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Abstract: Satellite-based normalized difference vegetation index (NDVI) time series data are useful
for monitoring the changes in vegetation ecosystems in the context of global climate change. However,
most of the current NDVI products cannot effectively reconcile high spatial resolution and continuous
observations in time. Here, to produce a global-scale, long-term, and high-resolution NDVI database,
we developed a simple and new data downscaling approach. The downscaling algorithm considers
the pixel-wise ratios of the coefficient of variation (CV) between the coarse- and fine-resolution NDVI
data and relative changes in the NDVI against a baseline period. The algorithm successfully created
a worldwide monthly NDVI database with 250 m resolution from 1982 to 2018 by translating the
fine spatial information from MODIS (Moderate-resolution Imaging Spectroradiometer) data and
the long-term temporal information from AVHRR (Advanced Very High Resolution Radiometer)
data. We employed the evaluation indices of root mean square error (RMSE), mean absolute error
(MAE), and Pearson’s correlation coefficient (Pearson’s R) to assess the accuracy of the downscaled
data against the MODIS NDVI. Both the RMSE and MAE values at the regional and global scales are
typically between 0 and 0.2, whereas the Pearson’s R values are mostly above 0.7, which implies that
the downscaled NDVI product is similar to the MODIS NDVI product. We then used the downscaled
data to monitor the NDVI changes in different plant types and places with significant vegetation
heterogeneity, as well as to investigate global vegetation trends over the last four decades. The
Google Earth Engine platform was used for all the data downscaling processes, and here we provide
a code for users to easily acquire data corresponding to any part of the world. The downscaled
global-scale NDVI time series has high potential for the monitoring of the long-term temporal and
spatial dynamics of terrestrial ecosystems under changing environments.

Keywords: downscaling; NDVI; MODIS; AVHRR; GEE

1. Introduction

Global climate change has had a significant impact on the biological, physical, and
chemical processes of terrestrial ecosystems around the world over the last half-century [1,2].
As greenhouse gas emissions grow, the global climate has seen its hottest 20 years on record
since 1998 [3,4]. Changes in precipitation, evaporation, atmospheric humidity, and snow
covers have caused different impacts on global ecosystems [5–8]. The global climate will
continue to change, and the resultant impacts on ecosystems will intensify [9,10]. Terrestrial
vegetation, as a key component of the global ecosystem, is particularly vulnerable to climate
change [11]. Satellite remote sensing has become an important tool for measuring and
monitoring the dynamics of large-scale terrestrial ecosystems due to its broad coverage,
high temporal and spatial precision, and consistency [12,13]. The normalized difference
vegetation index (NDVI) is one of the most widely used vegetation indices for characterizing
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the absorptive and reflective characteristics of vegetation, which indicate greenness and
vigor [14,15]. From the 1970s through to the 2000s, satellites such as the Landsat series,
Advanced Very High-Resolution Radiometer (AVHRR), Moderate Resolution Imaging
Spectroradiometer (MODIS), and others were used to record NDVI with spatial resolution
ranging from 30 m to 8 km [16,17]. However, almost every product has certain limitations.

The AVHRR sensors onboard the National Oceanic and Atmospheric Administration
(NOAA) polar-orbiting satellite series provides a constant long-term dataset with a start
date of 1981. However, due to their low spatial resolution (1~6 km), AVHRR images are
unable to capture the fine-scale details necessary for tracking changes in ecosystems and
land cover across heterogeneous regions [18]. Despite having a higher spatial resolution
(30 m) and longer time range (1970s–present) than the other series, Landsat is constrained
by a lengthy 16-day revisit interval, and cloud obstruction may cause image loss [19,20].
These limitations hinder Landsat’s capability as a high-quality database for long-term
vegetation monitoring on a global scale. Another issue is that the Landsat-7 experienced a
failure of its Scan Line Corrector (SLC), which resulted in poor data quality. The MODIS
NDVI product is considered to be an improvement upon the AVHRR NDVI database,
which improves the spatial resolution (250 m) and chlorophyll sensitivity, eliminates the
interference of atmospheric water vapor, reduces the radiometric calibration geometric
distortion, and adjusts the synthesis method [21,22]. The Terra and Aqua satellites orbit
the Earth every day, providing higher spatial resolution images, enhanced atmospheric
corrections, and a more precise geo-registration NDVI dataset for MODIS products, but
they only began acquiring data in 2000 [23,24]. Combining NDVI data from several sensors
is a potential option for generating high spatial and temporal resolution NDVI data, which
is essential for monitoring long-term vegetation dynamics. However, due to the limitations
of its own methodology, NDVI data have an evident residual impact and noise level [25].
Additionally, the NDVI quickly reaches saturation in locations with lush vegetation, such
as tropical rainforests, and it is easily disrupted by snow and clouds [26]. As a result, the
NDVI cannot accurately represent plant changes in tropical and snow-covered locations.
However, as the NDVI is a simple and widely used vegetation index, developing a high-
resolution and long-time-span NDVI product based on multi-source satellite data is still of
high significance and is useful in the monitoring of vegetation dynamics over most areas of
the globe, especially under a changing climate.

Typically, satellite remote sensing imagery trades off the spatial and temporal reso-
lution, and data fusion algorithms could assist in producing high spatial resolution and
long time series data [27]. Previous downscaling approaches for satellite remote sensing
data generally include: fractal and multifractal methods, geostatistical methods, machine
learning, Bayesian methods, and general statistical methods. Pradhan et al. [28] investi-
gated the scaling rule guiding the link between the resolution of digital elevation data and
the terrain index’s geomorphic properties and created a method to downscale the terrain
index’s dispersion. Wang et al. [29] suggested an area-to-point regression kriging (ATPRK)
approach for downscaling MODIS images by fusing 500 m bands 3–7 with 250 m bands
1 and 2. Chen et al. [30] first downscaled the original TRMM product to 1 km using the
area-to-point kriging (ATPK) method, and then combined the downscaled precipitation
dataset with ground-observed rainfall values through geographically weighted regression
kriging (GWRK) to obtain high-precision monthly precipitation data at 1 km resolution.
Kou et al. [31] introduced the Bayesian maximum entropy (BME) method to incorporate
the 0.01◦ and 0.25◦ land surface temperature (LST) retrieved from MODIS and AMSR-E
(Advanced Microwave Scanning Radiometer–Earth Observing System sensor) data, respec-
tively. Piles et al. [32] increased the geographical resolution of Soil Moisture and Ocean
Salinity (SMOS) estimations using a unique mathematical connection (triangle concept)
between the soil moisture, NDVI, and temperature.

