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Abstract: Monitoring the seasonal leaf nutrients of mangrove forests helps one to understand the
dynamics of carbon (C) sequestration and to diagnose the availability and limitation of nitrogen (N)
and phosphorus (P). To date, very little attention has been paid to mapping the seasonal leaf C, N, and
P of mangrove forests with remote sensing techniques. Based on Sentinel-2 images taken in spring,
summer, and winter, this study aimed to compare three machine learning models (XGBoost, extreme
gradient boosting; RF, random forest; LightGBM, light gradient boosting machine) in estimating
the three leaf nutrients and further to apply the best-performing model to map the leaf nutrients
of 15 seasons from 2017 to 2021. The results showed that there were significant differences in leaf
nutrients (p < 0.05) across the three seasons. Among the three machine learning models, XGBoost
with sensitive spectral features of Sentinel-2 images was optimal for estimating the leaf C (R2 = 0.655,
0.799, and 0.829 in spring, summer, and winter, respectively), N (R2 = 0.668, 0.743, and 0.704) and
P (R2 = 0.539, 0.622, and 0.596) over the three seasons. Moreover, the red-edge (especially B6) and
near-infrared bands (B8 and B8a) of Sentinel-2 images were efficient estimators of mangrove leaf
nutrients. The information of species, elevation, and canopy structure (leaf area index [LAI] and
canopy height) would be incorporated into the present model to improve the model accuracy and
transferability in future studies.

Keywords: mangrove; Sentinel-2 image; seasonal leaf nutrients; XGBoost; red edge

1. Introduction

Carbon (C) is the most abundant nutrient element in the dry matter of leaves [1],
and nitrogen (N) and phosphorus (P) are essential nutrients in the construction of nucleic
acid and proteins in plants [2]. Mangrove forest is one of the most species-diverse and
productive marine ecosystems [3], which are the main contributors to blue C in coastal
zones [4]. Leaf nutrients often vary between seasons to adapt to the growth process and
seasonal climatic cycles [5]. Seasonal nutrient monitoring helps to reflect the dynam-
ics of C sequestration and diagnose the availability and limitation of N and P, which is
important to understanding the growth status and nutrient utilization strategies of the
mangrove ecosystem [6].

In the last two decades, airborne and satellite-based remote sensing techniques have
been key methods in the dynamic monitoring of mangrove growth and health [7]. At
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the landscape scale, most studies have focused on the mapping of the extent, species
composition, biomass, leaf area index (LAI), and chlorophyll content of mangrove forests
using medium- (e.g., Landsat-7/8 and Sentinel-2) and high-spatial-resolution satellite
(e.g., Worldview-2/3 and Pléiades-1) and Unmanned Aerial Vehicle (UAV-based) multi-
spectral and hyperspectral images [8–10]. In the visible and near-infrared bands, vegetation
has obvious reflection and absorption features which are formed by the electronic transi-
tion of electromagnetic radiation, vibration, and harmonic generation of chemical bonds
(e.g., C-H and N-H bond) through the chemical components of plant leaves [11]. Based
on the spectral mechanism, leaf nutrients (C, N, and P) are widely estimated in crop and
grassland ecosystems [12,13], however, such estimations have rarely been investigated in
mangrove forests.

Due to the abundant spectral details, proximal and UAV-based hyperspectral data are
mainly used in the remote estimation of leaf nutrients, and several studies claimed that red-
edge wavelengths are sensitive to leaf N and P estimation [13]. Satellite-based hyperspectral
imagery is rarely used, because there are far fewer satellites in orbit than multispectral
satellites. Among the commonly used multispectral satellites, only Sentinel-2 contains three
red-edge bands sensitive to plant growth and health, which could provide great potential
for mapping mangrove seasonal leaf nutrients. Yet, little attention has been paid to the
long-term monitoring of mangrove seasonal leaf nutrients using Sentinel-2 imagery.

Since leaf C, N, and P are not input parameters to physical models, these nutrients
have only been directly estimated with empirical models, including simple regression
with one vegetation index [14,15], multiple linear regression (e.g., partial least squares
regression) [16,17], and machine learning models (e.g., random forest [RF] and support
vector machine [SVM]) [18]. Moreover, the machine learning model generally obtains
higher accuracy in estimating leaf nutrients [19]. Recently, due to good accuracy and
rapid computational speed, gradient boosting algorithms (e.g., XGBoost [extreme gradient
boosting] and LightGBM [light gradient boosting machine]) have been successfully used
to remotely assess the parameters of ecological environments (e.g., biomass, soil organic
carbon, and leaf chlorophyll content) [18,20,21]. However, the performances of the XGBoost
and LightGBM models have not been evaluated in mapping mangrove leaf nutrients.

Using seasonal Sentinel-2 images of mangrove forests in Gaoqiao Mangrove Reserve,
China, this study aimed to explore the seasonal response of mangrove leaf nutrients
(C, N, and P), compare three machine learning models (XGBoost, RF, and LightGBM) in
estimating leaf nutrients, and further to extend the best-performing model to map the leaf
nutrients of 15 seasons from 2017 to 2021. The results could facilitate our understanding of
seasonal nutrient cycling and limitations in mangrove ecosystems.

