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Abstract: In order to promote the economic development of China’s provinces and provide references
for the provinces to make effective economic decisions, it is urgent to investigate the trend of province-
level economic development. In this study, DMSP/OLS data and NPP/VIIRS data were used to
predict economic development. Based on the GDP data of China’s provinces from 1992 to 2016 and
the nighttime light remote sensing (NTL) data of corresponding years, we forecast GDP via the linear
model (LR model), ARIMA model, ARIMAX model, and SARIMA model. Models were verified
against the GDP records from 2017 to 2019. The experimental results showed that the involvement of
NTL as exogenous variables led to improved GDP prediction.

Keywords: nighttime light remote sensing; gross domestic product (GDP); ARIMA model

1. Introduction

The rapid development of economies demands better monitoring and forecasting ap-
proaches. Gross domestic product (GDP) is widely regarded as one of the major indicators
of measuring the sustainable economic development of a country or region [1,2]. It pro-
vides a new basis for regional economic development and the formulation of a sustainable
development strategy to forecast economic development at various scales [3,4]. GDP data
mainly come from surveys from the National Bureau of Statistics or other administrative
departments. Despite their authoritativeness, they have intrinsic limitations (e.g., uncer-
tainties introduced by “water injection” [5] and statistical data methods [6]). In order to
better forecast GDP, nighttime light (NTL) remote sensing data have gradually emerged
as a novel data source. NTL imagery provides a unique opportunity to observe human
activities directly from space, which makes many applications possible including mapping
urban areas [7], estimating population and urbanization [8,9], and monitoring disasters
and conflicts [10]. NTL satellite imagery has increasingly been used by economists as a
representative to measure economic activities [11]. The combination of NTL observation
data with other data promotes the development of multidisciplinary and interdisciplinary
analysis of NTL observations.

Elvidge et al. [12] found a strong correlation between NTL and GDP. In order to study
the urban night economy and its relationship with urbanization from the perspective of
NTL data, Shao et al. [13] proposed a night light economic index (NLEI). Gonzalez et al. [14]
estimated the impact of regional disasters on economic growth in Argentina from 1992 to
2013 using NTL data. Li et al. [15] estimated whether GDP distortion would have an impact
on the tax decisions of local state-owned enterprises using NTL data, and the results pointed
to a negative correlation between the distorted local GDP and tax avoidance behaviors of
local state-owned enterprises. Galimberti et al. [16] evaluated the effectiveness of satellite-
based NTL data in predicting country-level GDP growth, and the results proved that NTL
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data could improve the accuracy of the model prediction. Sun et al. [17] proposed a deep
learning method based on the Contiguous United States (CONUS) time series (2012–2015)
county GDP estimation method. Liang et al. [18] studied the spatialization of Ningbo’s
GDP using NPP/VIIRS NTL data and urban GDP statistical data. Ma et al. [19] explored
the spatiotemporal patterns of India’s heavy industries using NTL data that spanned from
2012 to 2018. Zhang et al. [20] extracted the Central Yunnan Urban Agglomeration (CYUA)
in built-up urban areas through the urban gravity center model and gravity model using
the Yunnan Statistical Yearbook and NTL data and further analyzed the connection strength
between urban expansion and urban space.

With the continuous development of NTL, it has attracted much attention due to its
objectivity and easy access. Its application is not limited to the estimation of social and
economic parameters (GDP, regional development, etc.), and many academic societies also
use these data to mine applications in different fields [21]. For example, Li et al. [22] used
NTL to evaluate the Syrian conflict. Gu et al. [23] studied the relationship between NTL
and net primary productivity (NPP). Bayan et al. [24] used NTL to create a map of Eurasian
cities, and the accuracy evaluation result was as high as 94%. Weidmann et al. [25] proposed
a new measure of local inequality based on NTL emissions data. Peled et al. [26] used NTL
data acquired by satellites to divide different built-up areas combined with the building
strength of different building materials to obtain the spatial material stock assessments
(MSA) in Europe, presenting multi-level aggregation from urban areas to the continent.
Oda et al. [27] presented the first man-made CO2 emission map based on NASA’s Black
Marble NTL Product Suite (NBM). Straka et al. [28] investigated the effect of tree cover
on the relationship between artificial light at night (ALAN) and bats. James et al. [29]
investigated the association between residential outdoor night light and breast cancer
incidence. Shao et al. [30] proposed a spatially adaptive regression model and realized
multi-temporal impervious surface area (ISA) fraction extraction and spatial-temporal
analysis with the integrated use of diurnal and nighttime remotely sensed imagery.

