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Abstract: In the present work, we investigate the impacts on the observation error (OE) statistics due
to different types of errors in the forward operator (FE) for both radar reflectivity and radial wind
data, in the context of convective-scale data assimilation in the summertime. A series of sensitivity
experiments were conducted with the Efficient Modular VOlume RADar Operator (EMVORADO),
using the operational data assimilation system of the Deutscher Wetterdienst (DWD, German Weather
Service). The investigated FEs are versatile, including errors caused by neglecting the terminal fall
speed of hydrometeor, the reflectivity weighting, and the beam broadening and attenuation effects,
as well as errors caused by different scattering schemes and formulations for melting particles.
For reflectivity, it is found that accounting for the beam broadening effect evidently reduces the
standard deviations, especially at higher altitudes. However, it does not shorten the horizontal or
along-beam correlation length scales. In comparison between the Rayleigh and the Mie schemes
(with specific configurations), the former one results in much smaller standard deviations for heights
up to 4 km, and aloft, slightly larger standard deviations. Imposing the attenuation to the Mie
scheme slightly reduces the standard deviations at lower altitudes; however, it largely increases the
standard deviations at higher altitudes and it also leads to longer correlation length scales. For radial
wind, positive impacts of considering the beam broadening effect on standard deviations and neutral
impacts on correlations are observed. For both reflectivity and radial wind, taking the terminal
fall speed of hydrometeor and the reflectivity weighting into account does not make remarkable
differences in the estimated OE statistics.

Keywords: representation error; radar forward operator; Desrozier method; convective scale

1. Introduction

In recent years, radar observations have been utilized in more and more meteorological
centers for convective-scale data assimilation [1–4]. Beginning in June 2020, direct assimila-
tion of reflectivity and radial wind data became operational within the regional numerical
weather prediction (NWP) model ICON (ICOsahedral Nonhydtostatic [5]) LAM (limited
area model) at the Deutscher Wetterdienst (DWD, Germany’s National Meteorological Ser-
vice), using the kilometer-scale ENsemble Data Assimilation (KENDA) system [3,6]. This
system includes the Local Ensemble Transform Kalman Filter (LETKF [7]) and the Efficient
Modular VOlume RADar Operator (EMVORADO [8–12]). The EMVORADO is highly
modularized and parallelized; it is among the most comprehensive radar forward operators
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in the operational NWP community, and can simulate radial wind and reflectivity under
consideration of various physical processes (e.g., beam shielding/bending/broadening,
terminal fall speed, reflectivity weighting, attenuation, minimum detectable signal, etc.)
and provides different schemes for computing reflectivity of liquid, solid and melting
particles. Currently, the EMVORADO is also being extended to include polarimetric
observations [12,13]. The EMVORADO is also operationally used for reflectivity data as-
similation at the ARPAE-SIMC (the Hydro-Meteo-Climate Structure of the Regional Agency
for Prevention, Environment and Energy of Emilia-Romagna region) in Italy [14]. For the
sake of efficiency, the forward operator EMVORADO with simplified configurations has
been commonly used in the operational suite. For instance, the operational configura-
tions of the EMVORADO at the DWD currently include the Mie scattering scheme, the
terminal fall speed of hydrometeor, and the reflectivity weighting, but neglect the beam
broadening effect.

In the context of data assimilation, the observation error (hereafter denoted by OE)
is composed of instrument error (IE) and representation error (RE [15]), and the error in
the forward operator (FE) is considered to be a part of RE. Therefore, a larger IE or RE will
eventually lead to a larger OE. In practice, there are several methods to estimate the OE
statistics (e.g., [16,17]). The Desroziers method has been used by the Meteo-France, Met
Office, and JMA (Japan Meteorological Agency) to specify the OE covariance for radial
wind in the data assimilation [18–20]. It is known that the standard deviations of the IE
for radar reflectivity observations are usually proportional to the observed values [21,22].
Moreover, Zeng et al. [23] applied the Desroziers method to both reflectivity and radial
wind data, using the ICON-LAM-KENDA system, and showed that representation error
due to unresolved scales and processes is a dominant contribution to the OE. However,
they did not thoroughly investigate the contributions of the FE. In previous studies, Jung
et al. [24] explored the impacts of the FE on retrieved fields such as intercept parameter,
and Waller et al. [25] discussed the effect of beam broadening. In this work, we explore, in
depth, the sensitivity of the estimated OE statistics for both reflectivity and radial wind
data to several levels of complexities of the EMVORADO using real-data experiments to
reveal possible contributions from different sources of FEs. To authors’ knowledge, this has
been rarely explored before. The statistics of the OE for each experiment are computed by
the Desroziers method and are compared.

The paper is organized as follows. Section 2 briefly describes the Desroziers method.
Section 3 gives details about the ICON model, radar observations, and the EMVORADO.
Section 4 presents the experimental setups and results, and Section 5 gives the conclusion
and outlook.

2. The Desroziers Method

To estimate the structure of the full OE matrix, the Desroziers method [17] is often used,
which is based on statistics of the first guess departure (or called innovation) do−b = yo −
H(xb) and the analysis departure do−a = yo −H(xa) to estimate the OE covariance matrix:

Rest = E[do−adT
o−b], (1)

where yo is the observation vector,H is the forward operator, xa is the analysis state, and
xb is the background state.