2. Materials and Methods
2.1. Field Sampling

Three field surveys were conducted in three seasons (spring of 2018, winter of 2019, and
summer of 2020) in Gaoqiao Mangrove Reserve (Figure 1), Guangdong Province, China. The
dominant mangrove species of the reserve are Aegiceras corniculatum, Bruguiear gymnorrhiza,
Avicennia marina, Rhizophora stylosa, Sonneratia apetala, and Kandelia candel. With a random
sampling strategy and field survey accessibility, a total of 53, 62, and 57 plots (15 m × 15 m)
containing one single species (Table 1) were randomly set in 2018, 2019, and 2020, respec-
tively. For each plot, five trees were randomly selected with a distance of 2–5 m between
trees, and five mature and healthy leaves were randomly collected from the top canopy of
each tree. The geographical location of the center of each plot was recorded by a differential
GPS with a positional accuracy less than 20 cm to avoid position mismatch between the
image and plot, hence, the corresponding pixel (10 m × 10 m) of geometrically corrected
Sentinel-2 imagery could represent the spectral information of the plot.
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including digestion, distillation, and titration [23], and vanadate–molybdate yellow col-
orimetric method using sulfuric acid–hydrogen peroxide digestion [24], respectively. 

  

Figure 1. Study area (a–c) and spatial distribution of sampling plots in three seasons (d–f)
(spring: 22–26 May 2018; winter: 20–28 December 2019; summer: 6–12 August 2020). The true-
color image is based on the Sentinel-2 image (date: 24 November 2019) with a color combination of
band 4 (red), band 3 (green), and band 2 (blue).

Table 1. Number of plot samples collected in three seasons.

Species
Season Spring in 2018 Summer in 2020 Winter in 2019

Aegiceras corniculatum 35 16 23
Bruguiear gymnorrhiza 10 13 22

Avicennia marina 0 16 6
Rhizophora stylosa 3 6 8
Sonneratia apetala 1 3 0

Kandelia candel 4 3 3

2.2. Chemical Analysis of Leaf Nutrients

All the fresh leaf samples were dried in an oven at 65 ◦C for 72 h. Afterwards, C,
N, and P concentrations (unit: g/kg) were determined (Table 2) by the high tempera-
ture external thermal potassium dichromate oxidation-volumetric method [22], Kjeldahl
method including digestion, distillation, and titration [23], and vanadate–molybdate yellow
colorimetric method using sulfuric acid–hydrogen peroxide digestion [24], respectively.
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Table 2. Statistics of leaf nutrients (unit: g/kg) in three seasons.

Season
(Number of Samples) Nutrient Min Max Mean CV (%)

Spring
(53)

C 408.38 481.02 449.07 3.54
N 8.05 15.61 10.58 15.49
P 0.70 1.85 0.90 19.21

Summer
(62)

C 424.73 542.08 492.75 5.93
N 7.23 19.28 10.59 22.64
P 0.62 2.00 0.86 28.24

Winter
(57)

C 403.48 501.87 456.66 6.49
N 9.77 22.86 14.94 20.98
P 0.83 2.68 1.57 33.99

CV: coefficient of variation.

2.3. Sentinel-2 Images Pre-Processing and Vegetation Indices Extraction

Three cloudless Sentinel-2 images (Level 1C, acquisition date: 23 May 2018,
24 November 2019, and 23 August 2020), acquired as consistently with the sampling date as
possible, were downloaded from the USGS official website (https://earthexplorer.usgs.gov/,
accessed on 20 July 2021). The Sen2Cor module from the Sentinel Application Platform (SNAP)
was used for atmospheric correction, converting the image top-level reflectance to canopy
reflectance (12 spectral bands in the range of 443–2190 nm, Table 3). The bands (B5, B6, B7, B8,
B11, and B12) with a spatial resolution of 20 m and 60 m were then resampled to 10 m using
the Sen2Res module in SNAP (http://step.esa.int/main/snap-supported-plugins/sen2res/,
accessed on 20 July 2021). The Sen2Res algorithm was proposed by Brodu [25], and
it employs the general geometric information to unmix low-resolution pixels to realize
super-resolution reconstruction of low-resolution bands while keeping the spectral charac-
teristics unchanged.

Table 3. Band information of the Sentinel-2 satellite.

Band Center
Wavelength/nm Bandwidth/nm Spatial

Resolution/m

B1 (Coastal aerosol) 443 20 60
B2 (Blue) 490 65 10

B3 (Green) 560 35 10
B4 (Red) 665 30 10

B5 (Red-edge1) 705 15 20
B6 (Red-edge2) 740 15 20
B7 (Red-edge3) 783 20 20

B8 (NIR) 842 115 10
B8a (Narrow NIR) 865 20 20
B9 (Water Vapor) 945 20 60

B10 (Cirrus) 1380 30 60
B11 (SWIR1) 1610 90 20
B12 (SWIR2) 2190 180 20

With the 12 bands of 10 m spatial resolution, a total of 30 vegetation indices (VIs, Table 4)
were extracted for each image. Some studies claimed that leaf N and P had a close re-
lationship with leaf pigments [12,26], and red-edge bands were sensitive to leaf N and
P [13], hence, 28 selected VIs were related to leaf chlorophyll, carotenoid, anthocyanin, and
red-edge bands. Moreover, two mangrove-related VIs (MI and MFI) were chosen. The
Pearson’s correlations of mangrove leaf C, N, and P concentrations against the spectral
features of Sentinel-2 images (12 bands + 30 VIs) were calculated and compared for the
three seasons. The images were then geometrically corrected with a UAV-based digital
orthophoto (spatial resolution: 0.2 m).

https://earthexplorer.usgs.gov/
http://step.esa.int/main/snap-supported-plugins/sen2res/
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Table 4. Vegetation indices used in this study.

