global information for image and
reduce the amount of calculation, the network needs multiple downsampling operations,
but the downsampling process leads to spatial information loss, resulting in inaccurate
boundary definitions and affecting the accuracy of cloud detection. Moreover, most cloud
detection networks are based on the application of computer vision to the original network.
Although the related texture features are integrated, they do not incorporate the unique
band feature information from remote sensing images, which means that such networks
have certain limitations for cloud detection.

Researchers have also come to understand the difference between remote sensing
images and natural images and have studied semantic segmentation networks based on the
particularity of remote sensing images. Su et al. [39] used the normalized difference water
index (NDWI) together with original images as the input for the DeepLabv3+ network
in order to investigate water extraction and found that using the NDWI images as input
resulted in the network paying much more attention to water extraction. Therefore, inspired
by this work, and in view of the lack of attention paid to the multi-band rate characteristics
of remote sensing images in existing cloud detection networks and the difficulty of detecting
cloud edge details, this paper proposes a new cloud detection network using the haze-
optimized transformation (HOT) index and edge feature extraction based on the most
common red, blue, green and near-infrared bands (CD_HIEFNet). The main contributions
of this paper are as follows:

1. We used the HOT index image and the multispectral (MS) image together as the input
of the network, which added the spectral characteristics of the clouds and enabled the
network to distinguish difficult regions that are easily confused with clouds, so that
the network could distinguish regions that are easily confused with clouds;

2. We deployed an edge feature detection (EFE) module to enhance the extraction of
cloud boundary details in the network. This made the network fit the cloud boundary
well and allowed it to detect various cloud types;

3. In our structure, we adopted ConvNeXt [40] as the backbone network. In the decoder
stage, we used a structure to fuse shallow and deep features from bottom to top to
compensate for the loss of edge and local information, which made it possible to
recover boundary information effectively and obtain accurate results;
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4. CD_HIEFNet has great cloud detection performance for Landsat-8 (L8) Biome datasets.
Moreover, the extended experiments showed that CD_HIEFNet had good generaliza-
tion performance, which is important in practical applications.

The remainder of this paper is arranged as follows. In Section 2, the theoretical
methodology for and structural design of CD_HIEFNet are described. In Section 3, the data,
the experiments and the corresponding experimental results used to verify the superior
performance of CD_HIEFNet are described. Section 4 presents the conclusion.

2. Methodology

Current semantic segmentation networks generally employ an encoder–decoder struc-
ture. The encoder usually uses image classification networks, such as VGGNet [41] and
ResNet [42], to extract the image features through multi-layer convolution. Many improved
modules have also been proposed for semantic segmentation networks, such as the ASPP
module [43], to fuse multi-scale spatial information. The decoder stage projects the discrim-
inative features learned by the encoder semantically into the pixel space to obtain a dense
classification. Existing decoding mechanisms include the skipping connection [44] and
inverse pooling upsampling [45]. A good semantic segmentation network needs not only
discriminative abilities at the pixel level but also the ability to incorporate the discriminative
features learned by the encoder at different stages.

Our proposed CD_HIEFNet network is also based on the encoder–decoder structure,
and the overall framework of the network is shown in Figure 1. As shown in the figure,
the initial input of our network consists of two parts: (1) red, green, blue and near-infrared
band remote sensing images; (2) HOT index spectral feature images. The encoder uses
ConvNeXt with good accuracy and scalability as the backbone network. In addition, the
EFE module was added to this part to enhance the attention paid to edge information, as
well as the ASPP module to fuse multi-scale and global context information. The backbone
network, the HOT index and the EFE module are described in detail in Sections 2.1–2.3.
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At the decoder stage, the fusion of feature information from different stages and
different scales can improve the final segmentation results. The feature pyramid network
(FPN) [46] uses a pyramid architecture with lateral connections based on the inherent
multi-scale pyramid hierarchy of the encoder, enabling the network to obtain precise
semantic features and feature locations. We borrowed the pyramid structure of the FPN.
In accordance with the downsampled pyramid structure of the classification network, we
started by upsampling the feature map with the lowest spatial resolution but the strongest
semantic spatial resolution by a factor of 2 (using bilinear interpolation upsampling) and
then used element-wise addition to merge the upsampled map with the corresponding
level map (a 1 × 1 convolutional layer was applied to the corresponding level map to
change the channel dimensions and ensure an equal number of channels). This process
was iterated until the result was generated at the top level of the classification network
pyramid structure. After this operation, the output results of each layer had complementary
relationships, and convolution fusion could be used to obtain accurate segmentation results.
In addition, similar to the holistically nested edge network (HDE) [47], we performed
3 × 3 convolution on the abovementioned results from each layer and generated three side
output saliency probability maps: Side 1, Side 2 and Side 3. Then, we upsampled them to
the original image size and concatenated them, performing 1 × 1 convolution to generate
the final saliency probability map.

