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Abstract: Video satellites have recently become an attractive method of Earth observation, providing
consecutive images of the Earth’s surface for continuous monitoring of specific events. The develop-
ment of on-board optical and communication systems has enabled the various applications of satellite
image sequences. However, satellite video-based target tracking is a challenging research topic in
remote sensing due to its relatively low spatial and temporal resolution. Thus, this survey systemati-
cally investigates current satellite video-based tracking approaches and benchmark datasets, focusing
on five typical tracking applications: traffic target tracking, ship tracking, typhoon tracking, fire
tracking, and ice motion tracking. The essential aspects of each tracking target are summarized, such
as the tracking architecture, the fundamental characteristics, primary motivations, and contributions.
Furthermore, popular visual tracking benchmarks and their respective properties are discussed. Fi-
nally, a revised multi-level dataset based on WPAFB videos is generated and quantitatively evaluated
for future development in the satellite video-based tracking area. In addition, 54.3% of the tracklets
with lower Difficulty Score (DS) are selected and renamed as the Easy group, while 27.2% and 18.5%
of the tracklets are grouped into the Medium-DS group and the Hard-DS group, respectively.

Keywords: satellite video; traffic target tracking; ship tracking; typhoon tracking; fire tracking; ice
motion tracking; deep learning

1. Introduction

Object tracking is a hot topic in computer vision and remote sensing, and it typically
employs a bounding box that locks onto the region of interest (ROI) when only an initial
state of the target (in a video frame) is available [1,2]. Thanks to the development of satellite
imaging technology, various satellites with advanced onboard cameras have been launched
to obtain very high resolution (VHR) satellite videos for military and civilian applications.
Compared to traditional target tracking methods, satellite video target tracking is more effi-
cient in motion analysis and object surveillance, and has shown great potential applications
in spying on enemies [3], monitoring and protecting sea ice [4], fighting wildfires [5], and
monitoring city trafficking [6], which traditional target tracking cannot even approach.

Recent research has shown an increasing interest in traditional video-based target
tracking, with numerous algorithms proposed for accurate tracking in computer vision.
Methods that utilize generative models [7–10] or discriminant models [11–17] can be
divided into two categories. The generative model-based target tracking can be thought of
as a search problem, in which the object area in the current frame is modeled and the most
similar region is chosen as the predicted location in the next frame. In contrast, discriminant
models regard object tracking as a binary classification problem and have attracted much
attention due to their efficiency and robustness [18]. A classifier is used and trained for
discriminant models, with the attributes of the object and background labeled as positive
and negative samples in the current frame. In the following frame, the classifier is used to
identify the foreground, and the results are updated.
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There are three major modules in general visual-based object tracking [19–21], which
are: (1) target representation scheme, defining a target that is of interest for further analysis,
such as vehicles or ships; (2) search mechanism, estimating the state of the target objects;
(3) model update step, updating the target representation or model to account for appear-
ance variations. Because of the different features of remote sensing images, satellite video
tracking has confronted several issues compared with traditional object tracking tasks or
unmanned aerial vehicle (UAV)-based aerial image tracking. The challenges of employing
object-tracking technology in satellite video datasets are listed as follows [22]:

• Small foreground size compared with the background: The width and height of
high-resolution satellite video are usually more than 2000 pixels, while the interested
target only takes up about 0.01% of the whole video frame pixels or even less. The
large-size background expands the searching region of classic tracking algorithms
while decreasing tracking performance. Furthermore, tracking targets of tiny size have
fewer features and are similar to the environment, resulting in less tracking robustness
and a large tracking error.

• Low video frame rate: Because of onboard hardware limitations, the frame rate of
satellite video is typically low, resulting in significant movement of the object targets
between frames and further influencing tracking prediction and model update. For
example, if the target is abruptly stopped, obscured, or shifted, existing tracking
systems can easily miss it.

• Sudden illumination change: Because the satellite video collection is collected at a
high altitude in space, the light and atmospheric refraction rate vary with the orbital
satellite’s motion, which could result in an abrupt change in frame lighting. The
difference in light has a significant impact on the performance and accuracy of object
tracking.

Traditional visual tracking methods utilize various frameworks, such as discrimi-
native correlation filters (DCF) [23], Siamese network (SN) [24], tracking-by-detection
(TBD) [25,26], and silhouette tracking. However, due to the constraints mentioned above,
these approaches cannot deliver good performance in satellite video tracking. As a result,
new research has updated and altered old methods to deal with satellite video tracking.

Previous works have reviewed the object detection methods based on general videos
and aerial videos. Refs. [1,27,28] investigated traditional methods in terms of classical
object and motion representation by examining the pros and cons either systematically
or experimentally, or both. Refs. [29,30] divided handcrafted and deep visual trackers
into correlation filter (CF) trackers and non-CF trackers and then employed a classification
based on architectures and tracking mechanisms. Ref. [31] systematically investigated
deep-learning-based visual tracking methods, benchmark datasets, and evaluation metrics.
Ref. [31] analyzed the deep learning (DL)-based methods from six aspects: network architec-
ture, network exploitation, network training for visual tracking, network objective, network
output, and the exploitation of CF advantages. Ref. [32] reviewed object tracking methods
aiming at aerial surveillance videos, starting from the development history and current
research institutions, and then focusing on the UAVs-based tracking methods by providing
detailed descriptions of the common frameworks that contain ego-motion compensation,
representative tracking algorithms, and object TBD.

Table 1 gives a brief characteristic of previous reviews or surveys. Compared with
our work, we put special focus on both traditional and DL-based techniques for target
tracking using satellite remote sensing data with the targets varying from artificial objects
(traffic objects and ships) and natural objects (typhoon, fire, and ice motion).The main
contributions of this paper are summarized as follows:

(1) Various satellite video-based visual tracking technologies are classified based on
their monitoring goals, tracking network training (online or offline tracking), and network
tracking. The motivations and contributions of various tracking systems for satellite video
targets are discussed. This is, to the best of our knowledge, the first document that reviews
the key concerns and solutions to satellite video-based tracking problems.
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(2) By analyzing their fundamental properties, the existing satellite video benchmark
datasets are compared and analyzed.

(3) Based on the Wright Patterson Air Force Base (WPAFB) dataset, a revised multi-
level dataset with manual annotation is constructed, and quantitative and qualitative
experimental evaluations for the aforementioned dataset are presented.

The rest of the paper is organized as follows: Section 2 introduces the methodology
and overview of the proposed review process. Sections 3–6 review the tracking framework
and algorithm in terms of five different tracking target (traffic object, ship, typhoon, fire,
and ice), respectively. Section 8 analyzes the common benchmark datasets, with further
discussion and a novel multi-level dataset based on WPAFB dataset. Finally, Section 9
concludes the paper.

Table 1. Characteristic of previous reviews and surveys.

Ref. Year Target Data Technique

[1] 2006 general object tracking general videos traditional techniques
[33] 2020 video object tracking general videos traditional & DL
[16] 2021 social object tracking social media CF-based method
[34] 2013 traffic monitoring UAV data traditional technique
[31] 2019 visual tracking UAV data DL technique
[35] 2021 traffic detection and tracking UAV data DL technique
[36] 2022 pedestrians/cars tracking UAV data Siamese networks
[5] 2020 wildfire observation UAV data traditional technique

[37] 2021 fire detection and analysis satellite multi-spectral data traditional technique
[38] 2014 Ship Surveillance space-borne SAR and AIS traditional technique

2. Methodology and Overview of Taxonomy in Satellite Video Tracking Methods

In this study, related works from the last ten years are identified by the Web of Science
(WoS) database and Google scholar search engine with the keywords such as satellite video
tracking, aerial video tracking, remote sensing image and tracking, satellite video, and remote
sensing images. Reviewed works are restricted to peer-reviewed documents, including
journals and conference papers, to ensure the authenticity and quality of the outcomes.

A comprehensive review of the satellite video-based visual tracking methods is pre-
sented in terms of three aspects: tracking targets, tracking training methods, and tracking
architecture. From a high-level perspective, the tracking targets are divided into artificial
targets and natural targets, where vehicles, ships, trains, and planes are examples of arti-
ficial ones, and typhoons, fire, and ice are the category of the natural target. Due to their
wide range of social significance and economic value, these seven objects have drawn much
attention from researchers, and massive works have been proposed in recent years.

Nevertheless, some other satellite applications are not discussed in the following
sections but are only listed here because of little published data on the specific applications.
These applications include but are not limited to wild animal tracking [39], cloud tracking,
tree defoliation tracking [40], low-salinity pool tracking [41], deep convective cloud track-
ing [42], crop phenology tracking [43], etc. Furthermore, traffic object tracking is one of
most interest within the field of satellite video-based visual tracking due to its promising
application potential and performance. We, therefore, divide the traffic object tracking algo-
rithms into two training approaches: online tracking and offline tracking. The mainstream
online tracking methods include optical flow-based methods, TBD-based methods, CF-
based methods, and DL-based methods according to their architectures. The ship tracking
algorithms are divided into image-based tracking approaches and multimodality-based
tracking approaches based on the different model inputs. As for the typhoon target, the
tracking models are categorized as convolutional neural network (CNN)-based methods
and recurrent neural network (RNN)-based methods according to their model structure.
Meanwhile, some of the fire and ice target tracking methods are based on traditional meth-
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ods, while other tracking approaches are based on DL. The proposed taxonomy of satellite
video-based visual tracking methods is illustrated in Figure 1.

In the following sections, not only are state-of-the-art satellite video-based visual
tracking systems classified, but also the motives and contributions of those approaches are
discussed, as well as helpful thoughts on future developments.

Figure 1. The tree diagram of satellite video-based visual tracking algorithms.