Vegetation Index Formula Sentinel-2
Bands Reference

Normalized Difference
Vegetation Index (NDVI) (RNIR − Rred)/(RNIR + Rred) B5, B8

[27]
Green NDVI (gNDVI) (R750 − R550)/(R750 + R550) B3, B6

Optimized Soil-Adjusted
Vegetation Index

(OSAVI)
1.16 ∗ (R800 − R670)/(R800 + R670 + 0.16) B4, B8 [28]

Red-Edge Inflection
Point (REIP) R700 + 40 ∗ 0.5∗(R670−R780)−R700

R740−R700
B4, B5, B6, B7 [29]

Simple Ratio Index
(SR705) R750/R705 B5, B6 [30]

Enhanced Vegetation
Index (EVI) 2.5 ∗ (RNIR − Rred)/(RNIR + 6 ∗ Rred − 7.5 ∗ Rblue + 1) B2, B4, B8 [31]

SRChl a R672/(R550 ∗ R708) B3, B4, B5
[27]SRChl b R672/R550 B3, B4

SRchl R860/(R550 ∗ R708) B3, B5, B8
Modified Cab
Absorption in

Reflectance Index
(MCARI)

[(R700 − R670)− 0.2 ∗ (R700 − R550)] ∗ (R700/R670) B3, B4, B5
[32]

Modified Chlorophyll
Absorption in

Reflectance Index
(MCARI1)

1.2 ∗ [2.5 ∗ (R800 − R670)− 1.3 ∗ (R800 − R550)] B3, B4, B8

Transformed CARI
(TCARI) 3 ∗ [(R700 − R670)− 0.2 ∗ (R700 − R550) ∗ (R700/R670)] B3, B4, B5 [33]

MCARI/OSAVI [(R700−R670)−0.2∗(R700−R550)]∗(R700/R670)
[1.16∗(R800−R670)/(R800+R670+0.16)]

B3, B4, B5, B8 [34]

TCARI/OSAVI 3∗[(R700−R670)−0.2∗(R700−R550)]∗(R700/R670)
[1.16∗(R800−R670)/(R800+R670+0.16)]

B3, B4, B5, B8

Red-Edge Position (REP) 705 + 35 ∗ [0.5 ∗ (R665 + R783)− R705]/(R740 − R705) B4, B5, B6, B7 [35]
Pigment Specific Simple
Ratio for Chla (PSSRa) R800/R675 B4, B8 [36]

Green chlorophyll index
(CIgreen)

(
RRE3/Rgreen

)
− 1 B3, B7

[37]
Green chlorophyll index

(CIred-edge)

(
RRE3/Rred edge

)
− 1 B5, B7

Disease Water Stress
Index (DSWI) (R803 + R549)/(R1659 + R681) B3, B4, B8, B11 [38]

Moisture Stress Index
(MSI) RSWIR/RNIR B8, B11 [39]

Red and Green Pigment
Indices (RGI) R690/R550 B3, B5 [40]

Anthocyanin Reflectance
Index (ARI)

(
1/Rgreen

)
∗
(

1/Rred edge

)
B3, B8a

[30]Carotenoid Reflectance
(CRI) (R510)

−1 − (R550)
−1 B2, B3

Carotenoid Reflectance
(CRI2) (R510)

−1 − (R700)
−1 B2, B5

Visible Atmospherically
Resistant Index

(VARIgreen)

(
Rgreen − Rred

)
/
(

Rgreen + Rred − Rblue
)

B2, B3, B4

Cater Stress Index (CSI2) R695/R760 B5, B7 [41]
Apparent Clumping

Index (ACI) Rgreen/RNIR B3, B8 [42]

Red-Edge Normalized
Difference Vegetation

Index (NDRE1)
(RRE2 − RRE1)/(RRE2 + RRE1) B5, B6 [43]

Mangrove Index (MI) (RNIR − RSWIR/RNIR ∗ RSWIR) ∗ 10, 000 B8, B12 [44]
Mangrove Forest Index

(MFI)
[(RRE1 − RBλ1) + (RRE2 − RBλ2) + (RRE3 − RBλ3) + (RRE4 − RBλ4)]/4

RBλi = R2190 + (R665 − R2190) ∗ (2190− λi)/(2190− 665)
B4, B5, B6, B7,

B8a, B12 [45]
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2.4. Estimation of Mangrove Seasonal Leaf Nutrients with Machine Learning Method
2.4.1. Three Machine Learning Models

In this study, three machine learning models were employed to estimate mangrove
leaf nutrients with seasonal Sentinel-2 images: XGBoost (extreme gradient boosting),
random forest (RF), and light gradient boosting machine (LightGBM). All three methods are
ensemble learning-based algorithms, which could improve the generalization ability and
robustness of basic learners by combining the prediction results of multiple base learners.

XGBoost is proposed based on the gradient-boosting decision tree (GBDT) [46]. Com-
pared to the traditional GBDT algorithm, XGBoost adopts second-order Taylor expansion
into the cost function to avoid model overfitting [46]. Moreover, XGBoost uses a sparse-
aware split lookup method to process sparse data [47], which is practical for dealing with
the limited number of observation samples in the field of quantitative remote sensing [48].
In the training stage, one decision tree is incremented during each iteration, gradually
forming a strong evaluator with a combination of multiple trees. The objective function for
the tth iteration is defined as following:

obj(t) =
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ ω( ft) (1)

gi = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
)

hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

) (2)

where yi is the field-measured value; ŷi
(t−1) is the predicted value of (t−1)-th iteration;

ft represents the kth decision tree; xi represents the feature vector of the ith sample;
l
(

yi, ŷ(t−1)
)

is the prediction error of the learning model consisting of the previous t−1
trees; gi and hi are the first and second derivative of the prediction model and the current
model, respectively; and ω( ft) is the regular term of the objective function in each iteration.