In theory, an optimal Rest can be obtained if the forward operator is linear and
background error and OE covariances are exact. Those assumptions are usually violated
in convective-scale data assimilation. The estimated error statistics may be improved
by successive iterations [17]; however, this iteration procedure can not be executed in
operational data assimilation systems that can only cope with the diagonal OE covariance
matrix. Due to these limitations, Rest should be regarded as a qualitative, rather than a
quantitative, indicator and should be carefully interpreted [26]. Nevertheless, the Desroziers
diagnostics resulting from one iteration have been often used in practice, for instance, Waller
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et al. [25,27] for radial wind observations. In this work, we follow the same approach as in
Waller et al. [27].

3. The ICON Model, Radar Observations, and the Radar Forward Operator
3.1. The ICON Model

The ICON (ICOsahedral Nonhydrostatic [5]) is a non-hydrostatic global model with
an icosahedral grid with a horizontal grid spacing of 13 km and 90 vertical levels (the top
height is about 75 km). The ICON-D2 (D: Deutschland (Germany); 2: 2 km) is a version
of the ICON-LAM with horizontal grid spacing of approximately 2 km and 65 vertical
levels (the top height is about 23.5 km); its domain is limited to Germany and some parts
of neighboring countries. Lateral boundary conditions for the ICON-D2 are provided
hourly by the global ICON Ensemble Prediction System (EPS). The Lin–Farley–Orville-type
one-moment bulk microphysical scheme for five hydrometeor variables (cloud droplets qc,
cloud ice qi, rain qr, snow qs, and graupel qg) is employed [28,29] (note that a two-moment
scheme [30] was also implemented and will be used operationally in the near future. Both
microphysical schemes do not provide prognostic water fractions for melting particles). The
turbulence parameterization scheme of Raschendorfer [31] is used. The deep convection
is explicitly resolved and the shallow convection is parametrized by using the Tiedtke
scheme [32].

3.2. Radar Observations and EMVORADO

In this section, we give a brief introduction to the radar observations at the DWD and to
the EMVORADO. A detailed description of the EMVORADO can be found in Zeng et al. [10].

3.2.1. Radar Observations

The weather radar network of the DWD consists of 17 C-band (wavelength = 0.055 m)
Doppler (dual-pol) radar, which covers ICON-D2 domain (see Figure 1 of Zeng et al. [23])
and provides reflectivity and radial wind observations. Signal processor filters [33] are ap-
plied to radar observations for quality control, such as attenuation correction for reflectivity.
Radial wind measurements are realized based on the simulated background wind with the
Nyquist velocity of 32 m/s. A complete scan takes about 5 min, including a precipitation
scan (horizontal range: 150 km) and a volume scan that is composed of 180 range bins
(resolution of 1.0 km), 360 azimuths (resolution of 1.0◦), and 10 elevations (0.5◦, 1.5◦, 2.5◦,
3.5◦, 4.5◦, 5.5◦, 8.0◦, 12.0◦, 17.0◦, and 25.0◦). From the precipitation scan, precipitation rates
are derived from five categorized empirical reflectivity–rainfall (Z–R) relationships that
depend on the meteorological situations [34]. Radar data from volume scans are described
by the “radar system”~r = (r, α, ε) with radial range r, azimuth α, and elevation ε. A pulse
volume is identified by its center with the coordinates ~r0 = (r0, α0, ε0).

3.2.2. Beam Bending and Broadening

Radar beams bend towards the Earth’s surface as they propagate, and the degree of
bending is subject to the atmospheric refraction. The simplest but most used method is the
offline method called the “4/3 Earth Radius Model” (acronym 43ERM), which assumes a
constant standard atmosphere and an effective Earth with a radius 1/3 larger than the real
Earth’s radius, and it allows an instantaneous estimation of all radar beam heights. Besides
the 43ERM method, there are two other online methods (TORE and SODE) implemented in
EMVORADO, which consider the actual refractivity and estimate radar beam heights in
a bin-to-bin manner. The TORE is based on the total reflection criterion and the SODE is
based on a second-order ordinary differential equation; both methods are sophisticatedly
parallelized. More details about methods of simulating beam bending can be found in
Zeng et al. [9,10].

Radar beams also broaden as they propagate. To account for this effect, not just
the ray path of the beam axis but also a certain amount of auxiliary rays are simulated,
and a two-dimensional Gauss–Legendre quadrature [35] is used to perform the pulse-
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volume integration over horizontal and vertical directions (relative to the beam axis). The
integration intervals are defined by Blahak [36] to contain 90% of the power; nh and nv
numbers of abscissas (or called quadrature points) can be chosen within the horizontal and
vertical intervals, respectively, and the positions of abscissas are uniquely determined by
the Gauss–Legendre quadrature. More details about this can be found in Zeng et al. [10].