Data fusion is the most common method of downscaling, which entails integrating
goods with varied spatial and temporal resolutions, as well as other products with which
they are mathematically connected and ground-truth data. However, given the uncer-



Remote Sens. 2022, 14, 3639 3 of 25

tainties generated by downscaling procedures, rigorous attention is required to properly
address these issues. The first is a scarcity of systematic reviews that use downscaling ap-
proaches on various geographies [33]. Following that, the fused data has varying levels of
precision and margins of error. The downscaled product can contain more information than
the original product, but it may produce spatial mismatch at fine-scale resolution due to
inaccuracies in data fusion, creating errors in future analysis utilizing this product [34,35].

The following techniques were often used for directly fusing various composite multi-
source satellite data to produce NDVI products. The first method was based on linear mixed
models. In the early period, when the number of high-resolution satellites was limited,
many researchers downscaled the NDVI products based on a weighted linear mixing model
(WLMM) [36,37]. However, this strategy was likely to produce high estimation errors and
a loss of spatial detail due to the uncertainty of land cover types and spectral shifts [38].
The second is the weight function-based approach. Gao et al. [39] established a spatially
and temporally adaptive reflection fusion model (STARFM) to blend Landsat and MODIS
data to predict daily surface reflectance at Landsat spatial resolution and MODIS temporal
resolution. Then, based on the STARFM model, the spatial–temporal adaptive algorithm
for mapping reflectance change (STAARCH) and the enhanced STARFM (ESTARFM) were
presented [40,41]. The STAARCH first found changing areas and specific times, then
selected the best quality data [40]. The ESTARFM calculated incremental coefficients and
weights at different dates or combined two Landsat images and three MODIS pictures to
increase data accuracy for heterogeneous environments. However, both methods require
two pairs of images as input, which may reduce the applicability of the methods to overcast
days (such as those in rainy seasons) [42,43]. Other common approaches are to use machine
learning and deep learning for data fusion, both of which display a high capability to
capture nonlinear processes [33]. For example, Brown et al. [16] employed an artificial
neural network (ANN) to map NDVI indices from AVHRR to MODIS, matching at 1◦

resolution. Htitiou et al. [44] developed a deep learning spatiotemporal data fusion strategy
based on very deep super-resolution (VDSR) to integrate NDVI retrievals from Sentinel-2
and Landsat 8 images. Nomura et al. [45] combined synthetic aperture radar (SAR) and a
convolutional neural network (CNN)-based model to downscale MODIS NDVI. However,
due to its implicit representation, machine learning algorithms draw criticism due to their
disadvantages in terms of explanatory ability and their low practicability for different areas
and environments [46].

Despite the recent development of multiple techniques to fuse multi-source NDVI
data, producing NDVI data with both high spatial resolution and good continuity in time
remains a difficulty. In this study, we aimed to develop a new downscaling algorithm that
can combine the AVHRR and MODIS NDVI data from a temporal and spatial perspective.
The coefficient of variation (CV), often known as the relative standard deviation, is the
standard deviation to mean ratio. Therefore, it is regarded as a normalized measure of
probability distribution dispersion [47]. Wang et al. [48] calculated the average coefficient of
variation for all wavelengths in each plot using CV, with higher CV values corresponding
to a greater spectral variety. In this study’s downscaling technique, we utilized CV to
represent spatial information difference, and the CV of AVHRR and MODIS summarized
the relative dispersion of the NDVI data of each pixel. MODIS NDVI with high spatial
resolution generally has a larger CV than AVHRR NDVI, indicating that MODIS NDVI has
greater spatial variability. For temporal variation information, we recorded the average
temporal transitions of AVHRR NDVI over a long time series at coarser resolution. A key
assumption in this research algorithm is that the vegetation types were not replaced over the
research period, implying that the variability of the vegetation community in terms of green
degree has stayed relatively consistent. To make sure that our computation range consists
primarily of natural vegetation, we used the land cover map and fire maps to filter out
areas with significant changes, such as urban areas and sites that had experienced wildfires.

The GEE cloud platform is supported by Google’s Cloud Infrastructure, a platform
developed by Google for online visual computing, analysis, and processing of a large
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number of global-scale earth science data (especially satellite image data) [49,50]. The
GEE platform can provide all the data required for the downscaling process, and it can
also be used to carry out all downscaling operations. In addition, we offer the code of the
data downscaling process so that readers can create this product in their respective fields
of interest.

In light of the above, the primary goal of this work is to provide a downscaled global-
scale NDVI product with a resolution of 250 m from 1982 to 2018, based on the GEE
platform. The data are useful for long-term and continuous vegetation monitoring at
different spatial scales. This study is anticipated to accomplish two specific goals: (1) the
proposition of a new downscaling methodology to provide a global downscaling of NDVI
data; (2) the discussion of the downscaled NDVI product’s reliability and uncertainty at
both the local and global scales.

2. Materials and Method
2.1. Materials
2.1.1. NDVI Products

Firstly, we used the MODIS Level 3 16-day NDVI product (MOD13Q1 Version 6,
https://lpdaac.usgs.gov/products/mod13q1v006/ (accessed on 10 March 2022)) derived
from NASA’s Terra polar-orbiting sun-synchronous satellite (10:30 a.m. local time) with
a spatial resolution of 250 m from 2001 to 2018. MODIS NDVI products are calculated
based on atmospherically corrected bidirectional surface reflectance and hidden by water,
clouds, heavy aerosols, and cloud shadows [21]. Data gaps and errors due to clouds and
shadows are normal issues for optical remote sensing, and these affected pixels should be
removed [51]. The data quality control of the MODIS 16-day NDVI product is outstanding,
and the best observation for each pixel was chosen among all acquisitions within a 16-day
period [52].

The NOAA Climate Data Record (CDR) of the AVHRR NDVI contains gridded daily
NDVI at a resolution of 0.05◦ (about 5 km) derived from the NOAA AVHRR Surface
Reflectance product from 1981 to the present [53]. In Version 5, incorrect data in the time,
latitude, and longitude variables have been corrected. Due to the sensor degradation
beginning in late 2018, striped images and missing images have occurred in the southern
hemisphere. Thus, we used the AVAHRR NDVI from 1982 to 2018 as the whole downscaled
dataset period.