Numerous models have been proposed for GDP forecasting. The autoregressive in-
tegrated moving average model (ARIMA) model [31] is one of the models widely used
to explore the dynamics of time series data. Lim et al. [32] used ARIMA on the longi-
tudinal data, which propounds pragmatic suggestions to help gambling hubs that are
destination-dependent to navigate in and recover from crisis such as the COVID-19 pan-
demic. Kumar et al. [33] adopted X12-ARIMA to adjust the variables and explored the
relationship between financial development and economic growth in India. Shuai et al. [34]
established ARIMA models based on the GDP data of Shanghai and Shenzhen, respectively,
from 1979 to 2018, and the results showed that the model they used could better fit the GDP
data series. Zou et al. [35] used the seasonal autoregressive integrated moving average
(SARIMA) model to analyze and predict the horizontal displacement of the dam. Taking
advantage of the GDP data of Bangladesh from 1960 to 2017, Miah et al. [36] predicted
the GDP of Bangladesh in the future using the ARIMA model. Zhu et al. [37] used the
ARIMA model to estimate the GDP growth to assess the macroeconomic recovery from
natural disasters. By comparing simulated regional GDP values from 2008 to 2014 with
actual regional GDP data after the Wenchuan earthquake, they investigated the economic
recovery of the worst-hit areas six years later. Ediger et al. [38] used the ARIMA method to
estimate the future primary energy demand of Turkey from 2005 to 2020, and the ARIMA
forecasting of the total primary energy demand appeared to be more reliable than the
summation of the individual forecasts. Ma et al. [39] predicted the GDP of Dongying City
from 2017 to 2020 via a constructed time series ARIMA model.

However, existing efforts have tended to focus on provincial and municipal perspec-
tives, and few studies have performed GDP forecasting on the national level. In this study,
we aimed to fill this gap by performing GDP forecasting for all Chinese provinces. We
obtained NTL data from 1992 to 2016 and long-term GDP series data from the China
Statistical Yearbook for model training. GDP data from 2017 to 2019 were used to test
the accuracy of the prediction model. The linear regression (LR) model, ARIMA model,
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ARIMAX model, and SARIMA model were used to forecast China’s province-level GDP.
We further evaluated the accuracy of the predicted results and compared the outputs
from different models, aiming to reveal their advantages and disadvantages. In addition,
we used the model with the best performance to forecast China’s economy in 2030. The
conceptual and methodological knowledge as well as the results of this study are expected
to provide important references for the sustainable development of China’s economy.

2. Study Area and Materials
2.1. Study Area

China (Figure 1) is located in the eastern part of Asia. Its administrative region is
divided into 23 provinces, five autonomous regions, four municipalities, and two special
administrative regions. China covers 9.6 million square km, with the mainland coastline
of roughly 18,000 km. It also owns 7600 islands, of which the biggest island covers an
area of 35,798 square km. Through planned large-scale construction, China has seen rapid
economic development and has quickly became the second largest economy in the world.
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2.2. Data Sources