3.2.3. Simulation of Reflectivity and Attenuation

The EMVORADO provides the simulated reflectivity (and radial wind) on coordinates
of the radar system. The full equation for computing reflectivity at location ~r0 [10] is

Z(~r0) =

α0+π∫
α0−π

ε0+π/2∫
ε0−π/2

Z(r0, α, ε)`−2(r0, α, ε) f 4
e (α, ε) cos εdεdα

α0+π∫
α0−π

ε0+π/2∫
ε0−π/2

f 4
e (α, ε) cos εdεdα

, (2)

where Z is a spatial weighted average over reflectivity Z within the pulse volume under
consideration of attenuation ` and the effective beam weighting function f 2

e . f 2
e accounts

for averaging over several consecutive pulses during the antenna rotation, and it assumes
being uniform in range and a Gaussian shape of a single pulse. It depends only on the
single beamwidth and the ratio between the single beamwidth and the rotational angular
averaging interval (see Equation (17) in [36]). As described in Zeng et al. [10], Z and ` are
functions of the particle size distribution (assumed generalized gamma-distribution), the
shape/morphology, and the refractive index m of the scatterers, and m is in turn a function
of temperature T, wavelength λ, and the material (e.g., pure ice or pure liquid, or mixtures
of ice and air, or of ice, liquid, and air).

To compute m for pure water and ice, different choices are available, depending on
temperature T and wavelength λ. Two approaches are implemented for pure water: First,
the Ray model [37] for −10 ◦C < T < 30 ◦C and 0.001 m < λ < 1 m. Second, the Liebe
model [38] for −3 ◦C < T < 30 ◦C and 0.0003 m < λ < 0.3 m. Three approaches are
implemented for pure ice: First, the Ray model for −20 ◦C < T < 0 ◦C and 0.001 m < λ <
107 m. Second, the Warren model [39] for −60 ◦C < T < 0 ◦C and 45 nm < λ < 8.6 m.
Third, the Mäetzler model [40] for −250 ◦C < T < 0 ◦C and 0.0001 m < λ < 30 m.
For the partially melted hydrometeors, m additionally depends on the degree of melting
fmelt estimated from T and particle size by the analytic function given in Section 6.1 of
Blahak [11] that describes fmelt in a temperature regime in which the sensible heat flux from
the environment to the particle is an important mechanism in enhancing the temperature
of the particle. The parameterization for fmelt assumes that for a given environmental
temperature there is a certain particle size at which the particles are just melted. fmelt
determines the volume fractions of ice, water, and air in the mixture. Note that our
approach differs from other melting schemes in the literature [24,41], which estimate fmelt
from the ratio of the simulated frozen hydrometeor masses to the rain mass , trying to repair
the fact that the melted mass during one time step is instantaneously shedded to the rain
class (in most microphysics parameterizations), whereas some of the water stays attached
to the particles in nature. Currently, our approach does not try to repair this problem,
and work is underway to implement these other melting schemes into EMVORADO as
options. Furthermore, to compute the refractive index of a mixture material, the so-called
effective medium approximation (EMA) technique is employed, which regards the mixture
as a homogeneous medium with an effective refractive index to approximate some (not
necessarily all) scattering features of the real particle. Three popular EMA formulations
are implemented: Maxwell-Garnett [42], Bruggemann [43], and Oguchi [44]. The EMA
formulations are combined with different melting models for the particle morphology (i.e.,
one-layered or two-layered spheres with different mixing material assumptions), which
in principle allows to “tune” the EMA for the melting zone. An enormous number of
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uncertainties and variabilities can arise here. For instance, for a single set of ice–water–
air volume fractions, the Maxwell-Garnett mixing formula allows 15 different values of
m. Therefore, it is very tricky to choose an appropriate combination, which needs to be
considered while comparing simulated with observed radar reflectivities. More details
about computations of m can be found in Blahak [11].

To compute Z, first, the particle size distribution function for each hydrometeor
category has to be defined, and its free parameters (one free parameter for the one-moment
scheme and two for the two-moment scheme) can be deduced from the model prognostics.
Second, an appropriate formula is chosen to compute m as a function of T, λ, fmelt, and
particle type. Third, two general scattering schemes are implemented for calculating
the backscattering cross-section σb of a particle as a function of m and shape: (1) the
Mie scattering scheme for one- or two-layered spherical particles of arbitrary size, which
calculates Z by using look-up tables (to avoid high computational costs); (2) the Rayleigh-
approximation for (near-)spherical particles of small size (compared to the wavelength),
which allows efficient closed analytic expressions for Z. Finally, Z is the sum of σb of
all hydrometeor categories. Note that the Maxwell-Garnett and Bruggemann models are
implemented only for the Mie method. The Oguchi model combined with the Rayleigh
method allows analytic solutions for partially melted particles; however, this option tends to
produce too-low Z for mixtures of ice–water–air due to the quite different m values of water
compared to ice and air [45]. In addition, to compute `, only the Mie scheme can be used
since there is no proper Rayleigh approximation for precipitation-sized particles at typical
radar wavelengths. More details about computations of Z can be found in Blahak [11].

To simplify Equation (2), users can typically choose to neglect the integration (not
taking the beam broadening effect into account) or attenuation, as well as different scattering
schemes and EMA formulations associated with different complexities.