2.1.2. Landcover Products

The auxiliary input data were the landcover maps from Copernicus, the MODIS
Fire_cci Burned Area pixel products, and the GAP land cover classification map. The
Copernicus Landcover maps are provided for the period of 2015–2019 over the entire
globe with a resolution of 100 m and these reached an accuracy of 80% at Level 1 over all
years. The fire product of version 5.1 is a monthly global ~250 m spatial resolution dataset
containing information on the burned area as well as ancillary data. The GAP landcover
classification map in 2011 provided detailed vegetation types including the conterminous
U.S., Alaska, Hawaii, and Puerto Rico.

Before the data downscaling, we excluded all the burned areas from 2001 to 2018
according to the FireCCI51 maps, and removed the farmland and building areas from
2015 to 2018 based on the Copernicus landcover map. This helped exclude areas that
had experienced significant land cover changes in order to reduce uncertainties. We
assumed these areas had abrupt NDVI changes and were not suitable for the proposed
data downscaling algorithm.

All the datasets used in this study are available on the Google Earth Engine platform
and can be derived from: https://developers.google.com/earth-engine/datasets (accessed
on 10 March 2022).

https://lpdaac.usgs.gov/products/mod13q1v006/
https://developers.google.com/earth-engine/datasets
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2.2. Downscaling Method

In this work, the AVHRR NDVI and MODIS NDVI data are integrated to produce
high-resolution NDVI images by calculating change information on time and spatial scales.
The algorithm includes the following four steps (Figure 1): (1) we selected and prepared
the datasets for creating the downscaled products; (2) during the data pre-processing step,
we first screened out the burned, agricultural, and building regions from the database,
then we calculated the monthly MODIS NDVI, and AVHRR NDVI data, which were then
resampled to 250 m resolution to be consistent with MODIS data; (3) based on the GEE
platform, we employed the proposed empirical formulas to capture the statistical relations
between the AVHRR NDVI and MODIS NDVI and fuse the spatiotemporal information of
the two data; (4) we thoroughly assessed the downscaling products’ accuracy for various
vegetation types at both the regional and global scales; additionally, we computed and
compared the NDVI change trends of the downscaled and AVHRR products over a nearly
40-year period.

Step 1
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Figure 1. Processes of the downscaling approach.

2.2.1. Data Pre-Processing (Steps 1–2)

We first integrated the daily AVHRR NDVI data and the 16-day MODIS NDVI data to
the monthly time series. The MODIS and AVHRR NDVI results were composited into a
monthly time series for each pixel using the Maximum Value Composite (MVC) approach,
which extracted the pixelwise maximum NDVI value from all available NDVI observations
within each month. The MVC approach takes the highest value for each pixel in a specific
period (such as 10 days, a month, among other time spans) so that users can acquire a
cloud-free, high-quality image [54]. We then resampled the AVHRR data to match the
resolution of the MODIS NDVI using the bicubic spatial interpolation method. We removed
the unnatural vegetation areas according to a land cover map.

2.2.2. Downscaling Algorithm (Step 3)

Since remote sensing data contain both temporal and spatial information, we down-
scaled the NDVI data at these two scales [55]. Previous studies suggest that, in an annual
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phenological cycle, combining the spatial characteristics of a single fine resolution image
and the temporal characteristics (phenology) of a time series of coarse-resolution images
can yield NDVI images with high spatial and temporal resolution [56,57]. In light of the
above progress, herein we seek for the spatial change information in the fine-resolution
MODIS NDVI and the temporal change information in the long-term AVHRR NDVI in the
downscaling process.

(1) Changes at the spatial scale

First, we quantified how these two NDVI products differed in pixelwise variability
based on ratios of coefficient of variation (CV) between the MODIS and AVHRR NDVI.
MODIS CV has a higher value than AVHRR CV in general because MODIS CV has more de-
tailed spatial changing information. For example, while downscaling the coarse-resolution
AVHRR data, the NDVI change degree should be increased for vegetation-dominated pixels
that have many inter-annual changes in the NDVI. However, pixels with a high proportion
of bare soil or buildings only exhibit minimal NDVI variations over time, resulting in
compressed NDVI variability. Hence, we quantified the variability difference between
MODIS and AVHRR products at each pixel using the RCVx,y,m ratio from 2001 to 2018
(Equation (1)).

RCVx,y,m = MODIS_CV/AVHRR_CVpost (1)

where MODIS_CV and AVHRR_CVpost are the pixelwise monthly coefficient of variation
(CV) of the MODIS and AVHRR NDVI for the years 2001–2018, respectively.

However, the NDVI variability may demonstrate some changes over a long time
period, for example from the 1980s to the 2000s. In downscaling the AVHRR product for
the period prior to 2001, we used an additional parameter RCVx,y,n to quantify the relative
changes in the AVHRR CV between the 1982–2000 and 2001–2018 periods (Equation (2)).

RCVx,y,n = AVHRR_CVpre/AVHRR_CVpost (2)

where AVHRR_CVpre and AVHRR_CVpost are the pixelwise monthly CV of the AVHRR
NDVI for 1982–2000 and 2001–2018, respectively.

(2) Changes at the temporal scale

We quantified the temporal changes in the NDVI by calculating the relative changes in
each monthly NDVI against a baseline value using the coarse-resolution AVHRR product.
The baseline value in the AVHRR NDVI product was computed as the per-pixel monthly
NDVI median from 2001 to 2018, which was represented by NDVIL,x,y,bl . Then, for each
month of the time series, we compared each monthly AVHRR NDVI value to the baseline
median of that month to determine the change degree. To define the temporal change, we
employ the parameter Kx,y,t, which can capture the temporal information in the coarse-
resolution AVHRR NDVI data at the time scale (Equation (3)).

Kx,y,t =
(

NDVIL,x,y,t − NDVIL,x,y,bl

)
/NDVIL,x,y,bl (3)

where NDVIL,x,y,t is the pixelwise monthly AVHRR NDVI in the entire time series (1982–2018),
and NDVIL,x,y,bl is the baseline median NDVI in different months during the baseline
period of 2001–2018. Please note that, for the period before 2000, the NDVIL,x,y,bl was also
computed as the per-pixel monthly NDVI median from 2001 to 2018, which helps keep the
downscaled NDVI time series consistent over time.