In the 1970s, the United States took the lead in launching the first nighttime light
remote sensing satellite (i.e., the Defense Meteorological Satellite Program/Operational
Linescan System (DMSP/OLS)). The original intention of DMSP/OLS was to obtain cloud
information. Later, the potential of DMSP/OLS in obtaining NTL imagery was explored.
Under cloudless conditions at night, NTL remote sensing images can be obtained to reflect
human social activities [40]. The National Polar-Orbiting Partnership/Visible Infrared
Imaging Radiometer (NPP/VIIRS) was launched in October 2011 with a higher resolution
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than the DMSP/OLS imagery. The NTL imagery from NPP/VIIR, first published in
2012, has widely been used by scholars to monitor and estimate the social and economic
indicators given its easy access, objectivity, and strong applicability. Table 1 specifically
compares DMSP/OLS and NPP/VIIRS. In this study, we used DMSP/OLS images from
1992 to 2013 and NPP/VIIRS data from 2012 to 2020 to construct a consistent NTL data
series at China’s provincial level, retrieved from the national environmental information
(https://www.ngdc.noaa.gov) (accessed on 1 November 2020). In addition, the GDP data
used in this study came from the official China Statistical Yearbook.

Table 1. The basic parameters of DMSP/OLS and NPP/VIIRS.

Sensor DMSP/OLS Suomi NPP/VIIRS

Archive year 1992–2013 April 2012-
Spatial resolution/m 2700 740

Time resolution/h 12 12
Country America America

Data accessibility Free annual video download, monthly average and
daily video to order Monthly average, daily video free download

3. Methods

The method in this study follows three major steps: (1) NTL calibration; (2) GDP
prediction; and (3) accuracy evaluation (Figure 2).
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3.1. Establishing Consistent Long NTL Time Series

DMSP/OLS and NPP/VIIRS, two widely used NTL data, are not comparable, greatly
limiting investigations that demand long NTL time series [41]. Therefore, we developed
a calibration strategy that included two steps: (1) DMSP/OLS internal calibration; and
(2) DMSP/OLS and NPP/VIIRS mutual cross-sensor calibration.

3.1.1. Internal Calibration of DMSP/OLS

Due to the lack of on-board calibration devices and the influence of atmospheric
conditions, the image data obtained by DMSP/OLS night-light remote sensing had some
limitations such as systematic error and random noise. Thus, internal calibration is necessary.

Widely used DMSP/OLS NTL data calibration methods include polynomial regression
(Elvidge) and ridge sampling regression (RSR). Elvidge et al. [12,42] chose Sicily, Italy, as
the reference area for DMSP/OLS data calibration and plotted the data of Sicily in the OLS
images of all years in the same coordinate system with the data of Sicily in F121999 images.
The fitting formula follows:

DNadj = C0 + C1 × DN + C2 × DN2 (1)

where DNadj is the DN value after calibration of NTL data, and C0, C1, C2 are the polyno-
mial coefficients.

The RSR method was proposed by Zhang et al. [43] based on the assumption that only
a small number of NTL pixels changed in a short time. The formula follows:

DNadj = a× DN + b× DN2 + c (2)

where DNadj is the DN value after the ridge regression analysis of NTL data, and a, b, c
are the coefficients of the least square method.

Two additional conditions should be met for data selection (i.e., the calibration error
of images taken by different satellites in the same year should be the minimum), and the
time series should present a certain level of stableness. Therefore, in order to select the
optimal data, the sum of the normalized different index (SNDI) was used to evaluate the
calibration error:

SNDI = ∑ NDIt (3)

NDI =
|NTL1t − NTL2t|
|NTL1t + NTL2t|

(4)

where NTL1t and NTL2t represent the NTL values of two images in the same year in the
selected area, respectively; NDI represents the normalized different index; SNDI is the
sum of NDI.

According to the temporal coverage in Table 2, different satellite data sources at
12 scenes with repeated time points were used to evaluate the effect of the two algorithms.