RF is proposed based on the bagging method [49]; it establishes multiple decision
trees and mutually independent weak estimators at a time, and it votes on all independent
weak estimators. RF selects the optimal estimators with the highest votes as the final
model-prediction result. The algorithm generates a new training sample set by randomly
extracting k samples from the original training sample set, and then generates k decision
trees according to the bootstrapping sample set to form a random forest. Several studies
claimed that XGBoost was superior to the popular machine learning method (RF) in the
remote estimation of the biomass of mangrove and the chlorophyll of pepper leaf [10,49].

LightGBM is proposed based on GBDT with a different splitting strategy of the leaf
nodes [50]. Unlike the undifferentiated level-wise strategy of XGBoost, LightGBM uses
a leaf-wise strategy of leaf node splitting which selects the nodes that benefit most from
splitting and reduces computational effort [50]. The algorithm employs gradient-based
one-side sampling (GOSS) and exclusive feature bundling (EFB) for faster training. GOSS
picks data with a larger gradient from the samples to increase their contribution to the
calculated information gain. EFB reduces the data dimensionality by merging similar data
features. The objective function depending on the leaf-wise strategy is defined as follows:

G =
1
2
(
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ
) (3)

where gi and hi indicate the first and second derivative statistics of the loss function, and IL
and IR are the sample sets of the leaf and right branches, respectively.

All three methods have the efficient ability of feature selection based on the importance
score, which can be quantified using several metrics, such as the gain, weights, total gain,
and total coverage of a node. We chose the metric value of gain to explain the relative
importance of each corresponding feature. The higher score values indicate a greater
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contribution to the model performance. The three models were built using Python version
3.8, and the settings of the main parameters are shown in Table 5.

Table 5. Main parameter settings of the three machine learning methods.

Algorithm Algorithm Library Main Parameter Settings

XGBoost https://github.com/dmlc/xgboost/
(accessed on 20 September 2021), version 1.5.0

max_depth = 5,
learning_rate = 0.1,
n_estimators = 200,

min_child_weight = 1

RF
https://github.com/kjw0612/awesome-

random-forest (accessed on
20 September 2021), version 1.2.2

n_estimators = 200,
criterion = ‘mse’,

max_depth = None,
min_samples_split = 2,
min_samples_leaf = 1

LightGBM https://github.com/microsoft/LightGBM
(accessed on 20 September 2021), version 3.3.1

learning_rate = 0.1,
num_leaves = 31,

min_data_in_leaf = 20,
n_estimators = 200

2.4.2. Two Modeling Strategies

In this study, two modeling strategies were used to compare the performances of
the three machine learning models across the three seasons: model development with the
dataset of a single season and the pooled dataset of three seasons. Due to the possible data
redundancy of the spectral features of Sentinel-2 images, feature selection was required to
choose the sensitive features for modeling. Based on the importance score derived from
each machine learning method, the features with an importance score greater than the
standard deviation of all score values were selected for further modeling.

For the first modeling strategy, a total of nine regression models (three machine
learning methods × three seasons) were established and cross-validated by the leave-one-
out cross-validation procedure in estimating each leaf nutrient. For the second modeling
strategy, all the samples were combined, a total of three regression models were established
and cross-validated by estimating each leaf nutrient, and the samples in each season were
predicted by the combined model.

2.4.3. Model Evaluation

The coefficient of determination (R2), relative root mean square error (RRMSE),
and residual prediction deviation (RPD) were calculated to evaluate the performance
of each model:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (4)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(5)

RRMSE = RMSE/yi (6)

RPD = SD/RMSE (7)

MAE =
1
n
×

n

∑
i=1

(
| yi − ŷi|

yi
× 100%) (8)

where yi and ŷi are the measured and predicted value of the ith sample, respectively; yi is
the mean value of measured leaf nutrient, n is the number of leaf samples, and SD is the
standard deviation. A higher R2 and RPD and a lower RRMSE (unit: %) indicate a better
model performance.

https://github.com/dmlc/xgboost/
https://github.com/kjw0612/awesome-random-forest
https://github.com/kjw0612/awesome-random-forest
https://github.com/microsoft/LightGBM
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Based on the best-performing model, all the combined samples of the three seasons
were classified into four groups according to the quartile values of the leaf nutrients, and the
number of samples and mean absolute error (MAE, unit: %) of each group were calculated.

2.5. Mapping of Seasonal Mangrove Leaf Nutrients

For each nutrient, the optimal machine learning model was chosen to map its spatial
distribution in each season. To investigate the spatial distribution of leaf nutrients, hotspot
analysis was further conducted in ArcGIS 10.8 using the Getis-Ord Gi* parameters to
identify statistically significant clusters of hot and cold spots. The p value and z score were
obtained to judge whether to reject the null hypothesis. The p value indicates the probability
that the spatial pattern of the leaf nutrient concentration was created by a random process.
The Z score indicates the multiples of the standard deviation, and a higher Z score (>0)
with a lower p value indicates greater clustering of higher value (hot spot), while a lower
Z score (<0) with a lower p value indicates greater clustering of lower value (cold spot).
Moreover, there is no significant spatial clustering when the Z score is close to 0.

On the other hand, to understand the changes of seasonal leaf nutrients in mangrove
forests across different years, we obtained another 12 cloudless Sentinel-2 images (Table 6)
from 2017 to 2021 to map the concentrations of leaf C, N, and P based on the corresponding
best-performing model.

Table 6. The acquisition time of 12 Sentinel-2 images from 2017 to 2021.