3.2.4. Simulation of Radial Wind and Hydrometeor Terminal Fall Speed

The full equation for simulating radial wind is

vr(~r0) =

α0+π∫
α0−π

ε0+π/2∫
ε0−π/2

(~v(r0, α, ε) · ~er − wt(r0, α, ε)~e3 · ~er)
Z(r0,α,ε)
`2(r0,α,ε) f 4

e (α, ε) cos εdεdα

α0+π∫
α0−π

ε0+π/2∫
ε0−π/2

Z(r0,α,ε)
`2(r0,α,ε) f 4

e (α, ε) cos εdεdα

, (3)

where ~e3 is the unit vector in the vertical direction, ~er is the unit vector in the radial direction
(positive outwards), ~v = (u, v, w) is the wind vector, and wt is the mean terminal fall speed
of particles within a unit volume, and it is expressed as

wt :=


(

ρ0
ρ

)0.5 ∑
k∈S

∫ ∞
0 σbk

(Dk)wtk(Dk)N k(Dk)dDk

η , if weighting by the reflectivity,(
ρ0
ρ

)0.5 ∑
k∈S

∫ ∞
0 wtk(Dk)N k(Dk)dDk

∑
k∈S

∫ ∞
0 N k(Dk)dDk

, otherwise,
(4)

where ρ is the air density, ρ0 is the standard air density, S is the set of all hydrometeor
types, σbk

is the backscattering cross-section, wtk(Dk) is the terminal fall speed (a function
of diameter Dk) for the hydrometeor type of k, N k is the particle size distribution, and
η = ∑

k∈S

∫ ∞
0 σbk

(Dk)N k(Dk)dDk. Note that for the sake of efficiency only the Rayleigh

approximation (with the EMA formulation of Oguchi) is implemented for the reflectivity
weighting in Equation (4).

To simplify Equation (3), users can, for instance, choose to neglect the integration, the
terminal fall speed, or the reflectivity weighting.



Remote Sens. 2022, 14, 3685 6 of 16

4. Sensitivity Experiments
4.1. Experimental Setup

The ICON-LAM-KENDA system is used with the assimilation window of one hour.
The study period is from 4 June 2019 at 00:00 UTC to 10 June 2019 at 00:00 UTC, in which
heavy convective rainfall events occurred in Germany. A total of 40 ensemble members
are employed, plus one deterministic run that is initiated by the ensemble mean and
updated using the Kalman gain of the ensemble mean (more details can be found in Schraff
et al. [3]). The data assimilation scheme is the LETKF. In addition, the radar-derived
precipitation rates are assimilated to adjust the latent heat profile in the model by the
latent heat nudging (LHN, [34]). Since the radar reflectivity observations that are used to
derive precipitation rates are available each 5 min, to perform the LHN at each time step
of the model (i.e., 20 s), they are linearly interpolated in time between two consecutive
ones. Conventional data are directly assimilated by the LETKF, which include radiosondes
(TEMP), wind profilers (PROF), aircraft reports (AIREP), and synoptic surface observations
(SYNOP), as well as MODE-S data [46]. Reflectivity and radial wind observations are also
directly assimilated, which are thinned in time (i.e., only the latest 5 min observations
before the analysis time are considered, e.g., [14,47,48]) and in space (i.e., the superobbing
technique is employed to achieve a resolution of 5 km in horizontal). Note that the LHN
and the LETKF assimilate data obtained from different scans (see Section 3.2.1). To avoid
unrealistically large increments and spurious convection [49,50], a threshold value 0 dBZ
is set to all observations and to all simulated reflectivities in each background ensemble
member, i.e., all reflectivity values lower than 0 dBZ are set to 0 dBZ, and we call those
data “clear-air reflectivity data”. Currently, the system can only cope with the diagonal
observation error covariance R. For radar reflectivity, R = 10 · 10 · I [dBZ2]. For radial
wind, R = 2.5 · 2.5 · γ · I [m2/s2], where I is the identity matrix. Due to the fact that radial
wind measurements are usually associated with large errors when onsite reflectivities
are small, a scaling factor γ is applied, which lies between 1.0 and 10.0 depending on
reflectivities [23]. For reflectivities ≤ 0 dBZ, γ = 10.0, for reflectivities ≥10 dBZ, γ = 1.0,
and for reflectivities in between, γ decreases linearly. With respect to localization, the
horizontal localization radius is 16 km for radar data and the radius of vertical localization
varies from 0.0075 to 0.5 (in logarithm of pressure) with the altitude. With respect to
inflation, the adaptive multiplicative inflation [51] with the factor bounded between 0.5
and 3.0, the relaxation to prior perturbations (RTPP [52], with inflation coefficient 0.75),
and the additive noise (u, v, T, water vapor, and pressure are perturbed, with inflation
coefficient 0.1 [47]) jointly applied. Note that the model states that from 67 km to lateral
boundaries and altitudes above 300 hPa (approximately 10 km) are not updated by the
data assimilation. The prognostic variables are updated except the precipitating variables
(i.e., qs, qg, and qr), since it was found in the context of the DWD’s operational system
that an update in these variables slightly degrades most of the standard forecast scores
at longer lead times on average in daily forecasting. As one of the reasons, it was found
that alongside reflectivity data, there are other observation types (SYNOP, TEMP, PROF,
MODE-S, AIREP) assimilated simultaneously. These data are not directly connected to
hydrometeors, and through spurious correlations, deteriorating updates could arise. Such
behavior, however, depends on the data assimilation system and the weather type and has
to be checked individually in practice. In addition, due to the Gaussian assumption of the
LETKF, updating microphysical variables generally may produce microphysical states with
negative values that have to be clipped to zero, which inserts positive mass bias into the
system [53].