(3) Bringing together data on both spatial and temporal changes

The final phase of the downscaling combined the AVHRR product’s long-term tem-
poral information with the MODIS product’s fine-scale spatial information (Equations (4)
and (5)). The baseline value for MODIS was created using the per-pixel monthly NDVI
median from 2001 to 2018 (shown by NDVIH,x,y,bl in the MODIS NDVI product). The
corresponding monthly MODIS NDVI median was the fine-scale background NDVI at each



Remote Sens. 2022, 14, 3639 7 of 25

pixel. Firstly, we divided the overall period into two parts, with the first period from 2001
to 2018. We multiplied the high-resolution baseline NDVI with the modifying parameters
of Kx,y,t, and RCVx,y,m, and then summed the results to indicate relative changes at both
temporal and spatial scales, which was shown in Equation (4). Then, for the second period
before 2000 without MODIS data, we multiplied an additional factor RCVx,y,n to describe
the CV changes of AVHRR data between the two periods, as given in Equation (5). Finally,
we can get the downscaled data using the formulas:

Period 2001–2018:

NDVIH,x,y,t = NDVIH,x,y,bl ×
(
1 + Kx,y,t × RCVx,y,m

)
+ εx,y,t (4)

Period 1982–2000:

NDVIH,x,y,t = NDVIH,x,y,bl ×
(
1 + Kx,y,t × RCVx,y,m × RCVx,y,n

)
+ εx,y,t (5)

where NDVIH,x,y,t is the downscaled high-resolution NDVI, NDVIH,x,y,bl is the monthly
median MODIS NDVI (baseline NDVI), and εx,y,t is the random error generated in the
downscaling process.

2.2.3. Error Validation (Step 4)

(1) Evaluation Indices

We used three standard indices to validate the error between MODIS NDVI data and
the downscaled NDVI data, and we used a timeframe of around 60 months from 2014 to
2018 to avoid data overfitting [58,59]. The evaluation indices are root mean square error
(RMSE), mean absolute error (MAE), and Pearson’s correlation coefficient (Pearson’s R)
and were calculated at the pixel level. RMSE is a commonly used measure of the difference
between values and represents the sample standard deviation of the difference between
the predicted and observed values. As a result, it offers a comprehensive evaluation of
recalculation, including data retrieval accuracy and precision. We provided the RMSE
map and calculated the mean for all pixels. MAE indicates the mean of the absolute
error between the predicted and observed values and the value is determined directly
for residuals. We calculated the MAE in each pixel and made the map. The Pearson’s
correlation coefficient (Pearson’s R) is a frequently used metric for determining the degree
of linear association between two variables. As a result, the accuracy at the spatial scale
was estimated using Pearson’s correlation coefficient between the downscaled NDVI and
MODIS NDVI at the pixel level.

(2) Validation of accuracy for various vegetation types

To evaluate the overall applicability of the downscaling technique at the global scale,
we chose eight typical vegetation patches of about 100 km2 in size from the world vegetation
map, and randomly selected one thousand pixels’ NDVI values in both the MODIS and
the downscaled NDVI images for the validation period I to create linear fit lines. The
vegetation types were derived from the Copernicus Landcover maps.

We assume high-resolution images can often provide more accurate spatial informa-
tion, and we examined the capabilities of the three NDVI data sets to investigate NDVI
variations in various vegetation types. We retrieved the median NDVI values for three types
of vegetation in each month from all pixels in their respective ranges between July 2014
and June 2015, which indicated the average levels of greenness for each vegetation type.
We then analyzed the NDVI time series to see if these three sources of data could accurately
differentiate the three vegetation types.

(3) Trend test of the downscaled NDVI time series

To validate the performance of the downscaled product in long-term vegetation moni-
toring, we used both the downscaled and AVHRR products to perform a Mann–Kendall
test and a Sen’s slope estimation to compare the trends of the two datasets on the pixel
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scale [60,61]. Sen’s slope is a non-parametric statistical trend computation method that can
lessen the incorrect influence of data outliers while accepting major data distributions [62].
We calculated a standard normal statistic (z) and divided it by its standard deviation to get
the significance threshold. The z-P-value statistic (probability of detecting such an extreme
value) is 1 − P (|z| Z). In general, the NDVI change trend has a significance of =0.05.

3. Results
3.1. GEE Implementation in a Regional Area

To begin, we wanted to test the method in a regional setting, thus we chose Idaho
state, in the northwest United States, as a case study location to demonstrate the NDVI
downscaling technique due to its diversified geography and range of vegetation types.
(Figure 2). We utilized the topographic diversity (D) as a metric to describe the range
of temperature and moisture conditions that species can encounter in their local habitats
(Figure 2b) [63]. The D value of most places approaches 1.0, indicating that Idaho has a
wide range of topo-climate environments and a great diversity of plants. Idaho’s landscape
can be divided into three regions: (1) the northern narrow strip and the mountainous parts,
which are rich in timber; (2) the Snake River Plain, which runs through the state and is the
state’s main agricultural sector; and (3) the southern mountainous region.
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wide range of topo-climate environments and a great diversity of plants. Idaho’s land-
scape can be divided into three regions: (1) the northern narrow strip and the mountain-
ous parts, which are rich in timber; (2) the Snake River Plain, which runs through the state 
and is the state’s main agricultural sector; and (3) the southern mountainous region. 

 
Figure 2. Schematic and geographical representation of the case study area: (a) base map of the 
contiguous United States with the location of the state of Idaho being indicated; (b) a topographic 
diversity map of the Idaho state from the Global SRTM Topographic Diversity dataset. 

  

Figure 2. Schematic and geographical representation of the case study area: (a) base map of the
contiguous United States with the location of the state of Idaho being indicated; (b) a topographic
diversity map of the Idaho state from the Global SRTM Topographic Diversity dataset.

3.2. Validation at the Regional Scale

There were some examples of visual comparisons of the downscaled and standard
MODIS NDVI, and we presented areas encompassing the entire state of Idaho as well as
randomly selected smaller locations in Figure 3. Since the growing season offers more infor-
mation about vegetation changes, we chose three downscaled NDVI images for the growing
season (i.e., May, July, and September) in 2016 to compare to the MODIS NDVI product.
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Figure 3. Comparisons of NDVI between the downscaled and MODIS datasets and the difference
maps for the Idaho state and at three selected vegetation patch areas in May (a), July (b), and
September (c) in 2016. P1–P3 refer to three representative portions of around 30 km2 in the vegetation-
rich area. P1 and P2 are mainly dominated by evergreen needle leaves, and P3 is mainly covered
by grass.

First, we carried out a comparison examination of the entire region, indicating the
general difference between the two products was modest and the NDVI value distribution
ranges were consistent with some subtle deviations in the spatial distribution of NDVI in
some spots. Then, when we examined the dynamic changes in the vegetation growing
season from May to September, we found that the greenness differences were noticeable
from spring to autumn. The error of the majority of pixel values was between −0.05 and
0.05, as shown by mapping the differences between maps in Figure 3. The downscaled
NDVI in the error map for May was higher than that of MODIS overall (more blue pixels),
which was especially apparent in the southwest and central parts of Idaho. In contrast, the
downscaled NDVI in July was not significantly different from the MODIS NDVI overall.
Especially red pixels indicated a smaller downscaled NDVI in September compared to the
overall MODIS NDVI, which was more pronounced in the eastern region.