3. Traffic Object Tracking

In this section, the traffic object tracking methods are reviewed under two headings,
which are online tracking methods and offline tracking methods. Furthermore, the online
tracking methods are grouped into four broad types: CF-based, TBD, DL-based, and
optical flow-based methods. Finally, discussions on reviewed traffic tracking methods
are delivered.

3.1. Online Tracking Methods

As presented in Section 1, tracking using satellite video has confronted many chal-
lenges compared with traditional object tracking tasks because of the characteristics of
satellite video data, such as large scene size, small target size, few features, and similar
background. Thus, various tracking architectures have been proposed to deal with the
above challenges. The mainstream solutions (Figure 2) to satellite video-based tracking
consist of the optical flow-based method, the CF-based method, the DL-based method, and
the TBD-based method.
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Figure 2. General architecture sketch of online tracking methods for traffic objects. (a) CF-based
tracking methods; (b) TBD methods; (c) DL-based methods; (d) optical flow-based methods.

3.1.1. Correlation Filter-Based Tracking Methods

The CF has yielded promising results in optical tracking tasks and is one of the most
popular tracking algorithms in satellite videos. However, the CF-based tracker achieves
poor results because the size of each target compared with the entire image is too small.
Several improved strategies are proposed herein for taking advantage of the CF to gain a
better tracking performance. Table 2 summarizes specific CF-based tracking methods. As
shown in Table 2, recent CF-based tracking methods for traffic objects are of three kinds:
(1) kernel correlation tracker (KCF) with multi-frame case; (2) KCF for target motion case;
and (3) KCF aided by kernel adaptation. The general pipeline of the CF-based tracking
methods is depicted in Figure 2a.

Table 2. Summary of various CF-based traffic objects tracking methods.

Methods Ref. Year Description

KCF + multi-frames [6] 2017 KCF with the three-frame-difference
[44] 2022 KCF with Multi-feature fusion

KCF + target motion

[45] 2019 Improved discriminative CF for small objects tracking
[46] 2019 High-speed CF-based tracker for object tracking
[47] 2019 KCF embedded with motion estimations
[48] 2021 Feature fusion, position compensation, local object region

KCF + kernel adaptation

[49] 2018 VCF using velocity feature and inertia mechanism
[50] 2019 Hybrid KCF with histogram of oriented gradient
[51] 2021 Rotation-adaptive CF
[52] 2022 Rotation-adaptive CF with motion constraint
[53] 2022 Spatial-Temporal regularized CF with interacting multiple model
[54] 2022 Kernelized CF with color-name features

In 2017, Ref. [6] presented a new object tracking method by taking advantage of the
KCF and the three-frame-difference method to deal with satellite videos. The integrated
model combined the shape information provided by the KCF tracker and the change
information from the three-frame-difference method into the final tracking results. Three
videos that described the conditions of Canada, Dubai, and New Delhi were introduced,
with the target of moving trains and cars. The image sizes of these three videos were
3840 × 2160 pixels for both the first and second videos and 3600 × 2700 pixels for the
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third one. The average center location error (CLE) and the average overlap score were
11 pixels and 71%, respectively. Later, Ref. [44] presented a KCF embedded method that
fused multi-feature fusion and compensates motion trajectory to track fast-moving objects
in satellite videos. The contributions of the suggested algorithm were multifold. First, a
multi-feature fusion strategy was proposed to describe an object comprehensively, which
was challenging for the single-feature approach. Second, a subpixel positioning method
was developed to calculate accurate object localization that was further used to improve the
tracking accuracy. Third, the adaptive Kalman filter (AKF) was introduced to compensate
for the KCF tracker results and reduce the object’s bounding box drift, solving the moving
object occlusion problem. Compared to the KCF algorithm, the algorithm improved the
tracking accuracy and the success rate with over 17% and 18% on average.

In 2019, Ref. [45] developed an improved discriminative CF for small object tracking
in satellite videos. Instead of employing a change detection tracking model, the authors
first proposed a spatial mask to promote the CF to give different contributions depending
on the spatial distance. The Kalman filter (KF) was then applied to predict the target
position in the large and analogous background region. Next, the integrated strategy was
applied to combine the improved CF tracker and pose estimation algorithm. The proposed
model was implemented on the Chang Guang Satellite dataset with an image resolution of
3840 × 2160 pixels. The authors calculated success rate, precision, and frame per second
(FPS) measurement indicators to evaluate the performance, achieving the result of 0.725,
0.96, and 1500, respectively. Comparing with other video tracking methods, including
Channel and Spatial Reliability Tracker (CSRT) [55], Efficient Convolution Operator Tracker
(ECOT) [56], long-term correlation tracker [57], and KCF models, the proposed method
performed best.

Later, a high-speed CF-based tracker was derived by [46] for object tracking in satellite
videos. The authors introduced the global motion characteristics of the moving vehicle
target to constrain the tracking process. By integrating the position and velocity KF, the
trajectory of the moving target was corrected. The tracking confidence module (TCM) was
proposed to couple the KF and CF algorithms tightly, in which the confidence map of the
tracking results was obtained by the CF and passed to the KF for a better prediction. The
authors cropped the satellite videos of SkySat-1 and Jilin-1 into nine short sequences, which
contained 31 moving objects in total, and then applied their method to the cropped satellite
videos. Five metrics, namely, expected average overlap (EAO), accuracy, robustness,
average overlap, and FPS, were used to evaluate the capability of the proposed method for
object tracking, with the results of 0.7205, 0.71, 0.00, 0.7053, and 1094.67, respectively. Thus,
the introduced technique was verified to be effective and fast for real-time vehicle tracking
in satellite videos. Similarly, Ref. [47] studied a KCF embedded with motion estimations to
track satellite video targets. The authors developed an innovative motion estimation (ME)
algorithm combining the KF and motion trajectory to average and mitigate the boundary
effects of KCF. An integrated strategy based on motion estimation was proposed to solve the
problem of tracking failure when a moving object was partially or completely occluded. The
experimental dataset consisted of 11 videos with a resolution of 1 m from the Jilin-1 satellite
constellation. The area under curve (AUC), CLE, overlap score, and FPS measurement
indicators were utilized to evaluate the tracking performance, which is 72.9, 94.3, 96.4, and
123, respectively. Compared with other object tracking methods, the developed model
gained the best results. Furthermore, Ref. [48] proposed an improved KCF to track the
object in satellite videos. The improvements of the proposed algorithm were: (1) fusing the
different features of the object, (2) proposing a motion position compensation algorithm
by combining the KF and motion trajectory, and (3) extracting the local object region for
normalized cross-correlation matching. Thus, the algorithm was able to track the moving
object in satellite video with high accuracy effectively.

Differing from the above feature-kernel-based tracking methods, Ref. [49] considered
the extremely inadequate quality of target features in satellite videos. The authors designed
a velocity correlation filter (VCF) by employing the velocity feature and inertia mechanism
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to construct a KCF for satellite video target tracking. The velocity feature, with the high
discriminative ability and inertial mechanism, could help to detect moving targets and
prevent model drift in satellite videos. The experiment results showed that the AUC
scores in precision and success plots of the proposed method reached 0.941 and 0.802,
respectively. Moreover, the presented tracker had a favorable speed compared to other
state-of-the-art methods, running at over 100 FPS. Later, Ref. [50] designed a hybrid kernel
correlation filter tracker for satellite video tracking. This approach integrated the optical
flow features with the histogram of oriented gradient and obtained competitive results.
Similarly, Ref. [51] presented a rotation-adaptive CF tracking algorithm to address the
problem caused by the rotation objects. The authors proposed an object rotation estimation
method to keep the feature map stable for the object rotation and achieved the capability
of estimating the change in the bounding box size. Ref. [52] decoupled the rotation and
translation motion patterns and developed a novel rotation adaptive tracker with motion
constraints. Experiments based on the Jilin-1 satellite dataset and International Space
Station dataset demonstrated the superiority of the proposed method. To handle the
occlusion problem during the satellite tracking, Ref. [53] developed a spatial-temporal
regularized correlation filter algorithm with interacting multiple models. The authors
utilized the interacting multiple models to predict the target position when the target is
occluded. Similarly, Ref. [54] designed a kernelized correlation filter based on the color-
name feature and Kalman prediction. Experiment results on Jilin-1 datasets show that the
proposed algorithm has stronger robustness for several complex situations such as rapid
target motion and similar object interference.

3.1.2. TBD Methods

Detection association strategy in computer vision is one of the popular methods for
multi-target tracking [58]. By assigning detected candidates of each frame into trackers,
the motion interpolation is utilized to retrieve the short-term missing detected candidates.
This type of tracker is anointed TBD. However, unique characteristics of satellite videos,
including low frame rate, less discriminative appearance information, and lacking color
features, bring further challenges to current TBD methods. Table 3 summarizes specific
references of the TBD methods and Figure 2b shows the general pipeline of this kind of
method, in which four types are further divided on the basis of the tracking features. These
are motion feature-based, hyperspectral image-based, graph-based, and discriminative-
based TBD methods.

Table 3. Summary of TBD methods for traffic objects tracking.

Method Ref. Year Description

Motion feature-based tracking [59] 2017 Local context tracker
[60] 2021 SFMFT for multiple moving objects

Hyperspectral image-based tracking [61] 2016 Study hyperspectral and spatial domain information
[62] 2017 Real-time HLT method

Graph-based tracking [63] 2010 Unified relation graph approach from road structure

Discriminative-based tracking
[64] 2017 Bayesian classification with motion smoothness constraint
[65] 2019 Multi-morphological cue based discrimination strategy
[66] 2020 TBD with filter training mechanism

In the tracking by detection method, the detection models play an important role in
enhancing the tracking performance. Classic detectors such as YOLO [67], CenterNet [68],
and CornerNet [69] have been applied for object tracking. For example, Ref. [70] unified
Cornernet and data association to achieve a better speed-accuracy trade-off for multi-object
tracking while eliminating the extra feature extraction process.