3.1.2. Cross-Sensor Calibration of DMSP/OLS and NPP/VIIRS

Currently, global-scale NTL data are acquired by two satellite sensors (i.e., DMSP/OLS
and NPP/VIIRS), but the data collected by the satellites are not compatible [44]. The
NPP/VIIRS NTL data were monthly data from April 2012 to December 2017. We aver-
aged the monthly data to obtain the annual records. Since DMSP/OLS and NPP/VIIRS
overlapped in 2012 and 2013, we adopted a relatively simple superposition of the transla-
tion method for calibration (STC), which assumed that the TNL observation values of the
DMSP/OLS data and NPP/VIIRS data in 2013 were equal, converted the 2013 NPP/VIIRS
data to 2013 DMSP/OLS data, and generated the 2013–2019 DMSP/OLS-like NPP/VIIRS
data, thus connecting DMSP/OLS and NPP/VIIRS into a longer series of NTL data.
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Table 2. The DMSP/OLS satellites and their overlays in the corresponding years.

Year F10 F12 F14 F15 F16 F18

1992 F101992
1993 F101993
1994 F101994 F121994
1995 F121995
1996 F121996
1997 F121997 F141997
1998 F121998 F141998
1999 F121999 F141999
2000 F142000 F152000
2001 F142001 F152001
2002 F142002 F152002
2003 F142003 F152003
2004 F152004 F162004
2005 F152005 F162005
2006 F152006 F162006
2007 F152007 F162007
2008 F162008
2009 F162009
2010 F182010
2011 F182011
2012 F182012
2013 F182013

3.2. GDP Forecasting Model

In order to reveal the relationship between NTL data and GDP, we adopted four
methods (i.e., the LR, ARIMA model, ARIMAX model, and SARIMA model). In this study,
we set the seasonal factor as 1. A detailed description of these models is presented below.

3.2.1. Linear Regression (LR) Model

A simple LR model was used to reveal the internal relationship between the NTL data
of a long time series and GDP. The LR model is as follows:

yGDP = axTNL + b (5)

where xTNL represents the total amount of NTL data and yGDP represents the GDP data.

3.2.2. ARIMA Model

The ARIMA model is built on the basis of autoregression model (AR model) and
moving average model (MA model) with the introduction of the difference operation to
transform a non-stationary time series into a stationary time series. The ARIMA model is
as follows:

xt = c + ∑p
i=0 ϕixt−i + εi + ∑q

i=0 θiεt−i (6)

where xt is the stationary time series data; c is the constant term; ϕi is the coefficient of the
autoregressive lag term xt−i; εi is the residual term; θi is the coefficient of MA lag term εt−i;
p is the AR term; and q is the number of MA terms.

3.2.3. ARIMAX Model

Compared with the ARIMA model, the ARIMAX model considers additional exoge-
nous variables, which better solve the problem that unstable variables are prone to false
regression and is suitable for multivariate time series data analysis. The mathematical
expression of ARIMAX is as follows:

yt = ∑∞
j=0 v(1)j Bjx(1)t +∑∞

j=0 v(2)j Bjx(2)t + · · ·+ ∑∞
j=0 v(k)j Bjx(k)t +

θ(B)
ϕ(B)

αt (7)
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where (B) = 1− θ1B − · · · − θqBq; ϕ(B) = 1− ϕ1B − · · · − ϕpBp is called the transfer

function model; x(j)
t is the input factor; and yt is the output factor.

3.2.4. SARIMA Model

In time series analysis, certain time sequences can contain notable cyclical changes.
If the tendency fails to follow a linear change, ARIMA often falls short in deriving its
changing dynamics. Thus, SARIMA, the seasonal version of the ARIMA model, can be
used. The general expression of a SARIMA model is as follows:

xt = ∆d∆D
s yt (8)

(1−∅1L− · · ·∅PLp)
(

1− α1Ls − · · · αpLPS
)(

∆d∆D
s yt

)
=

(
1 + θ1 · · · θqLq)(1β1Ls · · · βQβQs

)
ut (9)

where ∆, ∆s represent the seasonal differences of the non-seasonal and S-phase, respectively;
d and D represent the non-seasonal and seasonal differences, respectively; p, P, q, Q represent
the maximum lag order of non-seasonal, seasonal, AR, and MA operators, respectively.