Next, we chose three small portions (P1–P3 in Figure 3) around 30 km2 in the vegetation-
rich area to assess the accuracy of the downscaled outputs. Please note that the areas in
patches 1 and 2 (P1, P2) were mainly dominated by evergreen needle leaves, and the area
in patch 3 (P3) was mainly grass. Some slight discrepancies between the MODIS NDVI and
the downscaled NDVI could be seen in these three small vegetation patches. The majority
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of the errors in the small area were often between −0.05 and 0.05, but the distinction
was most noticeable in May, particularly to the southeast of P1. According to the NDVI
distribution value, it is likely a transition zone between grassland and woodland. There
is considerable inaccuracy here because different vegetation had varying green-up dates.
Compared to the MODIS NDVI, the downscaled NDVI displayed some underestimation
errors. Overall, the seasonal greenness dynamics between the two products were quite
similar over time, with all of the inaccuracies being minor in the three vegetation patches
(Figure 3).

The means of the three error indices in Idaho were then determined from the NDVI
images shown in Figure 3, and the results are displayed below in Table 1. We obtained the
mean value from all pixels in each location; in particular, for the calculation of Pearson’s
R in Idaho, we randomly selected 1000 points approximately 1000 times to obtain the
mean due to the large number of pixels in the entire state. The overall MAE, RMSE, and
Pearson’s R are 0.039, 0.055, and 0.86, respectively, all showing an acceptable accuracy of
the downscaled NDVI products. The biggest MAE and RMSE are less than 0.1, while the
lowest Pearson’s R is greater than 0.8, indicating that the downscaling algorithm worked
effectively for Idaho.

Table 1. Error statistics for the comparison between downscaled NDVI and MODIS NDVI of Idaho.

Time/Location MAE RMSE Pearson’s R

201605 Idaho 0.047 0.069 0.926
201607 Idaho 0.033 0.052 0.974
201609 Idaho 0.052 0.076 0.961

201605-P1 0.062 0.097 0.871
201607-P1 0.015 0.020 0.930
201609-P1 0.016 0.023 0.939
201605-P2 0.061 0.077 0.925
201607-P2 0.035 0.045 0.946
201609-P2 0.034 0.046 0.822
201605-P3 0.053 0.071 0.950
201607-P3 0.030 0.041 0.946
201609-P3 0.034 0.048 0.927

Mean 0.039 0.055 0.926

For each pixel of Idaho, we tested all three error indices of the downscaled NDVI
dataset against the simultaneous MODIS NDVI, which reflected the errors produced by
the downscaling procedure [64,65]. The validation maps of the RMSE, MAE, Pearson’s
R, and RGB composite maps of these three indicators for all months from 2014 to 2018
are shown in Figure 4. The RMSEs and MAEs are low, mostly ranging between 0 to 0.2
(Figure 4a,b), and the correlating Pearson’s R values are high, ranging mostly from 0.7 to
1 (Figure 4c), implying that the downscaled NDVI errors are minor. The blue pixels in
the RGB composite error map indicate that the downscaling technique is highly accurate
(i.e., low RMSE, MAE, and high Pearson’s R), whereas the yellow pixels show areas with
proportionally more errors (i.e., higher RMSE, MAE, and lower Pearson’s R), and the black
pixels indicate that the values of the three indices are all small, indicating that the original
data were lost. (Figure 5d) [65]. The majority of Idaho is displayed in blue, and a few black
pixels refer to filtered crops. Additionally, yellow pixels are present mainly in the north,
where the landscape is more undulating with a lot of forests, and these places therefore
have relatively more uncertainty in the NDVI downscaling.
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Figure 4. Spatial variation of the goodness of fit indices for all months from 2014 to 2018. (a) RMSE,
(b) MAE, (c) Pearson’s R at a significance level of 0.05, and (d) RGB composite image of the three
metrics (Red: RMSE, Green: MAE, and Blue: Pearson’s R). Blue colors in panel (d) refer to areas having
high accuracy with low RMSE and MAE, and high Pearson’s R, yellow colors suggest decreased
accuracy with higher RMSE and MAE and lower Pearson’s R, and black colors indicate areas having
few vegetation covers and showing low RMSE, MAE, and Pearson’s R.

3.3. Validation at the Global Scale

In addition to the regional-scale study, we also performed the NDVI data downscaling
on a global scale using GEE. We then further expanded the validation to the entire globe
and evaluated the uncertainties of the data fusion algorithm for every pixel over the world
for all months from 2014 to 2018 (Figure 5). Validation suggests that the majority of RMSE
and MAE values fall between 0 and 0.1, according to the first observation (Figure 5a,b).
The majority of Pearson’s R values are reasonably high and greater than 0.6, except for
the tropics around the Equator, arid deserts, wastelands in Asia and Africa, and scant
vegetation wilderness in Australia (Figure 5c).

The accuracy analysis was the same as for the Idaho error-index maps; however, the
RGB map in Figure 5d, which combined the three error indices, provided more evident
error information. As explained above, the different colors in the RGB composite error map
reflect different levels of precision, so we focused on the black and yellow pixels.

First, we noticed that the black areas were typically found in sparsely vegetated areas,
such as the central and eastern Asian desert regions and the Australian inland desert belts.
Second, we saw that yellow pixels were concentrated in the tropics, indicating higher
inaccuracy, which may be explained by the following two reasons. The first is related to a
shift in land cover over the studied period; several studies have shown that many forests in
Southeast Asia and South America are shrinking and being reclaimed as farmland since
2000, and frequent fires also cause forest loss, which implies that spatial changes are highly
abrupt, and the sorts of ground objects change significantly [66,67]. The second reason is
that the vegetation covers are dense in these areas, so the NDVI is easily saturated and
cannot distinguish more seasonal changes in vegetation greenness. Indeed, the NDVI
time series have been revealed to have strong data noise in the tropics, which could be
caused by sub-pixel cloud contamination and a failure in the cloud filtering process [26,68].
Furthermore, some places of high altitudes and latitudes have larger RMSE and MAE and
lower Pearson’s R (yellow in Figure 5d), likely owing to a high frequency of cloud and
snow, which impedes satellite observations [65].
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Overall, all three goodness of fit indicators (RMSE, MAE, and Pearson’s R) suggest
that the downscaling algorithm performs well (blue in Figure 5d) in most parts of the world.
As a result, using the proposed NDVI product for ecological applications at various scales
should be safe. When running the code in areas with prolonged cloudiness and snow,
as well as areas with dense rainforest or sparse vegetation, researchers should pay more
attention to the uncertainties and errors of the approach, and strict validation is needed
before applying the downscaled NDVI product.