To reduce the dependency on motion detection of frame differencing and appearance
information, Ref. [59] introduced a local context tracker. In their method, the local context
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tracker explored spatial relations for the target to avoid unreasonable model deformation
in the next frame. The merged detection results in the detection association were explicitly
handled, and short tracks were produced by associating hypotheses. The track association
fused the results from two trackers and updated the ”track pool” to improve the tracking
performance. The designed model was tested on WPAFB Sequence and Rochester Sequence
containing 410 and 44 tracks. Multiple metrics, namely, Recall, Precision, and the number
of breaks per track (B/T), were introduced to analyze the performance, with the results of
0.606, 0.99, and 0.159, showing that the proposed method outperformed the state-of-the-art
methods in satellite video-based tracking.

Aiming at tracking multiple moving objects, Ref. [60] proposed the slow feature and
motion feature-guided multi-object tracking (SFMFT) method by using the slow features
and motion features. Specifically, the authors developed a nonmaximum suppression
(NMS) module to assist the object detection by utilizing the sensitivity of slow feature
analysis to the changed pixels. This method reduced the amount of static false alarms and
supplemented missed objects, further improving the recall rate by increasing the confidence
score of the correctly detected object bounding boxes. The superiority of the proposed
method was evaluated and demonstrated with three satellite videos.

On the other hand, Ref. [61] presented a real-time tracking method that exploits the
hyperspectral and spatial domain information, aiming to reduce false alarm tracking rates.
In their method, the individual feature map was computed for each hyperspectral band
and then fed to an adaptive fusion method. Therefore, the fusion map with reduced noise
could help to detect the targets from the background pixels efficiently. The CLIFF-2007
dataset with 0.3 cm Ground Sampling Distance (GSD) and 50 tracking targets was used
to evaluate the suggested techniques. In terms of the track purity and target purity, the
proposed hyperspectral feature-based method outperformed the Red-Green-Blue (RGB)
only features, with the results of 64.37 and 57.49, respectively. Compared with their previous
work, Ref. [62] designed an improved real-time hyperspectral likelihood maps-aided
tracking (HLT) method. An online generative target model is proposed and revised for
the tracking system of a target detection segment, considering the hyperspectral channels
ranging from visible to infrared wavelengths. An adaptive fusion method is proposed to
combine likelihood maps from multiple bands of hyperspectral imagery into one single
more distinctive representation. The experimental outcomes indicate that the proposed
model is able to track the traffic targets accurately.

Instead of exploring the tracking features from the targets, Ref. [63] developed a
unified relation graph approach to explore vehicle behavior models from road structure
and regulate object-based vertex matching in multi-vehicle satellite videos. The proposed
vehicle travel behavior models generated additional constraints for better matching scores.
Moreover, the authors utilized three-frame moving object detection to initialize vehicle
tracks and a tracking-based target indicator to reduce miss-detection and refine the target
location. The dataset used for evaluation was collected by a single camera covering a 1 km2

area with a frame rate of 1 Hz. The Multiple Object Tracking Accuracy (MOTA) [71] was
introduced as a metric for the accuracy assessment and was 0.85 achieved by the proposed
method, thereby indicating satisfactory results for satellite video tracking. The model could
be further improved by preparing extra high-quality satellite videos with tracking labels.

The above-discussed methods can be seen as graph-based methods, which explore the
target movement model according to their graph features. There is another well-studied
strategy for object tracking based on the discriminative method. In 2017, Ref. [64] proposed
a Bayesian classification considering the motion smoothness constraint to track vehicles
in satellite videos. The authors introduced the gray level similarity feature to describe
the likelihood of the target with the assumption of motion smoothness, and the posterior
probability was used to identify the tracking target position. Additionally, a KF was
introduced to enhance the robustness of tracking processing. The SkySat and Jilin-1 satellite
dataset were applied to evaluate the proposed model, showing the superiority and potential
of the model for object tracking from remote sensing imagery. Later, Ref. [65] presented
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a modified detection-tracking framework to identify and track small moving vehicles
in satellite sequences. An original detection algorithm was developed based on local
noise modeling and exponential probability distribution. After detection, a discrimination
strategy based on the multi-morphological cue was designed to further identify correct
vehicle targets from noises. The suggested method was employed in the Chang Guang
Satellite dataset. F1 score, recall, precision, Jaccard Similarity, MOTA, and Multiple Object
Tracking Precision (MOTP) were calculated to assess classification performance, with
the results of 0.71, 63.06, 81.04, 0.55, 0.46, and 0.52, respectively. Furthermore, Ref. [66]
exploited the circulant structure of TBD with Kernels, and established a filter training
mechanism for the target and background to improve the discrimination ability of the
tracking algorithm. Tracking experiments with nine sets of Jilin-1 satellite videos showed
competitive performance with targets under weak feature attributes.

3.1.3. DL-Based Tracking Methods

CNN models have achieved significant success in many vision tasks, which inspires
researchers to explore their capabilities in tracking problems. State-of-the-art CNN-based
trackers have made remarkable progress toward this goal [56,72–74], showing more robust
than traditional methods with a large training dataset. However, DL-based trackers need to
adapt to satellite videos due to the challenges of the satellite videos-based target tracking
issues discussed in Section 1. Figure 2c illustrates the general pipeline of DL-based methods,
where the DL modules are utilized in the Siamese architecture to extract the appearance
features. Moreover, the DL modules can be introduced into CF-based methods and TBD
methods, running as the feature extractor and feature detector. For instance, Ref. [75]
utilized CNN to extract hyperspectral domain features and a kernel-based CF dealing with
the satellite video tracking problem.

A SN is an CNN-based approach that applies the same weights while working in
tandem on two different input vectors to compute comparable output vectors, which
is typically utilized for comparing similar instances in different type sets. Thus, it is a
natural idea to apply the SN in the object tracking task [74]. In 2019, Ref. [76] constructed
a fully convolutional SN with shallow-layer features to retrieve fine-grained appearance
features for space-borne satellite video tracking (Figure 3a). Predicting attention combined
Gaussian Mixture Model (GMM), and KF was utilized to deal with tracking target occlusion
and the obscure problem. The proposed method was validated by three high-resolution
satellite videos quantitatively, which outperformed the state-of-the-art tracking methods
with an FPS of 54.83. Similarly, a deep Siamese network (DSN) incorporating an interframe
difference centroid inertia motion (ID-CIM) model was proposed in Ref. [77], in which the
ID-CIM mechanism was proposed to alleviate model drift. The DSN inherently included a
template branch and a search branch and extracted the features from these two branches.
A Siamese region proposal network was then employed to obtain the target position in the
search branch. Meanwhile, [78] investigated a lightweight parallel network with a high
spatial resolution to locate the small objects in satellite videos, namely, the Hign-resolution
Siamese network (HRSiam). A pixel-level refining model based on online moving object
detection and adaptive fusion was proposed to enhance the tracking robustness in satellite
videos. By modeling the video sequence in time, the HRSiam detected the moving targets
in pixels with the advantage of tracking and detecting. The authors reported that their
proposed HRSiam achieved state-of-the-art tracking performance while running at over
30 FPS.
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Figure 3. Comparison diagram of algorithm structure for DL-based traffic object tracking methods.
(a) example of SN-based tracking method reproduced from Ref. [76]; (b) the overall structure of
the CRAM (regression network (RN)-based) tracking network [79]; (c) the pipeline for the SN-RN
combined tracking method reproduced from Ref. [80].

Recently, RNs have been studied and shown promising performance in the field of
satellite video-based object tracking. For example, Ref. [79] introduced a convolutional
regression network with appearance and motion feature (CRAM) (see Figure 3b), which
consisted of training and tracking two phases. In the training phase, the two RNs were
trained with different appearance and motion features respectively. In the tracking phase,
the model responses were weighted by their qualities measured from the peak-to-sidelobe
ratio (PSR) and then integrated for the final target location prediction [81]. To evaluate
the performance of the proposed network, the authors collected nine small sequences
with a total number of 31 moving vehicles, which were cropped from the SkySat-1 and
Jilin-1 satellite videos. The average overlap measure and expected average overlap indices
were analyzed, with the results of 0.7 and 0.7286, thereby demonstrating the efficiency
of the presented network in object tracking from high-resolution remote sensing videos.
Later, Ref. [82] suggested a cross-frame keypoint-based detection network based on a two-
branch Long short-term memory (LSTM). The spatial information and motion information
of moving targets are extracted for better tracking of the missed or occluded vehicles.
Experimental results on Jilin-1 and SkySat satellite videos illustrated the effectiveness of
the proposed tracking algorithms.

Furthermore, a prediction network (PN) was studied by [83], which predicted the
location probability of the target in each pixel in the next frame using the fully convolu-
tional network (FCN) learned from previous results. The authors further introduced a
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segmentation method to generate the feasible region with an assigned high probability for
the target in each frame. Experiments were carried out with nine satellite videos taken
from the JiLin-1, indicating the superiority of the proposed method, as the author reported.