Year Season Acquisition Date

2017
Spring 8 April 2017

Summer 27 June 2017
Winter 19 December 2017

2018
Summer 31 August 2018
Winter 23 January 2019

2019
Spring 23 May 2019

Summer 2 July 2019

2020
Spring 8 March 2020
Winter 8 December 2020

2021
Spring 17 May 2021

Summer 4 September 2021
Winter 28 November 2021

3. Results
3.1. Seasonal Variation of Mangrove Leaf Nutrients

Among the three seasons (Table 2), the leaf samples from summer showed higher
leaf C concentration (mean = 492.75 g/kg) than those from spring (mean = 449.07 g/kg)
and winter (mean = 457.16 g/kg). However, higher leaf N (mean = 14.94 g/kg) and P
(mean = 1.58 g/kg) concentrations were observed in winter than in spring (mean = 10.58
and 0.90 g/kg) and summer (mean = 10.59 and 0.86 g/kg). Moreover, considering any two
seasons, the one-way analysis of variation (ANOVA) results (Table 7) showed that there was
no significant difference in leaf C between spring and winter (p > 0.05), and no significant
difference in leaf N or P was observed between spring and summer. However, considering
all the three seasons, there were significant differences in leaf C, N, and P (p < 0.05).

Based on all the leaf samples from the three seasons (Figure 2), leaf N was positively
correlated with leaf P, while leaf C was negatively correlated with leaf N and P (p < 0.01),
and the N–P correlation was stronger than the C–N and C–P correlation. Based on the
leaf samples from a single season, the N–P correlation (0.880, 0.848, and 0.686 in winter,
summer, and spring, respectively; p < 0.01) was also stronger than the C–P (−0.716, −0.631,
and −0.420; p < 0.01) and C-N correlation (−0.612, −0.526, and −0.334; p < 0.01).
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Table 7. ANOVA of leaf nutrients between seasons.

Nutrient Season Spring Summer Winter

C
Spring

Summer 0.000 *
Winter 0.078 0.000 *

N
Spring

Summer 0.978
Winter 0.000 * 0.000 *

P
Spring

Summer 0.586
Winter 0.000 * 0.000 *

* Significant (p < 0.05).

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 23 
 

 

3. Results  
3.1. Seasonal Variation of Mangrove Leaf Nutrients  

Among the three seasons (Table 2), the leaf samples from summer showed higher 
leaf C concentration (mean = 492.75 g/kg) than those from spring (mean = 449.07 g/kg) and 
winter (mean = 457.16 g/kg). However, higher leaf N (mean = 14.94 g/kg) and P (mean = 
1.58 g/kg) concentrations were observed in winter than in spring (mean = 10.58 and 0.90 
g/kg) and summer (mean = 10.59 and 0.86 g/kg). Moreover, considering any two seasons, 
the one-way analysis of variation (ANOVA) results (Table 7) showed that there was no 
significant difference in leaf C between spring and winter (p > 0.05), and no significant 
difference in leaf N or P was observed between spring and summer. However, consider-
ing all the three seasons, there were significant differences in leaf C, N, and P (p < 0.05).  

Table 7. ANOVA of leaf nutrients between seasons. 

Nutrient Season Spring Summer Winter 

C 
Spring    

Summer 0.000 *   
Winter 0.078 0.000 *  

N 
Spring    

Summer 0.978   
Winter 0.000 * 0.000 *  

P 
Spring    

Summer 0.586   
Winter 0.000 * 0.000 *  

* Significant (p < 0.05). 

Based on all the leaf samples from the three seasons (Figure 2), leaf N was positively 
correlated with leaf P, while leaf C was negatively correlated with leaf N and P (p < 0.01), 
and the N–P correlation was stronger than the C–N and C–P correlation. Based on the leaf 
samples from a single season, the N–P correlation (0.880, 0.848, and 0.686 in winter, sum-
mer, and spring, respectively; p < 0.01) was also stronger than the C–P (−0.716, −0.631, and 
−0.420; p < 0.01) and C-N correlation (−0.612, −0.526, and −0.334; p < 0.01).  

 
Figure 2. Intercorrelation of leaf C–N concentration (a), leaf C–P concentration (b), and leaf N–P 
concentration (c) with all the samples (n = 172), respectively.  

3.2. Correlation of Leaf Nutrients against Spectral Features of Seasonal Sentinel-2 Images 
Leaf C had the highest correlation with DSWI index, B11, and MCARI/OSAVI (r = 

0.693, 0.751, and 0.743, p < 0.01) in spring, summer, and winter, respectively (Figure 3); 
leaf N had the highest correlation with CIgreen, B11, and B6 (r = −0.351, −0.450, and −0.633, 
p < 0.01) in spring, summer, and winter, respectively; leaf P had the highest correlation 
with B3, B11, and B6 (r = 0.490, −0.561, and −0.730, p < 0.01) in spring, summer, and winter, 

Figure 2. Intercorrelation of leaf C–N concentration (a), leaf C–P concentration (b), and leaf N–P
concentration (c) with all the samples (n = 172), respectively.

3.2. Correlation of Leaf Nutrients against Spectral Features of Seasonal Sentinel-2 Images

Leaf C had the highest correlation with DSWI index, B11, and MCARI/OSAVI
(r = 0.693, 0.751, and 0.743, p < 0.01) in spring, summer, and winter, respectively
(Figure 3); leaf N had the highest correlation with CIgreen, B11, and B6 (r =−0.351,−0.450,
and −0.633, p < 0.01) in spring, summer, and winter, respectively; leaf P had the highest
correlation with B3, B11, and B6 (r = 0.490, −0.561, and −0.730, p < 0.01) in spring, summer,
and winter, respectively. Considering the mean absolute correlation coefficient of the 42 spec-
tral features against leaf nutrients, the three leaf nutrients reported stronger correlation
(mean |r| = 0.51, 0.44, and 0.49 for C, N, and P, respectively) in winter than summer
(mean |r| = 0.50, 0.19, and 0.23) and spring (mean |r| = 0.39, 0.28, and 0.36).