2.1. Backbone Network

The backbone network plays a crucial role in improving both the efficiency and
accuracy of segmentation. Focusing on accuracy, efficiency and scalability, CNNs have
launched many representative networks [40], such as VGGNet, ResNet, MobileNet [48]
and EfficientNet [49]. However, vision transformers (ViTs) [50] have been widely used in
image classification since their development, and they have advantages such as scalable
behavior and multi-head attention. On the other hand, in computer vision downstream
tasks such as object detection and semantic segmentation, vanilla ViTs face difficulties due
to the increased complexity of the attention mechanism. Swin Transformers [51] solve the
problem by using a hierarchical structure similar to that used in CNNs and local attention,
making these transformers viable as a general visual backbone network; however, it also
shows that CNNs are still needed in image segmentation tasks. Therefore, ConvNeXt
networks have been built with standard convolutional modules, but they borrow the
structure and training mode from transformers to obtain high accuracy and scalability
comparable to transformers in the networks [40].

Cloud detection is usually applied in the context of large-scale remote sensing image
data, so efficiency is also an issue to be considered. Therefore, we selected the improved
version of ConvNeXt-T with the smallest amount of parameters as the backbone network.
ConvNeXt-T is composed of a stack of four stages, as shown in Table 1. Stage 1 uses a 4 × 4
convolution with a stride of 4 and layer normalization (LN) to directly downsample the
image to one quarter of the input image size and then goes through three ConvNeXt blocks
(Figure 2a). Stage 2 consists of a downsampling block (Figure 2b) and three ConvNeXt
blocks. Stage 3 is also composed of a downsampling block, as well as nine ConvNeXt
blocks. Stage 4 is different from the original ConvNeXt network structure. Chen et al. [52]
found that too much downsampling can make the spatial resolution overly low, making it
difficult to recover spatial information. However if no downsampling is performed, too
much memory space will be used and the complexity will be increased. The authors proved
that the best downsampling step to maintain efficiency and accuracy is 1/16. Therefore,
in the last stage, we used ordinary convolution with a kernel size of 3 × 3 instead of
downsampling, and then three ConvNeXt blocks. At the same time, the dilation rate of
the convolution was changed to 2 to ensure that the network continued to acquire deep
features without any reduction in the receptive field.
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Table 1. The architecture of our backbone network.

Stage Input Output Operator Dilation Rate

1 512 × 512 Cin 128 × 128 × 96
Conv 4 × 4, stride 4

LN
ConvNeXt block × 3

1

2 128 × 128 × 96 64 × 64 × 192 Downsample
ConvNeXt block × 3 1

3 64 × 64 × 192 32 × 32 × 384 Downsample
ConvNeXt block × 9 1

4 32 × 32 × 384 32 × 32 × 768
LN

Conv 3 × 3, stride 1
ConvNeXt block × 3

2

Note: Cin represents the channel number of the input backbone network.
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2.2. HOT Index Extraction 

Figure 2. The structure of the ConvNeXt and downsampling blocks: (a) ConvNeXt block: the block
first performs a 7× 7 depth-wise convolution with a stride of 1 and LN, then uses a 1× 1 convolution
and GELU to increase dimensions and 1 × 1 convolution to reduce dimensions, before finally using
element-wise addition to combine the obtained results and the original input and obtain the final
output results. H, W and Dim are the height, width and channel number of the image, respectively,
and GELU is the activation function. (b) Downsampling block: the block performs LN and a 2 × 2
convolution with a stride of 2 to obtain the output results.

2.2. HOT Index Extraction

Numerous spectral characteristic indexes are available for cloud detection using the
spectral threshold method, but many of them use the mid-infrared and thermal infrared
bands, which are not universally applicable. Most remote sensing images only contain red,
green, blue and near-infrared bands. The HOT index only needs red and blue bands, which
have strong universality and high computational efficiency. Therefore, we used the HOT
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index as the cloud spectral feature index in this study, and the HOT index feature image
and the original MS image were used as the input of the network.

The HOT index was originally designed to detect clouds and haze in Landsat 7 data [53],
and it has been modified by Zhu et al. [21]. It is currently widely used in thin-cloud de-
tection, cloud removal and fog removal. The design principle of the HOT index is that
the reflectivities of cloud and non-cloud areas in the blue and red bands have certain
differences. Generally speaking, the HOT index of a cloud is relatively large, so the cloud
area can be effectively extracted. The formula is as follows [21]:

HOT = B − 0.5 × R − 0.08 (1)

where B is the top of atmosphere (TOA) reflectance of the blue band and R is the TOA
reflectance of the red band.