By taking advantage of both the SN and RN, Ref. [80] proposed a two-stream deep
neural network (SRN) (see Figure 3c) that combined a SN and a motion RN for satellite
object tracking. In Ref. [80], a trajectory fitting motion model (FTM) based on history
trajectories was employed to further alleviate model drift. Comprehensive experiments
demonstrated that their method performed favorably compared with the state-of-the-art
tracking methods. Additionally, by exploring the temporal and spatial context, the object
appearance model, and the motion vector from occluded targets, Ref. [84] designed a
Reinforcement learning (RL)-based approach to enhance the tracking performance under
complete occlusion. In addition, Ref. [85] explored the potential of graph convolution (GC)
for multi-object tracking and modeled the satellite video tracking as a graph information
reasoning procedure from the multitask learning perspective. Compared with state-of-the-
art multi-object trackers, the tracking accuracy of this model increased by 20%.

To sum up, Table 4 illustrates recent published articles that study the DL-based tracking
methods. As listed in Table 4, the SN-based models are widely utilized for object tracking
in the remote sensing area. The CNN combined with CF tracking is another popular trend,
which integrates the efficiency of the CF method and robustness of the CNN. Meanwhile,
due to the advantages in time-series image processing, RN-based approaches have shown
their potential for advanced tasks, such as long-term tracking or tracking with occlusion.
Figure 3 then shows the frameworks of DL-based traffic object tracking among SN-based,
RN-based, and SN-RN combined methods.

Table 4. Summary of DL-based traffic objects tracking methods.

Method Ref. Year Description

SN-based tracking
[76] 2019 Predicting attention-inspired SN
[77] 2021 DSN + ID-CIM
[78] 2021 Lightweight parallel network with a high spatial resolution

CNN combined with CF [75] 2018 Kernelized CF utilizing deep CNN features
RN-based tracking [79] 2020 CRAM, RN-based training
RN-based tracking [82] 2021 A two-branch LSTM
PN-based tracking [83] 2021 PN to predict the location probability of the target
Combined SN and RN [80] 2022 SRN followed by FTM
RL-based tracking [84] 2022 RL to track objects under occlusion
GC-based tracking [85] 2022 Tracking via GC-based multitask reasoning

3.1.4. Optical Flow-Based Methods

The optical flow method utilizes the apparent motion of the brightness patterns in the
image to detect moving objects. The algorithm output can provide vital information for
the tiny movements of an object [86]. It is worth noting that the background relative to the
interested target is generally constant in satellite videos. Therefore, the image target and
background can be separated by optical flow efficiently. If target objects move too slow to
be analyzed with optical flow, multi-frame differences can be employed to improve the
tracking performance [87]. Table 5 summarizes typical methods of the optical flow-based
methods. Global feature-based optical flow is an old-fashioned method of tracking objects
from remote sensing images, whereas local feature-based optical flow methods are gaining
popularity recently. The general architecture of the optical flow based methods is depicted
in Figure 2d.
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Table 5. Summary of optical flow based traffic objects’ tracking methods.

Method Ref. Year Description

Global feature-based [88] 2013 Three-frame differencing scheme

Local feature-based
[22] 2019 Multi-frame optical flow tracker
[89] 2021 SLIC + optical flow
[90] 2022 HoG + optical flow

Earlier researchers utilized a three-frame differencing scheme to detect and track
vehicles globally. [88]. In Ref. [88], the authors firstly proposed a box filter to reduce
the seam artifacts caused by considerable radiometric changes in different focal planes
of the original stitched image. The grid was chosen such that tiles were approximately
1000 × 1000 pixels. The tile processors then enabled the global parallelism necessary to
achieve real-time performance. In addition, the tile patches were further set up to overlap
by about 80 pixels at each border to ensure that vehicles near the edges are included.

More recently, local feature-based methods were developed, and Ref. [22] implemented
a multi-frame optical flow tracker to track the vehicles in satellite videos. The author first
proposed a Lucas–Kanade optical flow method to obtain the optical flow field. The Hue-
Saturation-Value (HSV) color system was then utilized to convert the two-dimensional
optical flow field into a three-bands color image. Finally, the integral image was adapted to
obtain the most probable position of the target. Five satellite videos provided by UrtheCast
Corp. and Chang Guang Satellite Technology Co., Ltd. were applied in experiments, show-
ing that the proposed method can track slightly moving objects accurately. Additionally,
an optical flow motion estimation combined with a superpixel algorithm was presented
by [89]. The authors used simple linear iterative clustering (SLIC) to realize superpixels,
which made the object a more regular and compact shape. The output of the superpixel
algorithm was then fed to the optical flow method to obtain and label the moving object.
In 2022, Ref. [90] fused the histogram of oriented gradient (HoG) features and optical
flow features to enhance the representation information of the targets. The author also
developed a disruptor-aware mechanism to weaken the influence of background noise.
Experimental results show that the proposed algorithm achieves high tracking performance
with target occlusion.

3.2. Offline Tracking Methods

Online tracking can only use existing frames for tracking model updates, whereas
offline tracking methods can benefit from all keyframes providing the smoothness con-
straint [91]. Since the satellite videos are generally downloaded from the aerial platform
in advance, the offline video tracking models are implemented to entire video frames.
Compared to the online video tracking algorithms, offline tracking is typically formulated
as a global optimization problem to obtain the global optimal tracks. Furthermore, hyper-
spectral videos are usually introduced to improve the performance of the offline tracking
models. Table 6 summarizes the reviewed offline traffic object tracking methods, which
are divided depending on how many steps to obtain the tracking result. One-step-based
methods utilize the tracker only, while two-step algorithms consist of both detector and
tracker.

Table 6. Summary of offline traffic object tracking methods.

Method Ref. Year Description

One step-based [92] 2014 Two paralleled trackers for initialization and tracking
[93] 2021 3D variation regularization + PCA

Two step-based
[94] 2018 Global data association approach
[95] 2019 DTS for traffic parameters estimating
[96] 2019 DTS for vehicle tracking
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In 2014, Ref. [92] proposed a fused framework for tracking multiple cars from satellite
videos, in which two trackers worked in parallel. One tracker provided target initialization
and reacquisition through detections from background subtraction. The other offered a
frame to frame tracking by a target state regressor. A sequence from a publicly available
wide-area aerial imagery dataset WPAFB was applied to test the proposed framework.
Tracking metric indicators, namely, track swaps, track breaks, and overall MOTA, were
calculated with 0.20, 0.92, and 0.41, respectively, in terms of detection and tracking metrics.
Later, Ref. [93] incorporated a three-dimensional (3D) total variation regularization into the
robust PCA model, in order to extract the moving targets from the background. Evaluation
results on real remote sensing videos have demonstrated the advantage of this approach.

An offline two-step global data association approach was later presented in Ref. [94]
to track multiple targets using satellite videos. The authors extended the spatial grid flow
model to cover the possible connectivities in a wider temporal neighboring, making sure
the association matches temporal-unlinked detections. Then, a KF-based tracklet transition
probability was customized to link tracklets within large temporal intervals. To demonstrate
traffic tracking capabilities, the proposed method was evaluated on a dataset that was
cropped from a satellite high definition video captured by SkySat-1 on 25 March 2014.

On the other hand, Ref. [95] contributed to the integration of the two-step offline track-
ing algorithm, developing a complete and effective offline detection-tracking system (DTS)
using satellite videos to estimate traffic parameters. In their system, a video preprocessing
step is firstly applied to obtain the background. The moving targets were then checked over
time to construct the target trajectories. A threshold method based on target displacement
and velocity was utilized to eliminate false positives. A satellite video captured over Las
Vegas from the SkySat-1 satellite with 30 FPS was applied to the proposed method. The
results still revealed the limitation of the said method which was the inability of noise
removal conditions to filter out tall buildings’ relief displacement. Meanwhile, Ref. [96]
offered an efficient DTS to track vehicles in multi-temporal remote sensing images. In the
detection phase, the authors applied background subtraction, reduced searching space,
and combined road prior information to improve detection accuracy. In the tracking phase,
a dynamic association method under state judgment rules was designed to associate all
potential target candidates. Additionally, a group dividing method was proposed to further
improve the tracking accuracy. The proposed model was evaluated on a remote sensing
video dataset with a 10 FPS frame rate and 4096 × 2160 pixels resolution. Completeness,
Correctness, and Quality indices were utilized for the performance assessment with the
results of 0.99, 0.97, and 0.97, showing the effectiveness of the presented method in tracking
small vehicles from satellite sequences.

3.3. Discussion on Traffic Tracking Methods

To develop a general comparison, we summarize and elaborate on the strength and
limitations of the reviewed tracking models, as shown in Table 7. For example, by utilizing
the circulant matrix in the frequency domain to simplify the matrix inverse operation,
effective tracking performance is achieved by correlation-based models. However, the
occlusion and distractors can influence the tracking accuracy of the CF-based models. By
contrast, the DL-based methods trained by extensive datasets improve the performance of
the models in highly complex scenes. In addition, the DL model, as a good feature extractor,
is flexible and able to integrate with CF models and TBD models. Considering the state-
of-the-art works in general visual tracking tasks, such as Accurate Tracking by Overlap
Maximization (ATOM) [97], SiamRPN [98], and GradNet [99], the DL and CF models
show great potential for future development in satellite video tracking areas. The optical
flow-based models require less memory and processing time because of effective alignment
and optical flow algorithms, whereas they are sensitive to background noise. The TBD
models consist of two steps: detection and tracking. The detection and tracking modules
can be replaced by different algorithms separately, in which the tracking performance
heavily depends on the detection modules.
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Table 7. Summary of various satellite video based tracking methods for traffic objects.