3.3. Comparison of Three Machine Learning Models in Estimating Leaf Nutrients

When using the dataset of a single season to estimate the three leaf nutrients (Table 8),
XGBoost model with sensitive features (Figure 4) reported higher accuracy (R2 = 0.655–0.829,
RRMSE = 1.687–2.408%, RPD = 1.703–2.418 for leaf C estimation; R2 = 0.668–0.743,
RRMSE = 6.090–9.668%, RPD = 1.736–1.973 for leaf N estimation; R2 = 0.539–0.622,
RRMSE = 4.659–19.560%, RPD = 1.473–1.627 for leaf P estimation) than RF and Light-
GBM in each season, except the cases of leaf C estimation in summer and leaf P estimation
in summer and winter. Considering the mean value of the performance parameters of
the three machine learning models, leaf C was estimated with higher accuracy in winter
(mean R2 = 0.829, mean RRMSE = 2.401%, mean RPD = 2.418) than in summer and spring;
leaf N and P were estimated with higher accuracy in summer (mean R2 = 0.743 and 0.622,
mean RRMSE = 9.668% and 16.251%, mean RPD = 1.973 and 1.627) than spring and winter.

When using the pooled dataset of three seasons to estimate leaf nutrients (Table 9),
all three models reported very poor performance in spring (R2 < 0.3), and the XGBoost model
with sensitive spectral features (Figure 4) showed a stronger performance
(mean R2 = 0.513, 0.347, and 0.389 for C, N, and P estimation) than RF (mean R2 = 0.477, 0.262,
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and 0.376) and LightGBM (mean R2 = 0.453, 0.232, and 0.33) considering the mean value of
R2 in summer and winter. Considering the mean value of the performance parameters of
the three models, leaf C was estimated with higher accuracy in summer (mean R2 = 0.788,
mean RRMSE = 1.604%, mean RPD = 2.171) than in winter and spring; leaf N and P were
estimated with higher accuracy in winter (mean R2 = 0.504 and 0.439, mean RRMSE = 9.321%
and 12.993%, mean RPD = 1.419 and 1.335) than in summer and spring.
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Table 8. Model performance in estimating leaf C, N, and P using the dataset of a single season.

Model Nutrient
Spring Summer Winter

R2 RRMSE(%) RPD R2 RRMSE(%) RPD R2 RRMSE(%) RPD

XGBoost
C 0.655 1.687 1.703 0.799 2.408 2.230 0.829 2.401 2.418
N 0.668 6.090 1.736 0.743 9.668 1.973 0.704 8.998 1.838
P 0.539 4.659 1.473 0.622 16.251 1.627 0.596 19.560 1.573

RF
C 0.549 1.717 1.489 0.811 2.314 2.300 0.824 2.420 2.383
N 0.629 13.699 1.642 0.684 10.063 1.779 0.637 9.944 1.660
P 0.415 6.168 1.309 0.652 14.662 1.700 0.613 18.156 1.607

LightGBM
C 0.415 1.952 1.308 0.401 3.014 1.292 0.803 2.538 2.253
N 0.654 5.512 1.700 0.133 9.813 1.074 0.015 3.835 1.008
P 0.273 6.755 1.173 0.207 14.292 1.122 0.627 17.596 1.637
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Table 9. Model performance in estimating leaf C, N, and P using the pooled dataset of three seasons.

Model Nutrient
Spring Summer Winter

R2 RRMSE(%) RPD R2 RRMSE(%) RPD R2 RRMSE(%) RPD

XGBoost
C 0.218 1.842 1.131 0.788 1.604 2.171 0.534 2.599 1.464
N 0.021 9.757 1.011 0.504 9.321 1.419 0.516 10.481 1.438
P 0.057 15.218 1.030 0.434 13.635 1.329 0.677 14.180 1.759

RF
C 0.133 1.987 1.074 0.730 1.818 1.924 0.569 2.543 1.523
N 0.038 11.251 1.020 0.294 11.894 1.190 0.453 9.933 1.352
P 0.079 16.392 1.042 0.439 12.993 1.335 0.611 15.016 1.603

LightGBM
C 0.169 2.094 1.097 0.758 1.714 2.035 0.432 2.882 1.327
N 0.000 12.883 1.000 0.405 10.167 1.297 0.290 12.965 1.186
P 0.000 19.315 1.000 0.417 15.544 1.309 0.573 16.101 1.530

Overall, the three models performed better using the dataset of a single season than
using the pooled dataset of three seasons in estimating the three leaf nutrients in each
season. Moreover, the XGBoost model always provided higher accuracy than RF and
LightGBM in estimating the three leaf nutrients. Hence, an XGBoost model with sensitive
spectral features using a single dataset was further used for mapping the spatial distribution
of seasonal leaf nutrients from 2017 to 2021.

Based on the XGBoost method (Figure 4), MCARI/OSAVI using the bands of B3, B4,
B5, and B8; OSAVI using the bands of B4 and B8, and SRchl using the bands of B3, B5, and
B8 were the most sensitive to leaf C; REP using the bands of B4, B5, B6, and B7, SRa using
the bands of B3, B4, B5, and B8, and MFI using the bands of B4, B5, B6, B7, B8a, and B12
were the most sensitive to leaf N; and B3, B8a, B8, and MFI were the most sensitive to leaf P.

On the other hand, the scatter plots of field-measured versus estimated leaf nu-
trients (Figure 5) showed that the estimated concentrations of leaf nutrients in spring
were lower than in summer and winter. Due to the absence of samples with measured
leaf C concentrations of 460–470 g/kg, two-point clusters of leaf C with abnormal dis-
tribution were observed in summer and winter. Moreover, the samples with medium C
concentrations (443.63–473.10 g/kg) and lower N (8.52–11.72 g/kg) and lower P concen-
trations (0.71–1.12 g/kg) tended to have lower estimation errors (MAE < 10%, Table 10),
while the samples with lower C concentrations (414.16–443.63 g/kg) and medium N
(14.92–18.12 g/kg) and medium P concentrations (1.54–1.95 g/kg) tended to have higher
estimation errors.