To explore possible contributions from different sources of FEs, a series of sensitivity
experiments are conducted, in which different configurations of the EMVORADO are
utilized. As given in Table 1, we investigate the effects of different FEs, which include
taking into account the terminal fall speed of the hydrometer, the reflectivity weighting,
and the beam broadening and attenuation (although observations have been corrected
for attenuation as mentioned before, an experiment is performed to see whether this
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correction is valid), as well as choices of scattering schemes (i.e., the Mie or Rayleigh
method). By default, the Ray model is applied for pure water and the Mätzler model for
ice. For the melting particles, the Maxwell-Garnett model (in the case of the Mie method)
is used, with the acronym “mawsms” (see Blahak [11], p. 92) for the configuration of the
melting graupel, and “mawsasmawsms” (see Blahak [11], p. 108) for the melting snow.
Particularly, the graupel is assumed to start melting already at −10 ◦C (instead of 0 ◦C), as
a parameterization of the effects of the wet growth process associated with strong riming
(cf. Blahak [11], Section 6.1). In all experiments, the 43ERM method is used to simulate
the beam bending effect. The online methods TORE and SODE are not chosen since they
are mostly important for the lowest elevation (e.g., 0.5◦ under ducting conditions), their
accuracy normally requires a very high vertical resolution of the model (finer than the
operational one), and the use of them costs about 10% more computational time of model
runs [10].

Table 1. Experimental setups: X means “on” or “applicable” and ×means “off” or “not applicable”;
1× 5 and 3× 5 mean nh × nv = 1× 5 and nh × nv = 3× 5, respectively.

EXP Ray./Mie Term. Fall Speed Reflect. Weighting Broaden. Effect Atten.

E_Ray Ray. × × × ×
E_Fall Ray. X × × ×
E_Fallwt Ray. X X × ×
E_B15 Ray. × × 1× 5 ×
E_B35 Ray. × × 3× 5 ×
E_FallwtB15 Ray. X X 1× 5 ×
E_Mie Mie × × × ×
E_MieAtt Mie × × × X

4.2. Experimental Results

In this section, the estimated statistics of the OE for reflectivity and radial wind
data are presented, which include standard deviations and horizontal and along-beam
correlation length scales. As in Zeng et al. [23], Waller et al. [27], for the Desroziers method,
the first-guess and analysis departures of the deterministic run are used to calculate the
statistics of the OE. For each elevation, standard deviations are averaged over all samples
of do−adT

o−b from all times and stations. For specific heights, horizontal correlations are
first calculated over all samples of do−adT

o−b for each elevation at a specific time and at a
radar station and then averaged. Along-beam correlations describe how observations on
the same beam are correlated, and for each elevation, the samples are taken along each
azimuth and gathered over all assimilation times and radar stations. For computation of
correlations, the samples are binned every 5 km in the separation distance. Results are
shown for elevations 1.5◦, 3.5◦, and 5.5◦. The lower elevation (i.e., 0.5◦) is not shown since
it is usually contaminated by the ground clutters, and the elevations higher than 5.5◦ are
not shown since the numbers of samples available are not always sufficient to obtain robust
statistics (Waller et al. [27] suggests that the number of samples should be greater than
1000. In general, results presented here meet this requirement, and the numbers of samples
are similar to those in the appendix of Zeng et al. [23]). As in Waller et al. [26,54], the
correlation length scale is determined by the distance, at which the correlation coefficient
becomes smaller than 0.2.

Overall, it is found that the estimated statistics of E_Ray, E_Fall, and E_Fallwt are quite
similar (not shown), indicating that the FE caused by omitting the terminal fall speed or the
reflectivity weighting may be insignificant. In addition, it can be seen in Figure 3 for radial
wind (also in Zeng et al. [23]) that errors at lower altitudes (up to 3 km) become larger
with increasing elevations. Since higher elevations sense the vertical wind more, it was
hypothesized in Zeng et al. [23] that larger errors for higher elevations can be (partially)
caused by misrepresentation of the vertical component due to omitting the reflectivity
weighting. However, similar results of E_Ray, E_Fall, and E_Fallwt are seen here (standard
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deviations were also calculated only for (heavy) precipitation areas, no clear differences
can be seen; not shown), indicating that the other factors may prevail. For instance, this
could be attributed to inaccurate parameterizations for terminal fall speed, or this could
also be attributed to that the vertical wind is not well resolved by the model. In both cases,
the vertical component of radial wind cannot be well represented, and accounting for
the terminal fall velocity and reflectivity weighting cannot help. Moreover, the estimated
statistics of E_B15, E_B35, and E_FallwtB15 are also found to be very similar, indicating
that the FE caused by neglecting the horizontal integration may be insignificant. Therefore,
for the sake of clarity, from E_Ray, E_Fall, and E_Fallwt, only statistics of E_Ray are shown,
and from E_B15, E_B35, and E_FallwtB15, only statistics of E_FallwtB15 are shown. Finally,
it is worth noting that the numbers of samples available in all experiments are very similar
(not shown).