Methods Advantage Disadvantage Prospect

CFs - Circulant matrix to compute - Unrobust to occlusion and distractor High
- Low computing process
- Effective

DL - Robust - Require large dataset for training High
- Good scalability
- High accuracy

TBD - Adaptive to multi-targets - Strongly depend on detection modules Moderate
- Flexible backbones
- High accuracy

Optical flow - Low processing time - Highly sensitive to noise Low
- Low Memory cost

4. Ship Tracking

In recent years, ship detection and tracking have attracted a lot of attention in remote
sensing because of the great potential in military application and port activities analysis.
Compared with the vehicle targets, the size of the ship targets varies in a wide range,
and the background of the track is commonly water, which may limit the performance of
tracking methods. The feature of the water background is very similar to adjacent frames,
which leads to ineffective motion information from the background analysis. Tracking
algorithms such as optical flow-based tracker and offline tracking methods are thus not
proper for ship tracking. Therefore, several novel models have been proposed to track
ships from satellite videos.

In this section, we categorized the ship tracking approaches into two classes: image-
based tracking methods and multi-modality-based tracking approaches. The summary
of reviewed ship tracking publications is given in Table 8. In addition, Figure 4 shows a
comparison of algorithm structure between two categories.

Satellite Images Image Stretch
(ANGS)

Single Frame Ship Detection
(MDDCM)

Stretched Image

Shape 
Verification

Targets

Ship Tracking
(JPDA)

Multi Frames
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Image Detection
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(b)

Figure 4. Comparison diagram of algorithm structure for ship tracking. (a) the framework of
Ref. [100] (An Example of image-based tracking method); (b) the procedure of track-level fusion
reproduced from Ref. [101] (An example of a multi-modality-based tracking method).
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Table 8. Summary of the ship, typhoon, and fire tracking methods.

Target Method Ref. Year Description

Ship

Image-based
[100] 2019 Automatic detection and tracking for moving ships
[102] 2021 Framework consists of ANGS, MDDCM, JPDA
[103] 2022 Mutual convolution SN with hierarchical double regression

Multi-modality

[104] 2010 Ship detection and tracking using AIS and SAR data
[101] 2018 Track-level fusion for noncooperative ship tracking
[105] 2018 Integrate sequential imagery with AIS data
[106] 2021 Integrate satellite sequential imagery with ship location information

Typhoon

CNN-based [107] 2017 A multi-layer model for multichannel image sequences
[108] 2020 A quasi-supervised mask region CNN

GAN-based
[109] 2019 GAN to track and predict typhoon motion
[110] 2021 GAN with deep multi-scale frame prediction method
[111] 2022 GAN to predict both the track and intensity of typhoons

RNN-based

[112] 2017 A convolutional sequence-to-sequence autoencoder
[113] 2018 MNNs for typhoon tracking
[114] 2018 A CLSTM based model
[115] 2021 A CLSTM layer with FCLs
[116] 2022 A CLSTM with 3D CNN based on multimodal data
[117] 2022 An echo state network-based tracking

Fire

Traditional

[118] 2017 Identify possible fire hotspots from two bands of AHI
[119] 2018 A threshold algorithm with visual interpretation
[120] 2019 A multi-temporal method of temperature estimation
[121] 2020 Temperature dynamics by data assimilation
[122] 2022 Wildfire tracking via visible and infrared image series

DL-based

[123] 2019 3D CNN to capture spatial and spectral patterns
[124] 2019 Inception-v3 model with transfer learning
[125] 2021 Near-real-time fire smoking prediction
[126] 2022 Combine the residual convolution and separable convolution to detect fire
[127] 2022 Multiple Kernel learning for various size fire detections

Ice motion

Traditional

[4] 2017 MCC tracker with hybrid example-based super-resolution model
[128] 2017 A faster cross-correlation based tracking with several updates
[129] 2018 A optical-flow based tracking with super-resolution enhancement
[130] 2019 A multi-step tracker for ice motion tracking
[131] 2020 Rotation-invariant ice floe tracking
[132] 2021 Integrating the cross-correlation with feature tracking
[133] 2022 Integrating locally consistent flow field filtering with cross-correlation

DL-based
[134] 2019 An encoder-decoder network with LSTM to predict ice motion trajectory
[135] 2021 A CNN model to predict the arctic sea ice motions
[136] 2021 A multi-step machine learning approach to track icebergs

4.1. Image-Based Tracking Methods

Ref. [100] developed an automatic detection and tracking model for moving ships in
different sizes from satellite videos, as illustrated in Figure 4a. The dynamic multiscale
saliency map was generated using motion compensation and multiscale differential saliency
maps. Remote sensing images from the GO3S satellite were used to study the performance
of the proposed method, indicating the effectiveness on ship tracking, especially on small
ships. Furthermore, Ref. [102] proposed a new framework, including ANGS, MDDCM,
and JPDA methods, to detect moving ships from GF-4 satellite images [137]. In Ref. [102],
the ANGS enhanced the image and highlighted small and dim ship targets. The MDDCM
detected the position of the candidate ship target, and the JPDA was applied for multi-
frame data association and tracking. The authors analyzed that general influencing factors
on ship detection in optical remote sensing images include bright clouds and islands. In
addition, high-resolution images are encouraged for better detection scores. By designing
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the mutual convolution Siamese network, Ref. [103] calculated the similarity between the
object template and the search area to enhance the significance of the ship in the feature
map. The authors also proposed a hierarchical double regression module to reduce the
influence of the non-rigid motion of the water surface in the tracking phase.

4.2. Multi-Modality Based Tracking Methods

The AIS is an automatic tracking system that utilizes transceivers on ships and is
applied by vessel traffic services. AIS information supplements marine radar, which
continues to be the primary method of collision avoidance for water transport. AIS has
been proven to be instrumental in accident investigation and search-and-rescue operations.

Earlier in 2010, Ref. [104] studied a fused ship detection and tracking system using
the AIS data and satellite-borne SAR data. A 3D extension of a standard ordered-statistics
constant false alarm rate (OSCFAR) algorithm was implemented on the radar data to
realize target detection. For ship tracking, an alpha-beta filter combined with a nearest
neighborhood assignment strategy was proposed and performed in polar coordinates to
reduce false alarm errors. A time series of 512 samples and two onboard SAR sensors were
used to verify their method, showing competitive results with previous works.

Recently, there has been renewed interest in fusing optical images with AIS data.
Ref. [101] provided a track-level fusion architecture for GF-4 and AIS data to ship tracking
tasks, as shown in Figure 4b. The constant false alarm rate (CFAR) detector first detected
ships in GF-4 images, and then the multiple hypotheses tracking (MHT) Tracker with
projected AIS data was aimed to achieve ship tracking. Then, the authors design a new
track-to-track association algorithm based on iterative closest point (ICP) and global nearest
neighbor (GNN) with multiple features to improve the validity of association. The core data
fusion architecture was the track-to-track association based on a combined algorithm with
multiple features to correct positioning errors. As reported by the authors, their effective
data fusion method showed that the AIS aided satellite image offered a great perspective
for tracking non-cooperative targets. Similar to Ref. [101], Ref. [105] investigated the
AIS aided ship-tracking method with GF-4 satellite sequential imagery. The algorithm
consisted of three steps: ship detection, position correction, and ship tracking, which were
realized by the peak signal-to-noise ratio (PSNR)-based local visual saliency map, the
rational polynomial coefficient (RPC) model with AIS data, and amplitude assisted MHT
framework, respectively. The proposed method achieved the accuracy evaluation, precision,
recall, and F1-score indices with 98.5%, 87.4%, and 92.6% on GF-4 satellite sequences,
indicating the accurate estimation of moving ships. In 2021, Ref. [106] combined GOES-17
satellite imagery with ship location information to track the trajectories of ship-emitted
aerosols based on its physical processes and optical flow model.

5. Typhoon Tracking

The rapid development of remote sensing technologies provides a new methodology
for weather observation and forecasting tasks using high-resolution visual data [138].
Recently, a growing body of literature investigating the deep neural network-based cyclone
track prediction from satellite imagery sequences has been published.

In this section, papers in the area of typhoon tracking methods are reviewed and
divided into three classes, including the CNN-based models, GAN-based models, and
RNN-based models, listed in Table 8. In addition, Figure 5 visualizes the three structures of
CNN, GAN, and RNN-based typhoon tracking models.
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Figure 5. Comparison diagram of algorithm structure for (a) CNN-based, (b) GAN-based, and
(c) RNN-based (specifically CLSTM) typhoon tracking.

5.1. CNN-Based Tracking Methods

To understand complex atmospheric dynamics based on multichannel 3D satellite
image sequences, Ref. [107] introduced a multi-layer neural network. Multiple convolu-
tional layers were first formed for typhoon feature extraction, followed by multiple fully
connected dense layers with linear activation for linear metrics regression. In the regression
step, the pixel related to the weather event was chosen as the target value. The proposed
model was studied by a 2674-image satellite dataset acquired by the COMS-1 meteoro-
logical imagery [139], achieving a Root Mean Squared Error (RMSE) of ~0.02 to predict
the center of a single typhoon that represented ~74.53 km in great circle distance. As the
authors presented, a CNN could predict the coordinates of single typhoons efficiently, while
the multiple typhoon case and unsupervised sequences of images needed to be further
investigated. By further exploring the potential of the CNN models in cyclone detection,
Ref. [108] designed a quasi-supervised mask region CNN. The seasonal march and spatial
distribution of cyclone frequencies were derived from the proposed model. Compared
with traditional methods, the presented method increased the number of identified cy-
clones by 8.29%, showing its good performance in identifying the horizontal structures of
tropical cyclones.