Table 10. The mean absolute error (MAE) of measured versus estimated leaf nutrients in different
data groups based on the scatter points of Figure 5.

Leaf
Nutrient

Data Group
Spring Summer Winter

n MAE(%) n MAE(%) n MAE(%)

C

414.16–443.63 14 1.98 4 3.06 24 2.37
443.63–473.10 39 1.28 7 1.59 10 2.07
473.10–502.57 0 – 22 2.52 28 1.98
502.57–532.04 0 – 24 1.84 0 –

N

8.52–11.72 46 6.68 50 8.55 7 6.87
11.72–14.92 7 5.53 3 9.53 22 6.30
14.92–18.12 0 – 4 12.22 27 9.14
18.12–21.33 0 – 0 – 6 7.81

P

0.71–1.12 53 7.62 49 9.50 14 9.02
1.12–1.54 0 – 6 21.41 19 22.09
1.54–1.95 0 – 2 25.52 7 22.59
1.95–2.37 0 – 0 – 22 15.36
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3.4. Mapping Seasonal Leaf Nutrients with XGBoost Model
3.4.1. Mapping Leaf C, N, and P Concentrations in Three Seasons

Based on the XGBoost model using the sensitive spectral features of the dataset of a
single season, leaf C, N, and P concentrations were mapped in spring, summer, and winter,
respectively (Figure 6). The mapped C concentrations in summer (mean = 499.564 g/kg,
range = 454.886–530.845 g/kg) were higher than those in winter (mean = 481.287 g/kg,
range = 435.731–510.978 g/kg) and spring (mean = 449.757 g/kg, range = 406.960–481.936 g/kg).
Leaf C concentrations were higher in the northwestern part of the study area, while lower C
concentrations were mostly observed in the estuary and nearshore areas with low
vegetation coverage.
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The mapped N concentrations (mean = 16.937 g/kg, range = 11.103–22.000 g/kg) in winter
were higher than those in spring (mean = 9.184 g/kg, range = 8.169–12.337 g/kg) and sum-
mer (mean = 9.059 g/kg, range = 8.273–14.938 g/kg). Moreover, the area with higher C was
found to have lower N. The mapped leaf P concentrations showed similar spatial distribution
characteristics to the mapped N concentrations, and leaf P showed higher concentrations in winter
(mean = 1.513 g/kg, range = 1.102–2.200 g/kg) than in spring (mean = 0.832 g/kg,
range = 0.600–1.316 g/kg) and summer (mean = 0.773, range = 0.600–1.283 g/kg).

The hotspot analysis of mapped leaf nutrients (Figure 7) showed that there were
different spatial patterns of aggregation across different seasons. The significant hot spot
areas of leaf C were mainly located in the northwest and middle part of the study area,
while the significant cold spot areas of leaf C were mainly located near the rivers. In
contrast, the aggregations of leaf N and P in most of the study area were not significant;
the significant hot spot areas of leaf N and P were mainly located near the rivers and the
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boundary, while the significant cold spot areas were mainly located in the northwest of the
study area.
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3.4.2. Mapping Seasonal Leaf C, N and P Concentrations from 2017 to 2021

During 2017–2021, the mean mapped leaf C concentration in summer
(range = 463.003–499.564 g/kg) was higher with wider data variation than in winter
(range = 459.631–481.287 g/kg) and in spring (range = 449.757–465.282 g/kg) (Figure 8);
the mean mapped leaf N and P concentrations in winter were much higher than those in
spring and summer (Figures 9 and 10). Moreover, the mean leaf N and P concentrations
were stable with minor variations across the 15 seasons of the five years.
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4. Discussion
4.1. The Stoichiometry of Mangrove Leaf Nutrients across Different Seasons

The mean field-measured mangrove leaf C concentration of three seasons in Gaoqiao
Mangrove Reserve was 466.33 g/kg, which is slightly higher than the globally averaged
value of 492 terrestrial woody plants (464 g/kg) [51] and 11.53% higher than that of global
coastal wetland plants (418.1 g/kg) [52]. The mean field-measured leaf N (12.13 g/kg) and
P (1.13 g/kg) are 8.13–30.29% lower than the mean value of global coastal wetland vegetation
(N = 16.1 g/kg, P = 1.6 g/kg) [52] and global terrestrial plants (N = 17.4 g/kg, P = 1.23 g/kg) [51].
These differences may be related to species types, phenology, and/or sampling strate-
gies [53]. Such a comparison further confirms the fact that mangrove ecosystems have
a strong C sequestration ability [54]. Moreover, the lower N/P ratios (<14) of the three
seasons indicate that mangrove growth might be limited by N [55].

The seasonal trends of mapped leaf N and P concentration were similar (Figure 6)
due to the strong correlation between them (Figure 3). Moreover, seasonality significantly
affected the concentration of leaf N and P (Table 7), which agrees with the findings of
Qin et al. [56]. However, Milla et al. [57] claimed that there was no significant correlation
between the leaf N and P of woody plants, and Liu et al. [58] found that there was no
strong seasonal variation in the leaf nutrients of S. salsa in the Yellow River Delta wetland.
These results suggest that the nutrient utilization patterns could be affected by a variety
of factors, such as climatic conditions, altitude, tidal levels, soil components, and species
composition [59,60].