3.4. Validation for Different Vegetation Types
3.4.1. Comparison of Downscaled and MODIS NDVI Datasets for Global Major
Vegetation Types

We used the Copernicus Global Land Cover dataset to obtain a global vegetation
type map and then selected different representative vegetation types across continents to
compare the MODIS NDVI and the downscaled NDVI. The validation was carried out at
eight verification areas including many vegetation types with an area of approximately
100 km2 around the world (Figure 6). The main vegetation types were coniferous forest,
broad-leaved forest, grassland, and tropical shrub.
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Figure 6. Locations of the eight selected verification areas that have eight representative vegetation
types. (A) Siberian Evergreen Needleleaf Forests, (B) Asian Evergreen Broadleaf Forests, (C) North
American Evergreen Needleleaf Forests, (D) North American Deciduous Broadleaf Forests, (E) Mon-
golian Steppe, (F) Australian Savanna, (G) African Shrub, (H) South American Tropical Shrub.

We investigated the accuracy of the downscaled NDVI applied to different vege-
tation types in two ways: (1) to demonstrate the capability of the downscaled data in
synchronously capturing the seasonal greenness dynamics, we calculated and compared
the monthly NDVI median time series derived from the two products from 2014 to 2018
(Figure 7); (2) to assess the overall performance of the downscaled data in accurately
demonstrating the NDVI spatial changes, we randomly selected 1000 pixels’ NDVI values
in both MODIS and the downscaled images for every month from 2014 to 2018 to make
linear fit lines (Figure 8) [69].
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Figure 7. The long-term dynamic changes comparison between the downscaled and MODIS NDVI
for different vegetation types. Comparison of NDVI for (a) Siberian Evergreen Needleleaf Forests,
(b) Asian Evergreen Broadleaf Forests, (c) North American Evergreen Needleleaf Forests, (d) North
American Deciduous Broadleaf Forests, (e) Mongolian Steppe, (f) Australian Savanna, (g) African
Shrub, (h) South American Tropical Shrub.
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Figure 8. The correlation verification between the downscaled and MODIS NDVI for different
vegetation types. The vegetation types (a–h) are the same as those in Figure 7.
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Since terrestrial vegetation has such a large impact on the carbon cycle, energy ex-
change, and water balance of terrestrial ecosystems, studying the global and regional
vegetation dynamics of NDVI on an annual and seasonal basis is critical [70,71]. Here,
to make a temporal comparison, we chose the validation period from 2014 to 2018 and
retrieved the monthly median as the basic level. Figure 7 depicted the eight types of vegeta-
tion changes through time, with the green lines representing the MODIS NDVI and the red
lines representing the downscaled NDVI. We observed that the two lines were consistent
overall. However, there were some noticeable biases between the two in 2015 and 2018
for some vegetation patches (e.g., the Australian Savanna and African Shrub, Figure 7f,g),
indicating that there may be some disturbance factors affecting vegetation greenness, such
as drought, fire, and so on [72].

Figure 8 depicts the linear fitting lines of the downscaled versus MODIS NDVI for
the representative regions and vegetation types around the world. The fuchsia-point-
concentrated areas highlighted where the majority of the NDVI values in each type of
vegetation were in the plots, as well as how lush each vegetation community was. The
most intensive range of grassland NDVI values, for example, was approximately 0 to 0.4
(Figure 8e,f), while the range of the forest was around the upper limit of the NDVI (0.8~1.0)
(Figure 8a–d). To make this comparison, we randomly sampled 1000 pixels while consid-
ering both the geographical and temporal changes; hence, the results should be reliable.
The downscaled NDVI data matched well with the MODIS NDVI, with reasonably high R2

values (0.7~0.9). At the same time, the verifications suggest that the downscaled product
can effectively capture the fine-scale NDVI dynamics and universal vegetation features.

As described above, the comparison and verification were carried out in time and
space based on the NDVI seasonal time series and random sampling points across typical
vegetation types over the globe. We might fairly infer that the downscaled NDVI prod-
uct, which achieved both high resolution (250 m) and a long time frame (1982–2018),
could be utilized as a good greenness indicator for monitoring much of the world’s
vegetation communities.

3.4.2. Comparison of the Three NDVI Datasets for Areas with Mixed Vegetation Types

We further compared the performance of the three NDVI datasets (MODIS, down-
scaled, and AVHRR) for areas with mixed vegetation types. This helped to determine the
discriminating capability of the NDVI products. The GAP/LANDFIRE National Terrestrial
Ecosystems database contains more detailed vegetation and land cover classifications,
allowing us to delineate the extent of three major vegetation types in Idaho: the Northern
Rocky Mountain Dry–Mesic Montane Mixed Conifer Forest (MCF), the Northern Rocky
Mountain Lower Montane, Foothill and Valley Grassland (GL), and the Northern Rocky
Mountain Montane–Foothill Deciduous Shrubland (DS) [73].

We found that the higher spatial resolution of the standard MODIS NDVI and the
downscaled NDVI products both showed better performance than the AVHRR product in
discriminating forest from other vegetation types, as suggested by the more visible curve
differences between different vegetation types for the former two datasets (Figure 9a,b). As
GL and DS have similar features, the differences were not generally apparent; however,
MODIS and the downscaled NDVI still exhibit bigger differences than the AVHRR NDVI.
In general, the downscaled and MODIS NDVI products with higher spatial resolution can
both accurately recognize the greenness dynamics of different vegetation types, and their
performance is similar. The AVHRR product displays poor performance when applied to
mixed-vegetation areas, which might be caused by its lower spatial resolution and failure
to characterize vegetation changes for heterogeneous regions.
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Figure 9. Performance comparison of the three NDVI datasets for distinguishing different vegetation
types in Idaho state: (a) mixed conifer forest (MCF) versus grassland (GL), (b) mixed conifer forest
(MCF) versus deciduous shrubland (DS), and (c) grassland (GL) versus deciduous shrubland (DS).
Each point represents the NDVI estimates from the MODIS, downscaled (NDVI), or AVHRR NDVI
datasets for every month from one site.