5.2. GAN-Based Tracking Methods

Models such as those above can be categorized as discriminative models as they use
conditional probability to predict the unseen data, while other methods employ generative
models that make predictions by modeling joint distribution and are capable of generating
new data. For example, Ref. [109] introduced a GAN to track and predict the typhoon
centers and future cloud appearance simultaneously. A typical GAN structure was trained
in an adversarial way to generate a 6-hour-advance track of a typhoon. The predicted
typhoon track favorably identified the future typhoon location and the deformed cloud
structures. The achieved averaged difference error between the predicted and ground truth
typhoon centers was 95.6 km by calculating ten typhoon datasets. The tracking prediction
could be significantly improved when employing both velocity fields and satellite images
to deal with sudden changes in the track. Later, Ref. [110] integrated the GAN model with
a deep multi-scale frame prediction algorithm, aiming to predict the atmospheric motion
vectors of typhoons. The experiment results illustrated that the generated atmospheric
motion vectors depicted the structure of typhoon atmospheric circulations with a certain
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level of accuracy. Similarly, Ref. [111] designed a GAN based approach to predict both
the track and intensity of typhoons for short lead times within fractions of a second. The
experimental results indicated that learning velocity, temperature, pressure, and humidity
along with satellite images have positive effects on trajectory prediction accuracy.

5.3. RNN-Based Tracking Methods

Another idea dealing with tracking tasks focuses on RNN models, which have shown
promising performance in processing the time series data in various areas. Ref. [112]
developed a convolutional sequence-to-sequence autoencoder in 2017 to predict the undis-
covered weather situations from satellite image series. In 2018, Ref. [113] presented MNNs
to predict cyclone tracks for satellite imagery sequences from the South Indian Ocean area.
The MNNs were trained based on matrix convolutional units and utilized to propagate
the information from the input matrix to the output layer. A dataset consisting of 286 cy-
clones was used to verify the effectiveness of the MNNs in typhoon tracking. In the same
year, Ref. [114] designed a convolutional LSTM model to track and predict the tropical
cyclone path. In their experiments, the proposed approach was successful in learning the
spatiotemporal dynamics of the atmosphere.

In 2021, Ref. [115] compared various CNN and RNN recognition algorithms and
proposed that the best performing network implemented a convolutional LSTM layer with
FCLs. Cloud features rotating around a typhoon center were extracted by their model from
the satellite infrared videos. Moreover, models trained with long-wave infrared channels
outperformed a water vapor channel-based network. The average position across the two
infrared networks has a 19.3 km median error across all intensities, which equated to a
42% lower error over a baseline technique. Later, by applying the multimodal data based
on typhoon track data and satellite images, Ref. [116] integrated the LSTM and 3D CNN
model to predict typhoon trajectory. In spite of widespread RNN structures, Ref. [117]
studied an echo state network to track the typhoon based on the meteorological dataset,
yet its potential for the image-based data still needs to be explored.

6. Fire Tracking

Fire tracking has become an attractive application of satellite remote sensing thanks to
the characteristics of recent remote sensing images, such as high frequency, large range, and
multi-spectrum. Additionally, the high-resolution images provide more information and
high-time resolution data in forest fire monitoring, showing great potential in environment
monitoring. In recent years, many researchers have concentrated on the activate fire
detection based on single images, while a few pieces of literature tracked the fire and smoke
based on multi-temporal detection or continuous detection. A vital component of fire
tracking from remote sensors is the accurate estimation of the background temperature of
an area in a fire’s absence, which helps identify and report fire activity.

Therefore, this section provides a review of fire tracking methods and categorizes
them into two classes, including the traditional methods and DL-based methods. A brief
summary of the reviewed fire tracking methods can be seen in Table 8 and a comparison of
two types of fire tracking methods can be seen in Figure 6.
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Figure 6. Comparison diagram of fire tracking algorithm structure for the (a) traditional method and
the (b) DL-based method.

6.1. Traditional Tracking Methods

Regarding satellite imagery from satellite videos, important work for fire and smoke
detection has been performed by applying the advanced AHI sensor of the Japanese geosta-
tionary weather satellite Himawari-8. The AHI offers extremely high-temporal-resolution
(10 min) multispectral imagery, which is suitable for real-time wildfire monitoring on a
large spatial and temporal scale.

Based on the AHI system, Ref. [118] investigated the feasibility of extracting real-
time information about the spatial extents of wildfires. The algorithm first identified
possible hotspots using the 3.9µm and 11.2µm bands of Himawari-8, and then eliminated
false alarms by applying certain thresholds. A similar work was proposed in Ref. [119],
which integrated a threshold algorithm and a visual interpretation method to monitor the
entire process of grassland fires that occurred in the China-Mongolia border regions. To
further explore the information from AHI image series, Ref. [120] extended their previous
work and proposed a multi-temporal method of background temperature estimation. The
proposed method involved a two-step process for geostationary data: a preprocessing
step to aggregate the images from the AHI and a fitting step to apply a single value
decomposition process for each individual pixel. Each decomposition feature map can
then be compared to the raw brightness temperature data to identify thermal anomalies
and track the active fire. Results showed the proposed method detected positive thermal
anomalies in up to 99% of fire cases. Recently, Ref. [122] proposed a new object-based
system for tracking the progression of individual fires via visible and infrared satellite
image series. The designed system can update the attributes of each fire event in California
during 2012–2020, delineate the fire perimeter, and identify the active fire front shortly after
satellite data acquisition.

The previous methods can overestimate the background temperature of a fire pixel and,
therefore, leads to the omission of a fire event. To address this problem, Ref. [121] designed
an algorithm that assimilated brightness temperatures from infrared images and the offset
of the sunrise to the thermal sunrise time of a non-fire condition. The introduction of
assimilation strategies improved the data analysis quality and computational cost, resulting
in better fire detection and tracking results.

6.2. DL-Based Tracking Methods

Instead of exploring the fire features via manually designed operators, Ref. [123] inves-
tigated DL-based remote wildfire detection and tracking framework from satellite image
series. They firstly processed the streaming images to purify and examined raw image data
to obtain ROI. Secondly, a 3D CNN was applied to capture spatial and spectral patterns
for more accurate and robust detection. Finally, a streaming data visualization model was
completed for potential wildfire incidents. The empirical evaluations highlighted that the
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proposed CNN models outperformed the baselines with a 94% F1 score. To improve the
fire detection accuracy, authors from [124] developed an effective approach of a CNN based
Inception-v3 with transfer learning to train the satellite images and classify the datasets into
the fire and non-fire images. The confusion matrix is introduced to specify the efficiency
of the proposed model, and the fire occurred region is extracted based on a local binary
pattern. More recently, Ref. [125] explored the potential of DL-based fire tracking by
presenting a deep FCN to predict fire smoke, where satellite imagery in near-real-time by
six bands images from the AHI sensor was used.

More DL-based methods contribute to fire detection instead of tracking. For example,
Ref. [127] revised the general CNN models to enhance the fire detection performance in
2022. The proposed network consists of several convolution kernels with multiple sizes
and dilated convolution layers with various dilation rates. Experimental results based on
Landsat-8 satellite images revealed that the designed models could detect fires of varying
sizes and shapes over challenging test samples, including the single fire pixels from the
large fire zones. Similarly, Ref. [126] fused the optical and thermal modalities from the
Landsat-8 images for a more effective fire representation. The proposed CNN model
combined the residual convolution and separable convolution blocks to enable deeper
features of the tracking target. A review of remote sensing-based fire detection is given
in [140] in 2020, and more recent published works can be found in [141–143]. As detection
is different from tracking and is out of our scope, we focus here on tracking only and do
not provide the details on fire detection. Further studies could also be conducted to extend
the DL-based fire detection to DL-based fire tracking.

7. Sea Ice Motion Tracking

Sea ice tracking is essential for many regional and local level applications, includ-
ing modeling sea ice distribution, ocean atmosphere, climate dynamics, as well as safe
navigation and sea operations. Most operational sea ice monitoring techniques rely on
satellite-borne optical and SAR sensors, augmented by scatterometer and passive mi-
crowave imagery. In this review, previous ice tracking works are studied and classified into
two categories: traditional tracking methods and DL-based tracking. Specifically, tradi-
tional ice tracking methods can be broadened to include cross correlation-based, optical
flow-based, etc.

7.1. Traditional Ice Tracking Methods

In 2017, Ref. [4] utilized the maximum cross correlation (MCC) algorithm to estimate
sea ice drift vectors and track the sea ice movements, in which a hybrid example-based
super-resolution model was developed to enhance the image quality for better tracking
performance. Meanwhile, Ref. [128] proposed several marked updates to speed up the
cross-correlation-based algorithm. These updates include swapping the image order and
matching direction, introducing a priori ice velocity information, and applying a post-
processing algorithm. Experiment results revealed the improvement of the overall tracking
performance based on cross-correlation. Later, Ref. [132] integrated the cross-correlation
with feature tracking and proposed a fine-resolution hybrid sea ice tracking algorithm.
The proposed method can be applied for regional fast ice mapping and large stamukhas
detection to aid coastal research. Similarly, Ref. [133] designed a locally consistent flow field
filtering algorithm with a correlation coefficient threshold and achieved better performance
in sea ice motion estimation using GF-3 imagery.

Except for the cross correlation-based tracking, Ref. [129] introduced the optical flow
algorithm to extract a dense motion vector field of the ice motion, achieving sub-pixel
accuracy. An external example learning-based super-resolution method was applied to
generate higher resolution tracking samples. This approach was successfully evaluated on
the passive microwave, optical, and SAR, proving appropriate for multi-sensor applications
and different spatial resolutions. Later, Ref. [130] proposed a multi-step tracker for ice
motion tracking. By comparing ice floes within consecutive images, the algorithm extracted
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the potential matches with thresholds and selected the best candidates based on the as-
sessment of a similarity metric. The approach was utilized to track ice floes with length
scales ranging from 8 km to 65 km from the East Greenland Current (ECG) for 6.5 weeks
in spring 2017. Compared with manual annotations, the absolute position and tracking
errors associated with the method were 255 m and 0.65 cm, respectively. Furthermore,
authors from [131] designed a multi-step tracker for rotation-invariant ice floe tracking.
Their approach consisted of ice floe extraction, ice floe description, and ice floe matching.
The tracker enabled the identification of individual ice floes and the determination of their
relative rotation from multiple Sentinel-2 images. Later, Ref. [144] combined an on-ice
seismic network with TerraSAR-X satellite imagery to track the ice cracking from 2012
to 2014 in Pine Island Glacier. The author applied a flexural gravity wave model and
deconvolved the wave propagation effects, implying that water flow may limit the rate of
crevasse opening.