3.3. Accuracy Evaluation

In order to explore the advantages and disadvantages of the above four GDP forecast-
ing models and seek the best GDP forecasting model, the following formula was used to
evaluate the accuracy of the GDP forecasting models:

r =

∣∣∣GDPpred − GDPreal

∣∣∣
GDPreal

× 100% (10)

where GDPpred represents the data obtained through the GDP prediction model and GDPreal
represents the official GDP data from China’s Statistical Yearbook.

4. Results
4.1. The Calibration of the NTL

We first performed an internal calibration on the DMSP/OLS data. The calibration
results of the method adopted from Elvidge et al. [12,42] and the RSR method adopted
from Zhang et al. [43] were obtained (Figure 3). Compared with the original uncalibrated
DMSP/OLS data (Figure 3a), the calibrated DMSP/OLS NTL time series presented consid-
erably smoother patterns.

According to the standard errors calculated by overlapping satellites, the calibration
errors of the NTL images of different satellites in the same year based on different calibration
methods are shown in Table 3. The SNEraw of the uncalibrated DMSP/OLS data was 2.033.
In comparison, the SNEElvidge was 1.132, while the calculated SNERSR was 1.108. The above
results suggest that both calibration methods significantly reduced the errors compared
with the uncalibrated DMSP/OLS data, and the RSR calibration method outperformed the
Elvidge method.
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((a) Un-calibrated DMSP/OLS NTL data, (b) Calibrated NTL data calibrated by Elvidge method,
(c) Calibrated NTL data by RSR method, (d) Comparison of DMSP/OLS NTL data calibrated by
Elvidge and RSR method).

Table 3. The calibration errors of the NTL images based on different methods.

Year Satellite 1 Satellite 2 Raw Elvidge RSR

1994 F10 F12 0.023 0.015 0.052
1997 F12 F14 0.532 0.017 0.008
1998 F12 F14 0.089 0.012 0.129

1999 F12 F14 0.077 0.054 0.099
2000 F14 F15 0.238 0.234 0.002
2001 F14 F15 0.361 0.084 0.088
2002 F14 F15 0.241 0.221 0.242
2003 F14 F15 0.086 0.118 0.206
2004 F15 F16 0.006 0.003 0.059
2005 F15 F16 0.079 0.108 0.064
2006 F15 F16 0.149 0.145 0.151
2007 F15 F16 0.150 0.119 0.008

2.033 1.132 1.108

Figure 4 presents the calibration coefficients of the RSR method with F152000 as the
reference image. We noted that records from the F18 satellite greatly deviated from the
other records. Therefore, it can be inferred that the RSR method perform poorly on images
from the F18 satellite. Thus, we used the RSR method to calibrate the NTL data from
1992 to 2007 and the Elvidge method to calibrate the NTL data from 2008 to 2013. Finally,
continuous calibrated NTL data that spanned from 1992 to 2019 after calibration was
obtained (Figures 5 and 6). From Figure 5, we can observe that, in general, Eastern China
is notably brighter than Western China, with urban agglomeration in the Yangtze River
Delta presenting the highest light intensity. From 1992 to 2019, many rural areas in China,
especially in the central regions, have been developed, as evidenced by their increasing
amount of light intensity. From Figure 6, we can see that the unified NTL data of the long
time series showed good stable growth characteristics. Thus, the accuracy and reliability of
our calibration strategy were further verified.
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4.2. NTL–GDP Relationship and Model Evaluation

Based on the above four models, the NTL data from 1992 to 2016 were taken as the
training set, while the NTL data from 2017 to 2019 were used to evaluate the models’
performance, serving as the verification set.

Through the simple LR model (Figure 7), it can be seen that there was a strong positive
correlation between the NTL intensity and GDP during the 25-year span (1992–2016).
Despite the high R2 of the GDP prediction model based on LR, the GDP prediction accuracy
had an average error of 19.26%.