2.3. Edge Feature Extraction Module

In the process of cloud detection, the cloud body is easy to detect due to it being quite
different from other ground objects. However, the cloud boundary can easily be mixed
with the surrounding pixel information. In addition, cloud boundaries are complex and
diverse, making them difficult to accurately detect. In fact, accurate detection of boundaries
can greatly improve the accuracy of cloud detection. Therefore, inspired by the Gabor
feature extraction module of Zhang et al. [37], we employed the EFE module to enhance
the edge detection ability of our network. We adopted the commonly used edge detection
operator known as the Sobel operator for edge feature extraction.

The Sobel operator uses two 3 × 3 kernels convolved with the image to calculate
approximations of the derivatives—one for horizontal changes and the other for vertical
changes. The calculations are shown in Equation (2):

Gx =[ f (x + 1, y− 1) + 2 f (x + 1, y) + f (x + 1, y + 1)]

−[ f (x− 1, y− 1) + 2 f (x− 1, y) + f (x + 1, y + 1)]
Gy =[ f (x− 1, y− 1) + 2 f (x, y− 1) + f (x + 1, y− 1)]

−[ f (x− 1, y + 1) + 2 f (x, y + 1) + f (x + 1, y + 1)]

(2)

where f (x, y) is the gray value at (x, y) in the image, and Gx, Gy are approximations of the
gray partial derivatives in the horizontal and vertical directions, respectively, which result
from the plane convolution of the original image in both directions.

Then, for each point in the image, the final gradient can be obtained from the square
root of the square sum of the gradients Gx and Gy. In practical applications, in order to
improve efficiency, an approximation calculation without the square root is used. The
calculation formula is shown in Equation (3):

G = |Gx|+
∣∣Gy

∣∣ (3)

where G is the final gradient.
There is a large amount of edge detail information in low-level features. Considering

the computational efficiency of the network and in order to obtain as much edge information
as possible, we only added the EFE module to the initial input image. As shown in
Figure 3, the EFE module first performs a 3 × 3 convolution to the input image. It can add
affluent channels and extract low-level features, which is beneficial to the Sobel operator
to obtain fine edge details. After using the Sobel operator, it is possible to automatically
learn the difference between the image after edge extraction and the image without edge
extraction through the subtraction and convolution operations. Then, the learned difference
information is added to the image without edge extraction to obtain an edge enhancement
effect, which helps the network accurately locate and restore edge details. Moreover, in this
module, so as to speed up the training convergence of the network and reduce overfitting,
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batch normalization (BN), which is often employed for normalization in networks, is used
after each convolution.
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2.4. Focal Loss

Sample imbalance is a common phenomenon in the application of deep learning to
vision tasks. In the process of cloud detection, this imbalance may even be obvious: in some
images, large clouds appear continuously, while other images have very small proportions
of clouds. This situation makes it difficult for networks to learn small-scale categories,
resulting in poor model accuracy. The key to alleviating this problem is to increase the
weight of small-scale categories and thus ensure the balance between different categories.
However, the method for manually setting the weight requires many attempts, and the
degree of automation and universality is poor. Therefore, we used focal loss [54] as the loss
function in this study, as it can automatically adjust the weight according to the difficulty
learning the sample to ensure the network works well for cloud detection.

Focal loss is a loss function proposed for target detection when the foreground and
background are unbalanced. It makes the network focus on learning difficult samples by re-
shaping the standard cross-entropy. Equation (4) is the standard cross-entropy formula [55],
and Equation (5) is the formula for focal loss:

CE(pt) = − log(pt) (4)

FL(pt) = −(1− pt)
γ log(pt) (5)

where pt is the model prediction probability, and γ is the set parameter; we set it to 2 in
accordance with the best experimental result obtained in the original paper [54]. When pt is
small, this means that the sample has been misclassified and the corresponding (1− pt)

γ

increases, so that the network will not ignore learning the misclassified sample. Conversely,
when pt approaches 1, this indicates that the sample has been classified well. The (1− pt)

γ

then changes to 0 and the sample is down-weighted.

3. Results and Discussion
3.1. Dataset Processing

Model training for deep-learning networks requires large and high-quality datasets.
The L8 global cloud cover assessment validation dataset “L8 Biome Cloud Validation
Masks” (L8 Biome) [56] is an internationally recognized cloud detection dataset. The L8
Biome dataset is used in most cloud detection studies due to its rich selection of surface
types, the variety of which is beneficial for the performance of networks. We also chose the
L8 Biome dataset as our source for model training and validation. We further selected the
L8 Spatial Procedures for Automated Removal of Cloud and Shadow (SPARCS) dataset [57]
and Gaofen-1 (GF-1) data to verify the generalization ability of the network model.