7.2. DL-Based Tracking

Compared with the various ice motion trackers based on traditional methods, DL-
based approaches have been proposed in recent years for ice motion trajectory prediction.
In 2019, Ref. [134] introduced an encoder-decoder network with LSTM units to predict
sea ice motion in several days. The optical flow of ice motion, calculated from satellite
passive microwave and scatterometer daily images, was fed to their network. According
to the experiments, this method could forecast sea ice motion for up to 10 days in the
future. Similarly, Ref. [135] established a CNN model and introduced previous day ice
velocity, concentration, and present-day surface wind to track and predict the arctic sea ice
motions. Results reveal that the designed CNN model computes the sea ice response with
a correlation of 0.82 on average with respect to reality, which surpasses a set of local point-
wise predictions and a leading thermodynamic-dynamical model. The ice motion tracking
performance of CNN suggests the potential for combining DL with physics-based models
to simulate sea ice. Later, Ref. [136] suggested a multi-step machine learning approach to
track icebergs via SAR imagery. The proposed method consists of three stages, which are
the graph-based superpixel segmentation model, the ensemble learning process with the
heterogeneous model, and the incremental learning approach. The authors collect SAR
satellite image series from the Weddell Sea region to verify the approaches. The experiment
results show that the majority of the tracked icebergs drifted between 1.3 km and 2679.2 km
westward around the Antarctic continent at an average drift speed of 3.6 ± 7.4 km/day.

Above all, the cross-correlation and optical flow algorithms play crucial roles in ice
motion tracking. Integrating feature tracking with cross-correlation has been well studied
and showed promising performance in ice motion tracking from remote sensing images.
Furthermore, the success of the DL model in existing works suggests the feasibility and
potential of combining machine learning with physics-based models to track and predict
ice motion. However, considerably more work needs to be done to achieve competitive
stability and accuracy in ice motion tracking compared with traditional methods.

8. Benchmark Dataset

A benchmark dataset is vital for tracking algorithm development and evaluation.
Datasets from previous studies suggest that characteristics of different datasets can lead to
different tracking strategies. We, therefore, discuss and summarize the available dataset
for various tracking objects, and further develop a new dataset based on WPAFB for
vehicle tracking.

8.1. Available Dataset

Many tracking algorithms have been employed for object tracking from satellite videos.
However, higher tracking performance is constantly demanded. Compared with tracking
algorithms in the traditional computer vision area, one of the major constraints of tracking
performance in the remote sensing area is the limited dataset. Previous studies show that
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several datasets for satellite tracking have been collected and introduced to provide fair and
standardized evaluations of object tracking algorithms. We collect the dataset based on the
standard of multiple reuses in different published works. In terms of tracking objects of the
benchmark datasets, we divide the tracking benchmark datasets into two classes: artificial
target datasets and natural target datasets. The artificial targets include vehicles, ships,
trains, and planes, while the natural targets include typhoons, fire, and ice. According to
the review results, there are four popular datasets for artificial satellite target tracking, and
two datasets are collected for typhoon and fire tracking, respectively. Due to the limited
existing literature, the public ice tracking dataset has not been found. The commonly-used
satellite video datasets are detailed as follows.

1. SatSOT dataset [145]. The dataset focuses on satellite video single object tracking
and comes from three commercial satellite sources: Jilin-1, Skybox, and Carbonite-
2 satellites. Each raw video has a frame rate of 10 FPS or 25 FPS with about a 30 s
duration. The 105 sequences of the dataset consist of 26 trains, 65 cars, nine planes, and
five ships with an overall of 27,664 frames. Among the 105 sequences, 12 sequences
with full occlusion are formed into a subset of long-term tracking. Compared with
ships and planes, more car and train sequences are introduced. The average video
length of SatSOT is 263 frames.

2. VISO dataset [146] This dataset is a large-scale dataset for moving object detection
and tracking in satellite videos, which consists of 47 satellite videos captured by
Jilin-1 satellite platforms. Each image has a resolution of 12,000 × 5000 pixel and
contains a great number of objects with different scales. Four common types of
vehicles, including planes, cars, ships, and trains, are manually-labeled. A total of
853,911 instances are labeled by axis-aligned bounding boxes.

3. CVH dataset. The Canada Vancouver harbor (CVH) dataset is a full color, ultra high
definition (UHD) MPEG-4 file that has a spatial resolution of one meter, provided for
the 2016 IEEE GRSS Data Fusion Contest by Deimos Imaging and Urthecast, acquired
from International Space Station (ISS) high-resolution camera Irish on 2 July 2015 [147].
The dataset lasts 34 s and has 418 frames with the frame rate of being 27.97 FPS. The
frame size is 3840 × 2160 pixel2, covering an urban and harbor area in Vancouver,
Canada, with an area of ~23.8 × 2.1 km2.

4. WPAFB dataset. The wide-area aerial imagery dataset is taken by a camera sys-
tem with six optical sensors and has already been stitched to cover a wide area of
~35 × 35 km2. It is collected over the Dayton and Ohio area in October of 2009. This
dataset contains 1025 frames with a 1.42 FPS frame rate. The input image size is aver-
aged at 13,056 × 10,496 pixel2 but changes from frame to frame, due to the orthorectify
and stitch operations. More than 400 tracks of the vehicles in the dataset are labeled.

5. JTWC dataset [107]. The cyclone trajectory dataset is obtained from the Joint Typhoon
Warning Center (JTWC) [148], which features the cyclones that occurred in the South
Indian Ocean from 1985 to 2013. The dataset highlights 286 cyclones in total. The
majority of the labeled cyclone duration lies between 20–40 time points, where each
time point represents 6 h. The number of data points in each cyclone ranges from 6
to 129.

6. Himawari-8 dataset [149]. The Himawari-8 satellite is a Japanese weather satellite,
operated by the Japan Meteorological Agency, and entered operational service on 7
July 2015. The satellite can provide observations every 10–30 min (with a higher spatial
resolution 2 km pixel size that can be reduced to 500 m), making it ideal for near-real-
time fire surveillance. Each image size of the Himawari-8 is 11,000 × 11,000 pixels2,
while the video length for each fire tracking is uncertain because of the large amount
of the history images.

7. MLTB. To further develop moving target tracking, we design a multi-level tracking
benchmark (MLTB) dataset based on the WPAFB dataset in terms of vehicle tracking.
The details of data collection and sample processing will be discussed in Section 8.2.
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The comparison between different datasets is shown in Table 9. Due to the different
sizes and moving velocities of the tracking target, the resolution and FPS of different
datasets are various. Generally, the dataset resolution and FPS utilized for vehicle tracking
are relatively high, while for typhoon and fire are relatively low. Taking account of the FPS
value, the WPAFB dataset has the highest one. A lower FPS refers to a larger time interval
between adjacent frames, which indicates more difficulties in tracking the movement of the
target. In addition, the frame rate of the typhoon-based tracking dataset is only 1/6 frames
per hour because of the small velocity in low-resolution images.

Table 9. Satellite video dataset for object tracking.

Dataset Name Frame Size/Pixel Frame Rate/FPS Video Length Labeled Target

SatSOT 12,000 × 5000 10/25 263 frames cars/ships/planes/trains
VISO 12,000 × 5000 10 ~30 s cars/ships/planes/trains
CVH 3840 × 2160 29.97 ~30 s vehicles/trains/ships

WPAFB 13,056 × 10,496 1.42 1455 s cars
JTWC 512 × 512 4.6 × 10−5 ~774 h cyclone trajectory

Himawari-8 11,000 × 11,000 ~8.3 × 10−4 / fire
MLTB 13,056 × 10,496 1.42 1455 s cars

The shortcomings of the existing satellite dataset for object tracking can be concluded
by: (1) Compared with the general object tracking datasets in the computer vision area,
the satellite datasets are relatively insufficient for performance evaluation. (2) Most of
the vehicle tracking dataset is relatively short. Therefore, complex tracking situations are
inadequate, such as illumination change, occlusions, and target motion change. (3) The
WPAFB dataset is public and large tracking dataset for long-term tracking. Due to its
low frame rate and occlusion scenes, tracking models can easily miss the target when it is
occluded by trees or shadows. Even when the target appears again, it still fails to evaluate
the model performance anymore. Therefore, this dataset is hard to apply in one tracking
model by providing comparable prominent results.

8.2. Dataset Processing

For the future development of moving target tracking in the remote sensing area,
we propose a MLTB dataset based on the WPAFB dataset in terms of vehicle tracking, as
shown in Table 9. We carefully analyze each trajectory of all 401 tracks first and select
the 184 tracklets with more than 100 frames to be our dataset. Then, we analyze difficult
scenes in the dataset and categorize them into four classes, including occlusion, distractors,
environment change, and target motion change. Specifically, the occlusion class includes
the scenes where targets are occluded by trees, shadows, bridges, and buildings. Distractors
class includes cross-roads or highway scenes where targets are close to other vehicles with
similar appearance features. In environment change situations, the sudden change of
illumination or light angle leads to a different apparent feature of tracking targets. Finally,
the motion change class consists of scenes in which the targets suddenly stop, start, or
change directions. The examples of the four categories are presented in Figure 7.
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Figure 7. Four different categories of the proposed dataset. Center of red circle: targets. Yellow
rectangle: Detection results. (a) occlusion; (b) environment change; (c) motion change; (d) distractors.
(The original image is from the WPAFB dataset).