4.2.1. Standard Deviations of Estimated Observation Error

Figure 1 depicts the vertical profiles of the estimated standard deviations of the OE
for reflectivity data ≥ 0 dBZ at elevations 1.5◦, 3.5◦, and 5.5◦. First of all, Zeng et al. [23]
showed, for the ICON-LAM-KENDA system, that the variations of standard deviations of
the OE for reflectivity are primarily determined by the ground clutter effect for heights close
to the surface and by the representation error due to unresolved scales and processes for
heights up to 7 km, and aloft, the other error sources (e.g., from the microphysical scheme)
might prevail. In the following, we concentrate more on differences caused by various types
of the FE. For the elevation 1.5◦ (see Figure 1a), the standard deviations of E_FallwtB15
are considerably smaller than E_Ray, especially at higher altitudes (respectively, longer
distances). This is reasonable since the beam broadening effect becomes more pronounced
with the increasing distance (note that nh× nv = 1× 5 costs about 10% more computational
time). The standard deviations of E_Ray are much smaller than those of E_Mie before, being
slightly larger above 4 km. This could be attributed to considerably higher reflectivities
produced by the Mie scattering scheme than the Rayleigh approximation at the brightband
zone (the height of 0◦ level is about 3 km) [10]. In the case of the Mie scattering scheme,
above the 0 ◦C, the parameterization of starting melting temperature at −10 ◦C might
result in too-high Z, since graupel might not always be in wet growth mode in reality, and
below 0 ◦C, the chosen EMA in combination with this “too-fast” microphysics melting
parameterization leads to a too-narrow and peaky brightband. The too-fast melting is
a common problem for all bulk schemes without prognostic water fractions for melting
graupel and snow. Furthermore, from the point of view of data assimilation, another possi-
ble reason could be that the LETKF can better cope with the Rayleigh scattering scheme
which may be less accurate but much more linear than the Mie scattering scheme. It is also
noticed that due to the vertical localization, the standard deviations at the neighboring
heights of the birghtband are also affected. By considering the attenuation in E_MieAtt,
slightly smaller standard deviations than in E_Mie are obtained at altitudes lower than 3
km. However, for higher altitudes, reflectivities may become too low due to attenuation,
leading to considerably larger errors. This may be attributed to the fact that the observed
reflectivities have been already corrected for attenuation and, thus, the simulated reflectiv-
ities may be underestimated at higher altitudes compared to observations. On the other
hand, this also indicates that the attenuation correction in observations is adequate. For
3.5◦ (see Figure 1b), for altitudes lower than 7 km it also (almost) holds that the standard
deviations of E_FallwtB15 (E_Mie) are smaller (larger) than those of E_Ray. Above 7 km,
the standard deviations of E_FallwtB15 are smallest, followed by E_Mie and E_Ray. The
standard deviations of E_MieAtt are slightly smaller than those of E_Mie till 4 km, and
aloft, slightly larger. Overall, it is noticed that differences among experiments are smaller
than for 1.5◦, which is because, for the same height, the radar beams of higher elevations
penetrate shorter distances than lower elevations, and thus they suffer less from omitting
the beam broadening and attenuation effects. It can be seen for 5.5◦ in Figure 1c that the
differences among experiments further narrow.
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1.5◦ 3.5◦ 5.5◦

(a) (b) (c)

Figure 1. Vertical profiles of the estimated standard deviations of the OE for reflectivity data ≥ 0 dBZ
at elevations 1.5◦ (a), 3.5◦ (b), and 5.5◦ (c). For each elevation, the samples are binned every 200 m in
the vertical. It is possible for each elevation that samples are not available for some heights.

As noted in Zeng et al. [23,50], the standard deviations of the estimated OE for reflec-
tivity data ≥ 0 dBZ are prone to be underestimated (recall that R = 10× 10× I [dBZ2])
since the same threshold value is set to both observations and backgrounds. To deal with
this problem, we compute statistics again but based on reflectivity data ≥ 5 dBZ only, and
results are shown in Figure 2. For all elevations, the standard deviations of the OE are
much larger than in Figure 1 and vary more strongly with altitudes; however, the relative
differences among experiments are comparable to those in Figure 1.

1.5◦ 3.5◦ 5.5◦

(b)(a) (c)

Figure 2. The same as Figure 1, but for reflectivity data ≥ 5 dBZ (a–c).