3.1.1. Datasets

• The L8 Biome dataset: This dataset includes 96 L8 images sampled from all over the
world with sizes of 8000 × 8000 (30 m resolution) and manually generated cloud
masks. The dataset has eight types of scene—urban, forest, shrubland, grass, snow,
barren, wetlands and water—and each scene type contains 12 images. In order to
ensure data heterogeneity and diversity, images are selected with different paths/rows
and cloud patterns;
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• The SPARCS dataset: This consists of 80 sub-images of L8 images, and the size is
1000 × 1000 (30 m resolution). The purpose of the dataset was to select 12 additional
scenarios to use in evaluating the classifier and to reduce the risk of overfitting.
Therefore, it was used as the extended experimental data in this study;

• GF-1 data: The GF-1 satellite is equipped with a panchromatic/multispectral (PMS)
camera. The PMS camera can acquire panchromatic images with a resolution of 2 m
and MS images with a resolution of 8 m (four bands—blue, green, red and near-
infrared), with sizes of approximately 5000 × 5000. The spectral range and the spatial
resolution of GF-1 are different from those of L8. Therefore, we also used the MS
images as extended experimental data to further verify the scalability of the network.

3.1.2. Pre-Processing

The original cloud masks of the L8 Biome Dataset are divided into four categories:
cloud shadow, clear, thin cloud and cloud. In this study, the main purpose was to detect
clouds, so we combined the cloud masks into two categories: cloud and non-cloud. Since
the calculation of the HOT index requires the TOA reflectance, we first performed radiomet-
ric calibration to convert the DN value to the TOA reflectance. Next, we selected the red,
green, blue and near-infrared bands from the original image to synthesize the four-band
images, and then we calculated the HOT index feature image. We also performed the
same radiometric calibration and feature calculation process for the SPARCS dataset and
the GF-1 data.

As the L8 image size was too large and our hardware processing capabilities for the
experiment were limited, we cut the image into non-overlapping sub-images with sizes of
512 × 512 and obtained 18,466 sub-images. Then, we randomly divided the sub-images
into the training set, the validation set and the test set according to the ratio of 6:1:3. The
training set was used to train the network model, the validation set was used to adjust the
model parameters during the training process and the test set was only used to evaluate the
model performance and did not participate in the training process. The SPARCS dataset
and GF-1 data were also cropped to the size of 512 × 512.

In addition, in order to ensure the network had strong generalization and robustness,
we used data augmentation to enhance the number and complexity of training samples.
We used a data augmentation strategy with random flips and random rotations. Figure 4
shows the original image and the data augmentation results. Finally, our dataset contained
33,237 training images, 1847 validation images and 5540 testing images.
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3.2. Experiment Settings
3.2.1. Implementation Details

We implemented our network in the open source Pytorch [58] framework and executed
it on a 64-bit Ubuntu 18.04 computer with two GeForce RTX 3090 GPU 24 GB cards.
We used the stochastic gradient descent (SGD) optimizer with an initial learning rate of
0.001, momentum of 0.9 and weight decay of 0.0005. The cosine annealing learning rate
strategy [59], which uses a slow-acceleration, slow-decline mode, reduces the learning rate
through the cosine function. It has a good effect on network performance. Therefore, we
used the cosine annealing learning rate strategy as the learning rate decay method, with a
minimum learning rate of 1 × 10−8. When training the model, we set the batch size to 16
and carried out 40,000 iterations. To prevent overfitting, the drop path was added to the
ConvNeXt block. The specific steps of our cloud detection model training and verification
are shown in Algorithm 1.

Algorithm 1. Cloud detection model training and verification

Input: Datatrain, Dataval , Datatest are the data for model training, validation and testing,
respectively; SPARCSimg and GFimg are the images for the extended experiment; iter is the
number of iterations; maxiter is the maximum number of iterations; net is the initial network.
Output: model prediction results: Datapred, SPARCSpred, GFpred; model:
netiter, modeliter, modelbest; evaluation index: OAval , OAtest, PRtest, RRtest, F1test, mIOUtest.
1: while iter < maxiter do
2: net ← Datatrain
3: netiter ← update net parameters
4: if iter % 200 == 0 then
5: OAval ← netiter evaluate Dataval
6: modeliter ← save the netiter
7: end if
8: end while
9: modelbest ← choose the best model in modeliter by OAval
10: Datapred ← modelbest predict Datatest
11: OAtest, PRtest, RRtest, F1test, mIOUtest ← compare Datapred with Datatest
12: SPARCSpred, GFpred ← modelbest perform cloud detection for SPARCSimg and GFimg