We found that leaf C was negatively correlated with N and P, and N was strongly
correlated with P, which is in agreement with the findings of Michaels [61]. Such correlations
also reflect the N and P utilization strategies in the C fixation process [62]. The fixation
of C in the plant metabolism requires the participation of proteases (N storage), and the
assembly of proteases requires the replication of nucleic acids (P storage) [61].

4.2. Sensitive Features Related to Mangrove Leaf Nutrients

The importance score ranking results (Figure 4) demonstrated that the red-edge bands
(B5, B6, and B7, 705–783 nm) and near-infrared bands (B8 and B8a, 842–865 nm) performed
better than other Sentinel-2 bands in estimating mangrove leaf nutrients, and the most
sensitive VIs to leaf nutrients were mainly constructed by these bands. Moreover, B6
(740 nm) showed a higher correlation with the three nutrients than B5 (705 nm) and B7
(783 nm) (Figure 3), suggesting the superiority of B6 in correlating with mangrove leaf
nutrients in different seasons, which agrees with the findings of Zhang et al. [63]. Many
studies also demonstrated that red-edge bands are sensitive to leaf N and P across various
plant species [13]. Moreover, the near-infrared bands are always used for developing NDVI,
and the bands are less susceptible to saturation at high LAI and insensitive to unhealthy
vegetation [12].

The simple ratio index (SRa, SRb, and SRchl) constructed by the ratio of two or three
bands from B3, B4, B5, and B8 played an important role in estimating the three nutrients
(Figure 4). Moreover, MCARI and its ratio with OSAVI were also sensitive to leaf C and N,
and they have been widely used in the estimation of leaf chlorophyll due to the effective
resistance to background interference and sensitivity to LAI saturation [34]. Several studies
claimed that leaf chlorophyll is strongly correlated with leaf N [64], and leaf N and P had a
close correlation, suggesting that chlorophyll content might be closely related to leaf C, N,
and P estimation.

4.3. The Advantage of XGBoost in Estimating Mangrove Leaf Nutrients

Among the three machine learning models, in most cases, the XGBoost model was
found to be optimal in estimating seasonal leaf nutrients using two modeling strategies
(Tables 8 and 9). To our knowledge, this study was the first to estimate leaf C, N, and P in a
mangrove forest using the XGBoost method and seasonal Sentinel-2 images. According to
the interpretation of RPD [65], the XGBoost model using the dataset of a single season had
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approximate quantitative estimations (RPD = 2.0–2.5) of leaf C in summer and winter and
reported the possibility of distinguishing between high and low values of leaf C in spring
and leaf N and P in three seasons (RPD = 1.5–2.0).

In most cases, it is difficult to obtain many sampling plots (15 m × 15 m) in mangrove
forests due to the rough field accessibility, leading to a limited data range of leaf nutrients
and underestimation of the concentrations of leaf nutrients to some extent. Hence, in-
evitable sparse sampling and the relatively weak spectral information of leaf N and P with
relatively low concentrations are the greatest challenges to the accurate mapping of leaf
nutrients in mangrove forests. Compared to other machine learning algorithms (e.g., RF),
XGBoost uses a sparse-aware split lookup method to process sparse data, which is practical
when dealing with the sparse sampling in a mangrove forest. Our results agree with the
findings of Tian et al. [20] and Mohammadi et al. [66], who also claimed that XGBoost
outperformed RF and LightGBM in estimating grapevine leaf N and hydrogen solubility in
hydrocarbons. The reason might be that XGBoost is more capable of solving the problems
of feature selection, overfitting, hyperparameter tuning, and local optimality [67].

4.4. Limitation of Leaf Nutrients Estimation with Seasonal Sentinel-2 Images

We found that the model performance in estimating leaf nutrients was weaker in
spring than in summer and winter, and the model performance was extremely poor in
spring with the pooled dataset of three seasons (Table 9). One possible reason might be that
the field sampling in April 2018 covered a smaller portion of the study area (Figure 1) with
a narrower data range of leaf nutrients (Figures 5 and 6). Hence, it is necessary to improve
the field sampling strategy with more sampling plots and larger sampling areas to increase
the model performance and transferability.

Though Sentinel-2 images could provide a convenient way to monitor seasonal leaf
nutrients, the 10 m pixels of Sentinel-2 images largely contain more than one species, and a
pixel with low coverage or nearshore mangroves is also affected by sediment and seawater,
which could influence the spectral features of mangroves and further lead to errors in the
estimation of leaf nutrients. We mapped the leaf nutrients of 15 seasons from 2017 to 2021;
however, the extended XGBoost model was developed by only one image of a single season,
which might lead to a lack of field validation of the mapped results for other years.

5. Conclusions

We compared three machine learning models to estimate mangrove leaf C, N, and
P with Sentinel-2 images in spring, summer, and winter, and the best-performing model
was extended to map leaf nutrients of 15 seasons from 2017 to 2021. The main conclusions
could be drawn as follows:

(1) The XGBoost method had great potential for accurate estimation of mangrove leaf
nutrients with seasonal Sentinel-2 images.

(2) Among the three nutrients, leaf C concentrations were the most accurately estimated,
followed by leaf N and P.

(3) Red-edge (especially B6) and near-infrared bands (B8 and B8a) of Sentinel-2 images
were efficient estimators of mangrove leaf nutrients.

Long-time seasonal monitoring of leaf nutrients could facilitate an understanding of
the dynamic variation of C fixation, nutrient utilization, and growth status of mangrove
forests. To achieve efficient monitoring with time series Sentinel-2 images, it is necessary to
establish an inversion model of leaf nutrients with high accuracy and strong transferability.
In future work, the species composition, elevation, LAI, and canopy height with more
sampling plots in wider areas will be incorporated into the present model to improve model
accuracy and applicability.
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