To predict GDP in the years 2017, 2018, and 2019 using the NTL data from 1992 to
2016, we tested three additional models (i.e., classic ARIMA, seasonal variable SARIMA,
and exogenous ARIMAX. The predicted results in selected Chinese provinces are presented
in Figures 8 and 9. The average errors based on the ARIMA model, SARIMA model,
and ARIMAX models were 8.44, 6.98, and 4.51%, respectively. The above results suggest
that compared with the LR model, the overall accuracy of the other three models was
improved, and ARIMAX model had the best performance among the three models. As
an exogenous variable, NTL can play a good correction role in the GDP prediction model
with the minimum error, thus proving once again that NTL plays an important role in the
exploration of urban economic development and the analysis and prediction of urban GDP
changes by NTL.

Figure 10 presents the spatial distribution of errors at China’s provincial level. We
observed that certain provinces presented considerably larger errors than others. The
reasons may be as follows. (1) The GDP data themselves have a non-trend fluctuation,
while NTL resulting from urbanization continues to increase. For example, Liaoning (with
a large error in all four GDP forecasting methods) had a large fluctuation in GDP data, with
a clear upward trend from 1992 to 2015 and a sudden drop in 2016. Such GDP fluctuations
failed to be captured by the models, as non-trend fluctuations pose great challenges for
all forecasting models. (2) The NTL data themselves contain a certain level of uncertainty.
From Figure 10, we notice that, in general, that the GDP prediction error of southern
provinces was smaller than that of northern provinces, which may be related to the errors
of the NTL data themselves. In addition, we found periodic changes in abnormal data
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when processing the experimental data. (3) NTL fails to represent GDP in a comprehensive
manner. Compared to the South, North China has more extensive land urbanization. In
certain places, extensive impervious surfaces and a large number of artificial objects could
correspond to high GDP, but they failed to be captured by NTL intensity, leading to the
severe underestimation of GDP.
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4.3. GDP Forecast in 2030

Using the ARIMAX model, a model with the smallest error in the verification dataset,
we forecast the GDP of China’s provinces (except Taiwan). The forecast results are presented
in Figure 11 and Table 4. The results show that by 2030, the Chinese economy will be more
than 1.6 quintillion yuan, with provinces that include Tianjin, Guizhou, and Xizang having
a higher predicted growth while provinces that include Shanxi and Liaoning having a small
predicted growth.

From the perspective of spatial variation, the economic aggregate of Jiangsu and
Guangdong is expected to continue to lead all other provinces in China, both exceeding
190,000 trillion yuan, while the economic aggregate of Xizang and Qinghai will lag behind,
both less than 5000 trillion yuan. Such a result indicates unbalanced economic development
in China. The economic aggregate of the South has higher GDP than that of the North,
while the economic development of the East is stronger than that of the West. In terms of
provinces, the economic aggregate of Guangdong and Jiangsu is notably stronger than that
of other provinces. China’s future economic policy formulation can be further carried out
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in the direction of addressing the unbalanced regional economic development, aiming for a
more sustainable and even development.
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Table 4. A comparison of the GDP forecast of Chinese provinces in 2030 using the ARIMAX model.

Province
Year

Trillion Yuan Province
Year

Trillion Yuan Province
Year

Trillion Yuan

Beijing 62,832.69 Tianjin 36,746.19 Hebei 63,771.21
Shanxi 19,321.30 Neimenggu 22,280.36 Liaoning 26,416.12

Jilin 24,768.18 Heilongjiang 19,619.97 Shanghai 71,024.35
Jiangsu 194,010.35 Zhejiang 108,359.54 Anhui 58,035.48
Fujian 68,441.22 Jiangxi 46,614.7 Shandong 13,3058.04
Henan 95,018.14 Hubei 76,278.04 Hunan 68,639.61

Guangdong 193,447.95 Guangxi 39,520.92 Hainan 8959.36
Chongqing 43,340.22 Sichuan 69,464.10 Guizhou 35,046.67

Yunnan 31,157.92 Xizang 3454.22 Shaanxi 38,687.81
Gansu 12,941.07 Qinghai 4720.20 Ningxia 6764.07

Xinjiang 14,198.30

5. Discussion

The development of NTL data has provided a new common data source for the
spatialization of social and economic data, with strong application and analysis ability. This
section will further discuss the spatio-temporal changes and limitations, respectively.