3.2.2. Evaluation Metrics

In order to quantitatively evaluate the performance of our network, we used the overall
accuracy (OA), precision ratio (PR), recall ratio (RR), F1 score and the mean intersection of
union (mIOU) as evaluation metrics. Their calculation formulae are expressed as follows:

OA =
TP + TN

TP + FP + TN + FN
(6)

PR =
TP

TP + FP
(7)

RR =
TP

TP + FN
(8)

F1 score =
2PR ∗ RR
PR + PR

(9)

mIOU =
1

N + 1

N

∑
i=0

TP
TP + FN + FP

(10)

where TP denotes the number of cloud samples that are correctly predicted as cloud
samples, TN denotes the number of non-cloud samples that are correctly predicted as non-
cloud samples, FP denotes the number of non-cloud samples that are wrongly predicted as
cloud samples and FN denotes the number of cloud samples that are wrongly predicted as
non-cloud samples.
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3.3. Ablation Experiments

To verify the effectiveness of our proposed ideas, we analyzed the network prediction
accuracy of the different modules in our model under the ConvNeXt backbone network.
For a fair comparison, all cases were trained, validated and tested on the same dataset
with the same hyperparameters. The results are shown in Table 2. Representative cloud
detection comparison results are also shown in Figure 5.

Table 2. Comparison of performance in the ablation experiments.

Method OA PR RR F1 Score mIOU

ConvNeXt 95.52% 93.87% 94.76% 94.31% 91.06%
ConvNeXt + HOT index 95.78% 94.47% 94.84% 94.66% 91.55%

ConvNeXt + EFE 96.28% 95.54% 95.08% 95.31% 92.53%
ConvNeXt + HOT index + EFE 96.47% 95.59% 95.51% 95.55% 92.90%

Note: Bold represents the best results.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 25 
 

 

edge information extracted by the EFE module enabled some pixels with similar 

spectral features to be distinguished and the performance improved. 

Table 2. Comparison of performance in the ablation experiments. 

Method OA PR RR F1 Score mIOU 

ConvNeXt 95.52% 93.87% 94.76% 94.31% 91.06% 

ConvNeXt + HOT index 95.78% 94.47% 94.84% 94.66% 91.55% 

ConvNeXt + EFE 96.28% 95.54% 95.08% 95.31% 92.53% 

ConvNeXt + HOT index + EFE 96.47% 95.59% 95.51% 95.55% 92.90% 

Note: Bold represents the best results. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 5. Cloud detection results for ablation experiments: (a) true color image; (b) manually gen-

erated cloud mask; (c) result for the network without the HOT index feature image or the EFE 

module; (d) result for the network with the HOT index feature image; (e) result for the network 

with the EFE module; (f) result for the network with the HOT index feature image and the EFE 

module. 

3.4. Comparative Experiments 

To demonstrate the effectiveness and accuracy of the network, we compared the 

proposed CD_HIEFNet network with classical methods, including Fmask [21], FCN8s 

(the prediction result is upsampled by a factor of 8) [31], U-Net [44], SegNet [45], 

DeepLabv3+ (the backbone network is Xception) [43] and CloudNet [36]. They were 

evaluated using the same dataset with the same training parameter settings. The quan-

titative results are shown in Table 3. Furthermore, in order to show the performance of 

the network with various surface types, we also selected representative cloud detection 

results for nine surface types for visualization and qualitative analysis: barren, forest, 

grass, shrubland, snow, urban, building and wetlands, as shown in Figures 6–14, respec-

tively. 

Figure 5. Cloud detection results for ablation experiments: (a) true color image; (b) manually
generated cloud mask; (c) result for the network without the HOT index feature image or the EFE
module; (d) result for the network with the HOT index feature image; (e) result for the network with
the EFE module; (f) result for the network with the HOT index feature image and the EFE module.
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• Effectiveness of the HOT index: Spectral feature information is helpful in extracting
clouds. In Table 2, it can be seen that, compared with the network without the HOT
index, most of the evaluation indicators for the network with the HOT index were
improved. The greatly improved PR shows that the addition of the HOT index spectral
feature information was indeed beneficial for cloud detection. In Figure 5a–c, we can
also see that the addition of the HOT index added the spectral feature information
of the cloud to the network, which made it possible to effectively eliminate some
confusing non-cloud pixels around thin clouds to improve accuracy;