To accelerate the categorizing process, a DL-based vehicle detection model is intro-
duced. To train the parameters of the detection model, we offer a remote sensing detection
dataset UCAS-AOD dataset [150]. The UCAS-AOD Dataset is an open-source remote
sensing image dataset, which contains two kinds of targets, automobiles and aircraft, and
negative background samples. The detection benchmark UCAS-AOD is introduced as the
training dataset. In addition, we cropped the traffic object samples from the WPAFB dataset
and applied these samples as the test dataset, which contains 8871 samples. After testing
several mainstream object detection algorithms on a sub-dataset based on the MMDetection
framework [151], including YOLO [67], CenterNet [68], and CornerNet [69], we select Cor-
nerNet as the backbone model in our pipeline due to its good performance on small targets
detection. It is worth mentioning that the purpose of vehicle detection is to distinguish the
easy samples and hard samples, and the evaluation of detection performance is out of the
scope of this work. The details of the proposed dataset annotation and implementation
code are released in our Github repository github.com/caiya55/wpafb-dataset-relabeling
(accessed on 10 July 2022).

The pipeline of the proposed dataset generation is explicated in Figure 8. As shown in
Figure 8, the detection benchmark UCAS-AOD is firstly processed to train a CornerNet
model. The preprocess module includes image cropping, histogram matching, and data
augmentation. The pretrained CornerNet then detects each cropped patch from the WPAFB
dataset. Next, the patches with ground-truth and detection results are manually evaluated

github.com/caiya55/wpafb-dataset-relabeling
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and categorized. This review designed the DS score to evaluate the quality of each positive
sample in the proposed dataset, as shown in Equation (1):

DS = Occ + EC + 0.5 × MC + 0.5 × Dt (1)

where Occ and EC indicate the target occlusion and environment changes, respectively. MC
and Dt represent the motion changes and distractors, respectively. These factors for each
target sample are manually annotated by three experts. The dimensionless DS is proposed
to evaluate the label of the proposed dataset statistically, defined as the weighted sum of
the four labels and delivered from Equation (1). Compared with the other two factors, the
motion change and distractors have little effect on the tracking performance by analyzing
the detection results and manual observation. Therefore, they are weighed by 0.5 in the
DS metric. The distribution of the DS score for all tracklets is illustrated in Figure 9a. In
Figure 9a, the tracklets are ranked by the DS score. Thus, the first 100 tracklets are selected
and renamed the Easy group. From 100 to 150 tracklets, the corresponding tracklets are
treated as the Medium group. The rest of the tracklets are grouped into the Hard group.
The mean frames of the four categories for each group are demonstrated in Figure 9b. As
shown in Figure 9b, the average frames of occlusion and environment change scene in
each Easy tracklet are less than 8 and 3, respectively. By contrast, the average frames of
the same situations in each Hard tracklet are more than 47 and 11, respectively. Hence,
the general tracking methods can be evaluated and compared in the Easy group, which
contains 100 tracklets and occasional occlusion scenarios. In addition, the tracklets in the
Medium and Hard groups can evaluate tracking methods that are especially proposed for
complex scenes, such as occlusion, plenty of distractors, and environment change.

CornerNet

Data 
Preprocess

Manual 
Annotation

Organize & 
EvaluationVehicle detection

WPAFB dataset

UCAS‐AOD dataset Train

Detection results

Figure 8. Pipeline of the proposed dataset generation.

Figure 9. The distribution of categorized results in the proposed dataset. (a) the distribution of DS
score; (b) the mean frames of the four categories for Hard, Medium, and Easy groups.
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9. Conclusions and Future Directions

This paper reviews object tracking based on satellite videos for five major tracking
objects. From a high-level perspective, the tracking objects and benchmark dataset are
categorized into artificial targets (traffic objects and ships) and natural targets (typhoons,
fire, and ice motion). The main differences between the artificial and natural targets are the
motion velocity and size of the target, resulting in different spatial and temporal resolution
datasets and various tracking algorithms. Specifically, high spatial resolution videos with
high FPS are required to track vehicles, and furthermore, the multimodality data, such as
AIS and SAR, are successfully integrated with the optical images to track cars and ships.
Correspondingly, the available and suitable datasets for natural targets vary from the
different sizes of objects. Since the large scale of the typhoon target, the multi-temporal
low-resolution remote sensing dataset with low FPS is popular with typhoon tracking and
trajectory predicting, while the AHI sensor and its dataset with extremely high-temporal-
resolution multispectral imagery capability dominate the fire tracking area. As for the ice
motion tracking, medium-resolution images with a large field of view are suitable.

In terms of tracking techniques, traffic object tracking has been widely studied due to
its great societal, economic, and military value. From a high-level perspective, online and
offline tracking methods are reviewed, and the online algorithms are further divided into
CF-based, TBD, DL-based, and optical flow-based methods. For typhoon tracking, the DL-
based framework has shown great promise, especially for predicting cloud appearance and
typhoon centers using GAN. The tracking for fire benefits from the background temperature
estimation-based traditional approach and provides a simple yet effective way to track
the wildfire. Furthermore, the DL-based models provide better fire tracking with better
robustness and accuracy, and more research should be conducted on extending DL-based
fire detection to fire tracking. As for ice motion tracking, traditional methods, such as
cross-correlation and optical flow algorithms, play crucial roles in this area. Moreover,
the success of the DL model in existing works suggests the feasibility and potential of
combining DL with physics-based models to track and predict ice motion. To sum up,
traditional tracking methods have been studied widely and prove to be effective in tracking
a variety of targets, while the DL-based approach is increasingly popular in tracking remote
sensing objects and can extract complex features from backgrounds.

Remarkable developments in remote sensing imaging-based object tracking have been
studied, yet research to date still has bottlenecks. One of the primary issues is occlusion,
where targets may get lost in view during occlusion, and tracking models may not resume
tracking when occlusion ends. Another issue is the changing target appearance caused by
different atmospheric environments and illumination conditions. Several algorithms, such
as motion estimation methods, tracklet association models, and DL-based trackers, have
been investigated to sort out the above challenges, but more effort is needed. Furthermore,
to achieve better accuracy, the tracking models integrated with other data sources, such
as Global Positioning System (GPS) data, digital elevation model (DEM), and SAR data,
would be a fruitful area for further work.
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Abbreviations
The following abbreviations (ordered alphabetically) are used in this article:
2D two-dimensional
3D three-dimensional
AIS automatic identification system
AKF adaptive Kalman filter
AHI advanced Himawari imager
ANGS adaptive nonlinear gray stretch
AUC area under curve
B/T breaks per track
CLE center location error
CF correlation filter
CFAR constant false alarm rate
C-GICA Cumulative Geometrical Independent Component Analysis
CNN convolutional neural network
CLSTM Convolutional LSTM
CRAM convolutional regression network with appearance and motion feature
CSRT Channel and Spatial Reliability Tracker
CVH Canada Vancouver harbor
DCF discriminative correlation filters
DEM digital elevation model
DL deep learning
DMSM dynamic multiscale saliency map
DS Difficulty Score
DSN deep Siamese network
DTS detection-tracking system
EAO expected average overlap
ECOT Efficient Convolution Operator Tracker
ECG East Greenland Current
FCL fully connected layer
FCN fully convolutional network
FTM fitting motion model
FPS frame per second
GAN Generative Adversarial Network
GC graph convolution
GMM Gaussian Mixture Model
GICA Geometrical Independent Component Analysis
GPS Global Positioning System
GNN global nearest neighbor
GRU gated recurrent unit
GSD Ground Sampling Distance
HRSiam High-resolution Siamese network
HCF Hierarchical Convolutional Features
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HLT hyperspectral likelihood maps-aided tracking
HoG histogram of oriented gradient
HSV Hue–Saturation–Value
ID-CIM interframe difference centroid inertia motion
ISS International Space Station
ICP iterative closest point
JPDA joint probability data association
JTWC Joint Typhoon Warning Center
KF Kalman filter
KCF kernel correlation tracker
LEO Low Earth Orbiting
LSTM Long short-term memory
MLTB multi-level tracking benchmark
MCC maximum cross correlation
MNN matrix neural network
MDDCM multiscale dual-neighbor difference contrast measure
MHT multiple hypotheses tracking
ML machine learning
ME motion estimation
MOTA Multiple Object Tracking Accuracy
MOTP Multiple Object Tracking Precision
NMS nonmaximum suppression
OSCFAR ordered-statistics constant false alarm rate
PCA principal component analysis
PSR peak-to-sidelobe ratio
PSNR peak signal-to-noise ratio
PN prediction network
RGB Red-Green-Blue
RL Reinforcement learning
ROI region of interest
RPC rational polynomial coefficient
RN regression network
RNN recurrent neural network
RMSE Root Mean Squared Error
SAR synthetic aperture radar
SFMFT slow feature and motion feature-guided multi-object tracking
SLIC simple linear iterative clustering
SRN two-stream deep neural network
SN Siamese network
TADS Target-awareness and Depthwise Separability
TCM tracking confidence module
TBD tracking-by-detection
UAV unmanned aerial vehicle
UHD ultra high definition
VCF velocity correlation filter
VHR very high resolution
WoS Web of Science
WPAFB Wright Patterson Air Force Base
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