3.4.3. Comparison of the NDVI Change Trends from 1982 to 2018

We computed the median of the downscaled data, MODIS, and AVHRR NDVI across
Idaho to illustrate regional averages. The period was separated into two parts, and the
downscaled data were compared to the MODIS and AVHRR NDVI after 2000, as well as
to the AVHRR NDVI before 2000. The findings are given as scatterplots in Figure S1, and
the downscaled NDVI data for both periods fit well with MODIS and AVHRR products
with high R2 (about 0.9). To assess the capability of the downscaled NDVI products in
depicting the large-scale greenness trends, we computed the interannual global NDVI
trends using the MK trend test and Sen’s slope based on both the downscaled and AVHRR
NDVI products (Figure 10). It can be seen that the results of the global NDVI trends derived
from the two NDVI products are consistent with each other, reflecting the accuracy and
reliability of the proposed product. At the same time, this spatial pattern is consistent
with many previous studies: (1) the high latitude region and the Qinghai Tibet Plateau
experienced a sustained increase in NDVI due to climate warming and the extension of the
growing season [74,75]; (2) the NDVI was also increased due to afforestation in northern
China and vegetation greening in the southern Sahara Desert [76,77].
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Figure 10. The global NDVI trends identified using Theil–Sen’s slope estimator based on the (a) down-
scaled and (b) AVHRR NDVI for the period of 1982–2018. Please note that only the pixels having a
significant trend (p < 0.05) are displayed.

4. Discussion
4.1. Value of the Downscaled NDVI Product

Satellite-based vegetation indices (VIs) have made a great contribution to the global to
regional scale monitoring of terrestrial ecosystem dynamics. Many studies have revealed
that over 25% to 50% of the global vegetated area displays a significant greening trend
as a response to the rapid global environmental change, e.g., CO2 fertilization, nitrogen
deposition, climate change, and land cover change (LCC), etc. [75,78]. However, some
recent studies suggest that the interannual variability of vegetation greenness has sig-
nificantly increased over time [79], and widespread greening-to-browning reversals are
hidden in the overall vegetation greening [80–82]. Nearly all of these important studies
relied on the long-term but coarse-resolution AVHRR time series, or the fine-resolution but
short-term MODIS product. The drawback in the vegetation database hinders the accurate
estimation of plant activity under a changing climate. The inferior data might play a role in
contradictory conclusions regarding the vegetation greenness trends in the literature.

In this paper, we proposed a novel data fusion approach that shows good performance
in downscaling the coarse-resolution AVHRR NDVI (~5 km) to the MODIS resolution
(250 m). The downscaled long-term (1982–2018) and high-resolution (250 m) global NDVI
database has a high potential for accurately depicting the dynamics of trends, variability,
and seasonality in the greenness of different vegetation communities at both global and
regional scales, and it is particularly useful in mixed-vegetation areas. Compared to the
previous downscaling approaches [36–41,44,45], the proposed algorithm is effective at
reconciling simple computation and high accuracy.
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4.2. Potential Causes of Discrepancies among Different Products

To test the accuracy of the downscaled NDVI product, we conducted rigorous valida-
tion of the product against the standard MODIS NDVI database at both the regional and
global scales, and for different vegetation types. All the validation suggests a high accuracy
of the downscaled NDVI product and the data fusion algorithm. The majority of RMSE
and MAE values fall between 0 and 0.1 (Figure 5a,b), and the Pearson’s R values reach >0.7
for all the typical vegetation types over the globe (Figure 8). However, larger discrepancies
between the two products are evident over the sparsely vegetated areas, and the equatorial
belt (Figure 5d).

The large error in the sparsely vegetated areas is likely related to an inherent defect of
the algorithm. Since the downscaling approach relies on analyzing the difference in the
coefficient of variation (CV) between the AVHRR and MODIS NDVI databases, a slight
change in the mean NDVI value for a sparsely vegetated area may lead to a big change in
the CV. As a result, the algorithm will enlarge the difference between the two products and
cause a large bias in the downscaled product.

The high deviations of the downscaled product in the equatorial belt should be related
to the shortcomings of the NDVI itself, i.e., the NDVI easily reaches its saturated status in
densely vegetated areas such as the tropical rainforest, which has been widely documented
in the literature [26,68]. As a vegetation index, EVI (Enhanced Vegetation Index) is a good
alternative to NDVI, and it appears to be superior in discriminating subtle differences in
areas of high vegetation density, which can be attributed to the correction for atmospheric
and background effects in the EVI algorithm [21]. However, the EVI time series is only
available since entering the MODIS era, and its value is weakened by the short time
span of the data, compared to NDVI database that has accumulated observations for
several decades.

4.3. Uncertainties with the Downscaled NDVI Products

Mixed pixels make data downscaling challenging and induce uncertainties. Down-
scaling involves fusing two images with different resolutions, which results in some in-
accuracies [83]. For example, in Figure 3, we can see that the discrepancy between the
downscaling and MODIS NDVI is particularly noticeable in the P1 region, which is a
heterogeneous region and has many mixed pixels.

Additionally, in the vegetation fusion field, our products may have errors at the micro
spatial scale, but overall, these errors are acceptable, and the differences are small. Another
issue is raised in the non-stationarity of NDVI time series, which exhibits various frequency
components such as seasonal variations, long-term trends, and short-term variations [84].
The seasonal changes of the NDVI time series have been considered as the downscaling is
executed on a monthly scale. However, when the coarse-resolution pixels are downscaled to
fine-resolution pixels, if the pixels include mixed vegetation types, more deviations would
be added. The time series of the NDVI in mixed pixels may exhibit increased instability
due to the varying greening periods of plants.

Another uncertainty occurs as a result of the limited time period of the land cover
maps. We removed the areas of unnatural vegetation before performing the downscaling
computation using the land cover map and the fire map. There are no statistics on the fire
areas before 2000 due to the map’s constrained coverage time, which only spans from 2000
to 2018. The land cover map ranges from 2015 to 2018, and there were no data for regions
where crops and vegetation were interconverted prior to 2015. Forests in different locations
may suffer from pests and diseases, experience significant drought, and produce short-term
changes in vegetation. As a result, at the regional level, greater emphasis should be placed
on the variety of land use types, as well as on the more rigorous verification of data quality
and accuracy [85,86].

To assess the influence of topography on the performance of the downscaling algo-
rithm, we compared the downscaled NDVI and MODIS NDVI along altitude during the
growing season in 2016 in the Idaho area. We used the box diagrams to compare the NDVI
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quartiles of the two products for each elevation band from 800 to 2600 m at a 200-m interval.
The results are displayed in Figure S2, which reveals that the difference between the two
data was minimal along elevation gradients.