• Effectiveness of the EFE module: Edge information plays a critical role in cloud
detection. In Table 2, it is can be seen that the performance improvement resulting
from the EFE module was much greater than that of the HOT index. The EFE module
increased the OA value from 95.52% to 96.28%, the PR from 93.87% to 95.54%, the
RR from 94.76% to 95.08%, the F1 score from 94.31% to 95.55% and the mIOU from
91.06% to 92.53%. In Figure 5c, it can be seen that the addition of the EFE module
made the detection results more accurate, and the boundary fitting of the cloud was
also strengthened. However, there were some pixels that were mistaken for non-cloud
areas due to weak boundaries between thick and thin clouds;

• Effectiveness of the fusion of the HOT index and the EFE module: As shown in Table 2,
the best performance for the network resulted from the fusion of the HOT index and
the EFE modules, with which the OA increased by 1.0%, the PR increased by 1.7%, the
RR increased by 0.8%, the F1 score increased by 1.2% and the mIOU increased by 1.8%.
It can be seen in Figure 5f that the models that fused the two modules exhibited more
accurate cloud detection results and finer edges. Only adding the EFE module caused
a weak boundary error (see Figure 5e), but the spectral feature information added by
the HOT index alleviated this situation. Moreover, the edge information extracted by
the EFE module enabled some pixels with similar spectral features to be distinguished
and the performance improved.

3.4. Comparative Experiments

To demonstrate the effectiveness and accuracy of the network, we compared the
proposed CD_HIEFNet network with classical methods, including Fmask [21], FCN8s (the
prediction result is upsampled by a factor of 8) [31], U-Net [44], SegNet [45], DeepLabv3+
(the backbone network is Xception) [43] and CloudNet [36]. They were evaluated using the
same dataset with the same training parameter settings. The quantitative results are shown
in Table 3. Furthermore, in order to show the performance of the network with various
surface types, we also selected representative cloud detection results for nine surface types
for visualization and qualitative analysis: barren, forest, grass, shrubland, snow, urban,
building and wetlands, as shown in Figures 6–14, respectively.

Table 3. The quantitative results for different networks.

Method OA PR RR F1 Score mIOU

Fmask 88.75% 88.03% 84.27% 86.11% 79.16%
FCN8s 95.56% 94.58% 94.22% 94.40% 91.14%
U-Net 93.03% 89.14% 92.98% 91.02% 86.38%
SegNet 93.13% 90.65% 91.90% 91.27% 86.61%

DeepLabv3+ 95.55% 95.39% 93.51% 94.44% 91.12%
CloudNet 94.72% 92.98% 93.64% 93.31% 89.55%

CD_HIEFNet 96.47% 95.59% 95.51% 95.55% 92.90%
Note: Bold represents the best results.
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(f) SegNet result; (g) DeepLabv3+ result; (h) CloudNet result; (i) CD_HIEFNet result.
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(b) manually generated cloud mask; (c) Fmask result; (d) FCN8s result; (e) U-Net result; (f) SegNet
result; (g) DeepLabv3+ result; (h) CloudNet result; (i) CD_HIEFNet result.
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Figure 14. Cloud detection results for different networks with the wetlands surface: (a) true color
image; (b) manually generated cloud mask; (c) Fmask result; (d) FCN8s result; (e) U-Net result;
(f) SegNet result; (g) DeepLabv3+ result; (h) CloudNet result; (i) CD_HIEFNet result.

As can be seen from Table 3, deep-learning methods had obvious advantages over
Fmask. Fmask combines multi-band spectral information for cloud detection, which can
have a certain detection effect, but simple decision-making based on thresholds still resulted
in poor detection results. Due to the ability to fit complex features using deep learning,
other networks all had high accuracy for cloud detection. For FCN8s, VGG16 net was used
for feature extraction, and the deep features and shallow features were well-fused at the
decoder stage, so it showed good detection results. In the evaluation results for U-Net,
SegNet and CloudNet, the RRs were higher than the PRs, but DeepLabv3+ had a higher PR
than RR. The reason for this is that U-Net and SegNet use skip connections and inverse
pooling upsampling mechanisms, respectively, at the decoder stage to closely combine
deep and shallow features, allowing them to better restore pixel details. CloudNet uses
shortcut connections in each block to capture the global and local features and present
details. DeepLabv3+, on the other hand, simply fuses with one of the shallow features
to restore the detailed information, resulting in lower recall. However, at the encoder
stage, DeepLabv3+ introduces the ASPP module to obtain multi-scale information, and
this module can acquire more global and accurate semantic features, so the precision of the
cloud detection results was greatly improved compared to other networks. Our proposed
network CD_HIEFNet performed the best in the detection results among all the networks.
It not only had high accuracy but also maintained a low missed-detection rate and a high
recall rate. The results benefited from our designed encoder and decoder. We selected
ConvNeXt as the backbone network, added the HOT index image and introduced the
ASPP module to obtain more accurate semantic features. The improved decoder enabled
our network to combine the deep and shallow features closely and locate the boundary
accurately and the EFE module enhanced the edge information, resulting in the network
achieving optimal detection of edge and detail information.