Figure 3 shows the vertical profiles of the estimated standard deviations of the OE for
radial wind. For elevation 1.5◦ (see Figure 3a), the standard deviations of all experiments
are very close up to 2 km, and then the standard deviations of E_FallwtB15 become smaller
than those of other experiments and these differences increase with height. Therefore,
the FEs are insensitive to the options of the scattering schemes and the attenuation effect,
and taking the beam broadening effect into account is important since the pulse volume
becomes larger with increasing distance (the same for reflectivity). Furthermore, com-
bining the beam broadening effect with the reflectivity weighting allows to account for
the typically decreasing reflectivity with height accompanied by increasing wind speed
on radial wind observations, which causes the radial wind to be systematically lower
compared to estimates without considering both effects. For higher elevations (Figure 3b,c),
the advantage of E_FallwtB15 over the other experiments is reduced because of shorter
penetration distances and smaller pulse volumes (as mentioned above for reflectivity).
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1.5◦ 3.5◦ 5.5◦

(c)(b)(a)

Figure 3. The same as Figure 1, but for radial wind (a–c).

4.2.2. Correlation Length Scales of Estimated Observation Error

Figure 4 depicts the horizontal correlations of the OE for reflectivity data ≥ 5 dBZ
for elevations 1.5◦, 3.5◦, and 5.5◦ at heights of 3.0 and 6.0 km (correlations for reflectivity
data ≥ 0 dBZ are not shown since they are very similar to Figure 4). For the elevation
1.5◦ (see Figure 4a), the horizontal correlation length scales of E_Ray, E_FallwtB15, E_Mie,
and E_MieAtt are about 22.5, 22.5, 25, and 30 km at the height of 3 km. Therefore, the
application of the Mie scattering scheme slightly extends the length scales, which can
be related to the overestimated reflectivities for the bright band. Moreover, accounting
for the beam broadening does not shorten the length scales. Normally, a more advanced
operator should reduce error correlation (and size) [25]; the neutral effects here may be
due to the relatively coarse model grid, so that the same grid points may be used for
simulating neighboring pulse volumes, which creates error correlations and compensates
the advantage of a more complex operator. Finally, incorporating the attenuation effect
considerably extends the length scales, which can be attributed to that the simulated
reflectivities may be underestimated at longer distances compared to observations which
were already corrected for attenuation. At the height of 6 km (see Figure 4b), the horizontal
correlation length scale of E_Ray is about 40 km and the others are longer than 40 km, which
are considerably longer than at 3 km. This is because radar beams are more influenced by
errors (e.g., attenuation) when traveling longer distances for higher altitudes. For 3.5◦ (see
Figure 4c,d), the length scales are similar to those for 1.5◦ at the height of 3 km, and at 6 km
the length scales of E_FallwtB15, E_Mie, and E_MieAtt become shorter, probably due to
shorter traveling distances for higher elevations. For 5.5◦ (see Figure 4e,f), the length scales
are generally comparable to those for 3.5◦ but with some fluctuations (indicating that the
numbers of samples may be not sufficient and results should be interpreted with caution).

Figure 5 depicts the horizontal correlations of the OE for radial wind. At the height of
3 km, the horizontal correlation length scales of E_Ray, E_FallwtB15, E_Mie, and E_MieAtt
are about 30, 27.5, 30, and 30 km for the elevation 1.5◦ (see Figure 5a), indicating slight
positive effects of taking the beam broadening effect into account and neutral effects of
choices of scattering schemes and attenuation. For 3.5◦ and 5.5◦ (see Figure 5c,e), the
horizontal correlation length scales of all experiments are very similar, 20 km for 3.5◦

and 10 km for 5.5◦. Therefore, the higher the elevations are, the shorter the horizontal
correlation length scales are (also seen in Zeng et al. [23]). At the height of 6 km, the
horizontal correlation length scales of all experiments are also similar and longer than
40 km for 1.5◦ (see Figure 5b), much longer than at the height of 3 km, and they also
decrease with higher elevations. As stated in Zeng et al. [23], shorter length scales for
higher elevations at the same height can be due to the fact that the radial wind is direction-
sensitive and the lower elevations sense the horizontal component of the radial wind
more than the vertical one, and the error correlations of the horizontal wind are usually
associated with longer length scales than the vertical wind.



Remote Sens. 2022, 14, 3685 11 of 16

3 km 6 km

1
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◦
3
.5

◦
5
.5

◦

(a) (b)

(c) (d)

(e) (f)

Figure 4. The estimated horizontal correlations of the OE for reflectivity data ≥ 5 dBZ for elevations
1.5◦, 3.5◦, and 5.5◦ at heights of 3.0 (a,c,e) and 6.0 km (b,d,f). For each elevation, the samples are
binned every 5 km in the separation distance.