5.1. Time Change of GDP

NTL can directly reflect the differences in human activities and has a wide application
space in economic analysis. It can be seen from Figures 5 and 11 that all provinces in
China are in a stage of steady growth, which is of great importance to the 14th National
Congress of the Communist Party of China, which proposed combining the basic socialist
system with the market economy to establish a socialist market economic system. The
national economy is growing at a high speed, and production, construction, distribution,
and opening-up are developing in an all-round way, and people’s living standards are
being further improved. Judging from the GDP forecasts, China is on track to achieve
this goal.

5.2. Spatial Variation of GDP

The NTL reflects the human activities in a region at night. The NTL brightness in
developed cities is significantly higher than that in small cities. Therefore, NTL data can
reflect the social and economic development of a region to a certain extent, and better
show the consistency of urban economic development. After the reform and opening-
up policy since 1978, the Chinese government has embarked on a regional economic
development strategy for a large change, from an unbalanced development strategy to a
balanced development strategy, with priority given to the development of coastal areas.
The development and the open policy tilt toward coastal regions has obviously made
coastal areas develop more rapidly, thus quickly widening the economic development
gap between the coast and inland. The eastern region is obviously stronger than the
western region. After the reform and opening up, the “strong north and weak south” has
rapidly changed to the “strong south and weak north”, and there is a big development
gap between provinces. To address the problem of unbalanced regional development,
China has successively implemented the strategy of the large-scale development of the
Western region, the strategy of revitalizing the old industrial base in Northeast China, and
the strategy of promoting the rise of the Central region.

5.3. Limitation Analysis

Although there is a strong relationship between the NTL data and human society
economic activity based on the NTL built GDP model, which have important research
value, this study does not take into account the NTL “fraud” [45], the global crisis (such
as COVID-19 pandemic [46,47], the Russo–Ukrainian War), and so on. In addition, the
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NTL field also has many problems, for example, the night light photometric units have
not been clearly defined, the different platform and sensor lights at night time sequence
consistency problem due to the angle of the atmosphere and surface optical properties, the
daily variation and seasonal variation caused by the night lights, and the uncertainty of
measurement error [48]. At the same time, based on the optical wavelengths of observation
at night, there are many challenges such as artificial light, vegetation changes, the change
of the street layout and building height, so night lights will change accordingly [49]. Due
to the light emitting diode (LED) [50] technology to the development of the cause of a
“lighting revolution”, the world is in transition to the LED, so lamp remote sensing has a
great influence on NTL. Therefore, from the perspective of NTL, the quantitative refinement
study of economic development is the focus of future research.

6. Conclusions

Based on the historical GDP data from 1992 to 2016 and the calibrated annual NTL
data from DMSP/OLS and NPP/VIIRS, we tested the GDP forecasting capability of models
that included the LR model, ARIMA model, ARIMAX model, and SARIMA model. Model
performances were evaluated by deriving the GDP values in 2017, 2018, and 2019 by using
the NTL data from 1992 to 2016. After a comparison with the original GDP data, the results
showed that the ARIMAX model achieved the best prediction result. Our study suggests
that the NTL intensity was highly correlated with the GDP values, and the involvement of
NTL benefits the GDP prediction models. We further predicted China’s GDP in 2030 using
the ARIMAX model, and the results showed that China’s economy will continue to grow,
but the growth rate will greatly differ in different provinces. Such a result points to the
necessity of establishing regional development plans that address the uneven development.
To solve the problem of unbalanced regional development is a long-term process, which
must be based on the long-term and rationally planned.
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