In Figure 6, it can be seen that the seven methods exhibited good detection of clouds
for the bare land surface type. Although FCN8s combined the features of shallow and
deep layers, the direct upsampling by a factor of 8 still did not result in rich details in
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the detection results. Fmask could perform boundary fitting and broken cloud detection
well by judging multi-band information pixel by pixel. U-Net, SegNet and CloudNet also
enhanced the details because of the fusion of features at different stages. However, as seen
in the red circles in Figure 6c,e,f,h, these methods resulted in certain false detections. Both
DeepLabv3+ and CD_HIEFNet used the ASPP module to reduce false detections and thus
achieved accurate results, but, because CD_HIEFNet also had the EFE module added to
improve the decoder, the boundaries and details of our network were better fitted than that
with DeepLabv3+.

In Figure 7 (the forest surface) and Figure 8 (the grass surface), we can see that the
other classic networks were able to detect most of the thick cloud areas, but there were some
missed detections in thin cloud areas. CD_HIEFNet obtained accurate and comprehensive
spectral feature information for the distinction between thin clouds and thick clouds due to
the addition of the HOT index image input, so it could basically detect thin clouds. This
also illustrates the importance of spectral feature information in remote sensing images for
deep-learning cloud detection.

As seen in the red circle in Figure 9 (the shrubland surface), the skip connection used
in the U-Net network helped in the upsampling recovery but, although it had a certain
effect, it was still difficult to recover small details. The inverse pooling upsampling adopted
by SegNet records the pooling indices to restore pixels, and it performed relatively well
for the presentation of boundary and detail information. However, the undifferentiated
record pooling index resulted in many misjudgments in this network. CloudNet captured
global and local features at each stage and was very effective for fine cloud detection, but it
mixed some invalid global information, resulting in misjudgments. DeepLabv3+ had no
missed detections because of the ASPP module, but possibly irrelevant global information
led to many misjudgments in cloud detection. Fmask and CD_HIEFNet avoided these
two situations, but the results for Fmask had holes inside clouds, while the results for
CD_HIEFNet were the closest to the manually generated cloud masks.

As shown in Figure 10, for snow discrimination, all the networks except for CD_HIEFNet
misjudged some snow areas as clouds. This shows that CD_HIEFNet still performed well
in an indistinguishable situation such as with clouds and snow, which proves the effec-
tiveness of our added modules. As seen in Figures 11 and 12 (the urban and building
surfaces), Fmask, U-Net, SegNet, DeepLbv3+ and CloudNet all produced different degrees
of misjudgment for bright surfaces and building areas (the red circles in Figure 12a). FCN8s
showed no misjudgments, but the performance for detailed information was poor. In con-
trast, CD_HIEFNet not only showed no misjudgments but also demonstrated an excellent
presentation of broken clouds and boundaries. Similarly, as seen in Figures 13 and 14, for
the results for water and wetlands surfaces, CD_HIEFNet demonstrated the best broken
cloud detection and boundary fitting, but the rest of the methods also performed well.

In summary, the seven methods demonstrated good detection for cloud areas. Fmask
is a pixel-by-pixel cloud detection method that performs well with details but only through
threshold judgment, so the detection results included holes in the clouds and some misjudg-
ments. FCN8s can perform rough detection but, due to the direct upsampling by a factor of
8, there were certain difficulties in the boundary fitting and detection of thin clouds and
broken clouds. U-Net, based on skip connections, showed certain improvements in thin
cloud detection and boundary positioning, but false detections often occurred. SegNet has
great advantages for small object detection and detail recovery due to the inverse pooling
upsampling, but since the pooling coefficient is the equal weight recovery, there is a lot of
unnecessary information, leading to significant noise and discontinuity in the detection re-
sults. CloudNet is a fully convolutional network specially designed for cloud detection that
can obtain the global and local features in each convolution block. It could present details
well but showed errors due to some invalid global information. The introduction of the
ASPP module in DeepLabv3+ produced cloud detection results that were generally better
than the previous networks, but there were still false detections and missed detections for
snow and thin clouds, respectively. CD_HIEFNet added the HOT index and EFE modules



Remote Sens. 2022, 14, 3701 19 of 25

to provide the network with spectral and edge feature information at the same time, and
thus the network not only had good cloud detection across various surface types but also
certain improvements in the challenging detection of thin clouds, broken clouds and snow.