Some earlier studies have considered terrain changes in the downscaling of some
environmental variables, e.g., land surface temperature [87,88]. Topography is also a highly
important factor impacting NDVI distribution and has some potential in improving the
algorithm accuracy. However, including topographic information in the downscaling on a
worldwide scale is challenging since the global variation of the NDVI with topographical
changes is extremely complicated [89]. The NDVI has a strong interaction with overall
hydrothermal conditions, and there is no standard variation rule [90]. Among them,
differences in slope, aspect, and vegetation band spectrum may have a significant influence
on the NDVI. We can take into account the effect of terrain at the regional scale in the
upcoming algorithm to increase the downscaling accuracy.

4.4. Limitations of the Downscaling Algorithm

The first constraint of the study is the low temporal resolution of the data, which
is insufficient for phenological monitoring. The following issues exist when it comes to
boosting temporal resolution. First, high-frequency changes in vegetation greenness are
difficult to capture, and phenological oscillations differ amongst plant types. In this aspect,
the algorithm in this study needs to be improved to include this information. Secondly,
the NDVI is obviously disturbed by weather conditions in high-frequency data, and the
data quality is poor [91,92]. In this paper’s approach, we restricted high-frequency data
to increase the accuracy of lengthy time series. The primary benefit of the downscaling
product described in this study is its spatial scale optimization, which can improve long-
term dynamic monitoring of the fused vegetation area.

Another major limitation of the downscaling algorithm is that it is not suitable for
areas that have experienced dramatic land use/cover changes (LUCCs), and thus we have
removed the areas showing abrupt NDVI changes before the analyses. One important
assumption of the proposed data fusion approach is that the vegetation type has not
been replaced or removed during the studied period. This means that the variability of
a vegetation community in greenness did not change much or maintained a relatively
stable change. However, a long-term and gradual change in CV has been considered by
the downscaling algorithm, as we have split the entire period into two portions (1982–2000
and 2001–2018), and an adjusting parameter (RCVx,y,n) has been used to quantify the
long-term changes in CV of vegetation greenness (Equation (2)). Hence, the downscaled
NDVI product should be useful in capturing both the short-term dynamics and long-term
trends in vegetation greenness, which reflects vegetation flourishing, deterioration, and
restoration due to climate change, drought, competition, etc. However, LUCC has become
an important phenomenon of global environmental change and it can directly modify the
type, structure, and function of an ecological system, resulting in changes in the vegetation
of that system [93,94]. Thus, it is of high significance to develop more robust data fusion
techniques for satellite-based vegetation indices, which is feasible for the areas experiencing
dramatic LUCCs.

In addition, we did not extend the time span of the downscaled NDVI product beyond
2018, since the AVHRR sensor has degraded since late 2018, and the NOAA AVHRR
NDVI database displays widespread data gaps in the southern hemisphere after 2018 [62].
However, the major purpose of this study is to extend the MODIS resolution NDVI database
to the pre-2000 period. A 38-year, high-resolution NDVI time series should have many
more advantages than the 22-year MODIS NDVI product in analyzing the long-term trends
of global vegetation dynamics.

4.5. Future Improvements

In the subsequent work, the following aspects can be improved. Firstly, we suggest
integrating high temporal–resolution products, creating methods to capture high-frequency
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information, and combining wavelet and Fourier transforms to increase the temporal
resolution of the downscaled product [91,95]. The next step is to merge higher spatial–
resolution NDVI data, such as the Landsat satellite data, with higher-precision land cover
maps and terrain data (data elevation models) in order to expand the product’s accuracy in
both mixed vegetation regions and areas with complicated topography.

Secondly, the approach may be integrated with other methods such as machine learn-
ing, geostatistical simulation methods, and fractal and multifractal methods. As mentioned
above, remote sensing data typically contains many data gaps due to clouds, cloud shad-
ows, and even systemic inaccuracies, and therefore the quality of high-frequency temporal
data is generally bad [96]. Direct sampling (DS) methods are analog approaches that can
be used to fill gaps in remote sensing data and improve image temporal resolution [97,98].
Mariethoz et al. [99] attempted to locate a known pixel whose neighbors have similar
values that are comparable to the unknown pixel’s neighbors, and then filled in the pixel’s
value with the known value. In this case, we may combine DS with machine learning
algorithms to fill in temporal gaps and enhance data frequency. Among the widely used
scale transformation methodologies, fractal theory accurately depicts how the study item
changes when the scale is changed [35,100]. The fractal technique uses fewer parameters to
offer a more basic and explicit explanation of object spatiotemporal changes, resulting in a
more realistic scale transformation model [101]. Several fractal and multifractal algorithms
were used to downscale satellite-based remote sensing rainfall data and scale the leaf area
index [102,103]. At the same time, this approach may be utilized for NDVI downscaling.

5. Conclusions

GEE is used as the operation platform in this work to undertake a long-term and global-
scale data fusion of remotely sensed vegetation index data. The primary idea behind our
technique was to extract the fine-scale NDVI spatial information from the high-resolution
MODIS images and then integrate it with the long-term NDVI temporal information from
the AVHRR database. Finally, we created a downscaled 250-m resolution global NDVI
dataset from 1982 to 2018, and the data quality was compared to the standard MODIS NDVI
products at both the regional and global scales. The RMSE and MAE are less than 0.1 in
most locations, and the Pearson’s R is typically greater than 0.6, according to the validation
results. However, in locations demonstrating abrupt landcover changes, the downscaled
product may contain bigger biases and may therefore require further improvement in
the future. Additionally, the low temporal resolution of the downscaled NDVI product
weakens its value in phenological studies, which should be fixed in future studies. The good
performance of the downscaling algorithm likely suggests that the coefficient of variation
(CV) could be a valuable intermediary for combining the fine- and coarse-resolution remote
sensing data. The downscaled global NDVI product demonstrates great potential for
investigating the global plant response to climate change, and for monitoring the fine-scale
(250 m) and long-term (four decades) vegetation dynamics in facing different types of
environmental stress.
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https://www.mdpi.com/article/10.3390/rs14153639/s1, Figure S1: Linear regressions between
the downscaled and AVHRR NDVI in Idaho from 1982 to 2000 (a), and from 2001 to 2018 (b). (c) Lin-
ear regressions between the downscaled and MODIS NDVI in Idaho from 2001 to 2018. The monthly
median NDVI values derived from the three NDVI products were used in the scatter plots; Figure S2:
Quartile statistics of the downscaled (red) and MODIS (blue) NDVI for different elevation gradients
in Idaho during the growing period in 2016.
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