3 km 6 km

1
.5

◦
3
.5

◦
5
.5

◦

(e)

(a) (b)

(c) (d)

(f)

Figure 5. (a–f), The same as Figure 4, but for radial wind. Note that the black line is strongly
overlapped with blue and green lines in panel (a).
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The along-beam correlations of the OE for both reflectivity data ≥ 5 dBZ and radial
wind are given in Figure 6. For reflectivity, the along-beam correlation length scales
of E_Ray, E_FallwtB15, E_Mie, and E_MieAtt are about 20, 22.5, 20, and 22.5 km for
elevation 1.5◦ (see Figure 6a). This indicates that accounting for beam broadening and
attenuation effect both slightly extend the length scales, which is consistent with the
horizontal correlation lengths, as shown in Figure 4. For 3.5◦ (see Figure 6c), the slightly
shorter length scale of E_Mie might be attributed to smaller errors at higher levels, as
shown in Figure 2. For 5.5◦ (see Figure 6e), the length scales of experiments are around 17.5
and 22.5 km (the numbers of samples may be not sufficient). For radial wind, the length
scales of all experiments are very similar: about 17.5 km for 1.5◦, 10 km for 3.5◦ and 9 km
for 5.5◦, and, therefore, also shorter length scales for higher elevation, as for the horizontal
correlations as shown in Figure 5.

Reflectivity Radial wind

1
.5

◦
3
.5

◦
5
.5

◦

(a) (b)

(c) (d)

(e) (f)

Figure 6. Along-beam correlation length scales of Desroziers statistics for reflectivity ≥ 5 dBZ and
radial wind for elevations 1.5◦ (a,b), 3.5◦ (c,d), and 5.5◦ (e,f). Correlations are expressed as a function
of the separation distance along the beam, and the samples are binned every 5 km in the (radial)
separation distance.

5. Summary and Outlook

In the present work, we investigate the impacts on the observation error (OE) statistics
due to different types of errors in the forward operator (FE) for both radar reflectivity and
radial wind data, in the context of convective-scale data assimilation in a summertime.
A series of sensitivity experiments were conducted based on the ICON-LAM-KENDA
system of the DWD, with the radar forward operator EMVORADO, which belongs to
the most comprehensive radar forward operators in the world. The investigated FEs are
versatile, including errors caused by neglecting the terminal fall speed of hydrometeor,
the reflectivity weighting, and the beam broadening and attenuation effects, as well as
errors caused by different scattering schemes and formulations for melting particles. The
OE statistics, including standard deviation, horizontal and along-beam correlations, are
estimated by the Desroziers method.
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For reflectivity, it is found that accounting for the beam broadening effect evidently re-
duces the standard deviations, especially at higher altitudes (respectively, longer distances).
However, it does not shorten the horizontal or along-beam correlation length scales. This
may be due to that the same model grid points are used for simulating neighboring pulse
volumes and thus error correlations can be created. In comparison between the Rayleigh
and the Mie schemes, the former one results in much smaller standard deviations for lower
heights (up to 4 km), and aloft, slightly larger standard deviations. This is probably caused
by the fact that the Mie scheme combined with the chosen EMA formulations produces
too-high reflectivities at the brightband zone. Imposing the attenuation to the Mie scheme
slightly reduces the standard deviations at lower altitudes; however, due to the fact that
the radar reflectivity measurements were corrected for attenuation, it largely increases
the standard deviations at higher altitudes and it also leads to longer correlation length
scales. For radial wind, slight positive impacts of considering the beam broadening effect
on standard deviations and neutral impacts on correlations are observed. For both reflec-
tivity and radial wind, taking the terminal fall speed of hydrometeor and the reflectivity
weighting into account does not make remarkable differences in the estimated OE statistics;
it is possible that the other errors may dominate, e.g., inaccurate parameterizations for
terminal fall speed or unresolvable updraft.

Radar data assimilation was recently adopted in the operational ICON-LAM-KENDA
system, because of which the quality of short-term precipitation forecasts were greatly
enhanced. The operational configurations of the EMVORADO are currently the Mie
scheme with attenuation, taking the terminal fall speed of hydrometeor and the reflectivity
weighting into account but neglecting the beam broadening effect. The results obtained
in this work suggest that there is still a potential for improving those configurations. For
instance, the beam broadening effect should be considered (only the vertical direction
may be enough). Currently, we are testing the configurations for microphysical melting
parameterization and the EMA formulations in the case of the Mie scattering scheme,
and our aim is to find configurations that can appropriately reproduce the brightband.
Given that reflectivity observations were corrected for attenuation, the attenuation should
be neglected in simulation. Current results indicate that the attenuation correction in
observations is sound, but more thorough tests may be needed to validate this, since as a
goal we attempt to find appropriate configurations for the Mie scattering scheme without
simulating attenuation effects.

Overall, the study shows the importance of quality of the radar forward operator and
the impacts of the FE on the OE. It is recommendable to account for the beam broadening
effect, and the brightband issue is still challenging; more efforts should especially be de-
voted to improving the simulation of melting particles. It should be noted that inaccurate
parameterizations can also contribute to the FE, which was not shown in this study but
is worth exploring. To the end, the improved configurations may allow smaller variances
in the OE covariance matrix and, thus, better adoption of information embedded in ob-
servations by the model. In the next step, the impacts of improved configurations on the
short-term forecasts will be examined. In addition, the statistics presented here can also
serve as a guideline for constructing the full OE covariance matrix for radar data in the
future. Finally, it is worth noting that although this study has been conducted with the
EMVORADO in the ICON-LAM-KENDA system, its results can be also useful for the other
radar data assimilation communities while setting configurations for their operators, since
some of the problems are quite general in the radar forward operator.
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