3.5. Extended Experiments

In order to verify the extendibility of the proposed CD_HIEFNet network, we used
the trained model to perform cloud detection with the SPARCE dataset and GF-1 images.

3.5.1. Experiments in the SPARCS Dataset

We chose the SPARCE dataset to verify the generalization of the CD_HIEFNet network
to other L8 images. Some representative results are shown in Figure 15.
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Figure 15d–f,j,k show the cloud detection results for CD_HIEFNet with the barren, veg-
etation, urban, water, and snow surface types, respectively. It was found that CD_HIEFNet
had excellent detection results for different cloud types with different surface types, ir-
relevant of whether broken clouds or thin clouds were included. As Figure 15c shows,
CD_HIEFNet did not misjudge the highlighted building area on the basis of its detection of
broken clouds, which indicates the strong robustness of the network. Similarly, as shown in
Figure 15h, CD_HIEFNet also discriminated between snow and clouds well and detected
clouds accurately. However, there were still some missed detections for very small clouds,
as shown in Figure 15b, probably because such a small cloud type did not exist in the
training dataset. As seen in Figure 15l, CD_HIEFNet achieved a good fit for the boundaries
of thin clouds and broken clouds, which indicates the effectiveness of our network.

To sum up, CD_HIEFNet had good generalization and robustness with other L8
images. It not only accurately detected clouds with different surface types but also achieved
successful detection for indistinguishable situations, such as snow, bright objects, and thin
clouds. However, for cloud types that did not exist in the original dataset, CD_HIEFNet still
demonstrated some missed detections, so it is necessary to establish a more comprehensive
cloud training dataset to improve our network’s performance.

3.5.2. Experiments with GF-1 Images

Several GF-1 images with scene types corresponding to the L8 Biome dataset were
selected for generalization experiments. Representative results are shown in Figure 16.
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Similarly to the experiments described in Section 3.5.1, we again selected the bar-
ren, vegetation, urban, water, and snow surface types for cloud detection, as shown in
Figure 16a–c,g,h. As can be seen in Figure 16d,e, CD_HIEFNe demonstrated powerful
detection for bare land and vegetation areas and effectively detected both thin and broken
clouds. The results in Figure 16c show that CD_HIEFNet could effectively distinguish
clouds from highly reflective areas, such as buildings in urban areas. However, as seen in
Figure 16c,d, some broken clouds were missed, probably because the resolution of GF-1
images is much higher than that of L8 images. Figure 16k shows that our network achieved
effective detection in snow areas. Similarly, Figure 16l shows that CD_HIEFNet still had
good results for boundary fitting of thin clouds and broken clouds.



Remote Sens. 2022, 14, 3701 22 of 25

In general, CD_HIEFNet achieved good cloud detection results with the extended GF-1
images. This shows that the network has strong scalability for data from different sensors,
proving that the model trained with existing datasets was able to be quickly applied to
other, new sensors. Of course, if the model can be fine-tuned with the data from new
sensors, a better-fitting network will be produced.

4. Conclusions

In this paper, we proposed an encoder–decoder network named CD_HIEFNet that
uses the HOT index and edge feature extraction for optical remote image cloud detection.
First, we added the HOT index feature image and the MS image input together to make
the network effectively eliminate confusing non-cloud pixels around thin clouds. Secondly,
we used an EFE module to increase the edge information, so the network could effectively
detect isolated clouds and fragmented clouds and fit the cloud edges. Finally, we chose
ConvNeXt as the backbone network in the encoder and fused the shallow and deep features
from bottom to top to compensate for the edge and local information loss at the decoder
stage, which further improved the accuracy and generalization of the network.

The ablation experimental results showed that the proposed HOT index and EFE mod-
ule indeed contributed to the improvement in the performance of the network. Moreover,
the comparative experiments and generalization experiments both proved the superiority
of CD_HIEFNet. CD_HIEFNet could perform accurate and efficient cloud detection with
most surface types, even for thin or broken cloud detection and snow discrimination.
Therefore, CD_HIEFNet has great practical application prospects and can provide new
insights for cloud detection.

Nevertheless, due to the existing cloud training datasets, our network still suffers
from certain limitations. In the future, we will build richer and more comprehensive cloud
training datasets to increase the network generality. Moreover, in practical applications, effi-
ciency is an issue that must be considered. We will also explore the lightweight performance
of the network and optimize the model to balance efficiency and accuracy.
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