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Abstract: Forest dynamics is critical to forested ecosystems, and considerable efforts have been
devoted to monitoring long-term forest dynamics with the goals of sustainable management and
conservation of forests. However, little attention has been given to mountain forests, which are more
challenging to monitor due to complex topography, weather, and their distribution. We developed
a 30-m resolution tree-canopy cover (TCC) and forest change dataset for the Eastern Himalayas
from 1986 to 2021. The tree-canopy cover estimation was validated against estimates from the space-
borne Global Ecosystem Dynamics Investigation (GEDI), demonstrating strong consistency (R-square
greater than 0.81). A comprehensive assessment for the forest change dataset was performed using
448 visually interpreted points and reported high accuracy of the dataset, i.e., 97.7% and 95.9% for
forest loss and gain, respectively. Higher producer and user accuracies were reported for forest loss
(PA =78.0%, UA = 60.9%) than these for forest gain (PA = 61.7%, UA = 56.7%). The results indicated
that (1) the mean tree-canopy cover in the region increased by 2.76% over the past three decades, from
40.67% in 1990 to 43.43% in 2020, suggesting the forests have improved during the period; (2) forest
loss was identified for a total area of 6990 km? across the study area, which is less than the 10,700 km?
identified as forest gain; (3) stronger forest gains were found at elevations greater than 3000 m asl,
indicating faster forest growth in high elevations likely influenced by the warming temperatures in
the Eastern Himalayas.
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1. Introduction

Forests comprise the largest terrestrial ecosystem [1]. They provide important ecosys-
tem services to society, ranging from encouraging water conservation to [2] providing
habitats for species [3], improving landscape function [4], regulating climate [5], and main-
taining the balance of the global ecosystem via carbon sequestration [6,7]. Forests have
undergone great changes in recent decades, including both forest loss and recovery [8]. The
Global Forest Resources Assessments (FRA) 2020 report stated that there was a decrease of
more than 80 million hectares of primary forest globally since 1990, accounting for 7.2% of
the total primary forest [1,9]. Forest loss has become a substantial and complex threat to
Earth, leading to negative environmental impacts, including biodiversity loss [10,11], the
disruption of water cycles [12,13], increasing soil erosion [14], the destruction of local liveli-
hoods [15], and the increase in carbon dioxide emissions to the atmosphere. The general
perception is that global forest change occurs mainly in lowland areas with dense popula-
tions [16]. This statement aligns with many previous studies indicating most forest change
occurs at low elevations due to human activities, with only negligible forest loss in the
mountains [17-19]. However, recent studies have reported that mountain forests are also
undergoing significant changes due to climate change and agricultural expansion [16,20,21].
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Compared to other forest ecosystems, references and studies regarding mountain forests
are scarce, and changes in mountain forests remain unclear. Mountain forests account
for approximately 28% of the world’s forests and provide many substantial ecological,
economic, hydrological, and social values [22]. They are biodiversity warehouses with
25 out of the 34 global biodiversity hotspots, and the per-unit biodiversity of mountain
forests is typically higher than that of adjacent lowland forests [23]. In mountain areas,
the temperature increase was larger than the global average over the past decades, and
extreme climate events were more frequent in mountain regions than in other ecological
systems [24-28]. Due to the complex and variable climate conditions, mountain forests
may be more vulnerable than lowland forests to environmental changes. Therefore, it is
imperative to gain a comprehensive understanding of the status and changes of mountain
forests over the long term.

In recent decades, the rapid development of remote sensing technologies and the
emergence of new satellite sensors and analytical methods have contributed to long-term
forest monitoring [29]. In addition, remote sensing can provide periodic and seamless ob-
servations of Earth, fostering the development of large-scale forest monitoring. Numerous
studies have reported forest changes at both global and local scales [9,19,30-32]. However,
they focused primarily on short-term forest loss, neglecting forest recovery as well as
long-term monitoring. In addition, many previous forests change studies were based on the
examination of vegetation indices (e.g., NDVI). These indices not only represent the status
of forests but are also influenced by other vegetation. To improve the accuracy of forest-
change monitoring, an approach based on tree-canopy cover (TCC) has been proposed in
recent years. Tree-canopy cover represents the fraction of tree canopy coverage within a
pixel area as a “continuous field” [33]. The Tree Cover layer in the Moderate-resolution
Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) is an annual con-
tinuous global tree-canopy cover dataset at a 250-m resolution that has been widely used
in global- or local-scale assessments [34]. Because many forest changes occur in patches
smaller than a 250-m footprint, one need for forest change monitoring is repeated obser-
vations at finer resolution such as those from Landsat [29]. Sexton et al. [35,36] proposed
a method to produce a tree-canopy cover and forest change dataset based on long-term
Landsat observations. Feng et al. [37] assessed the dataset via visual interpretation, and the
accuracy is confirmed. While the tree-canopy-cover-based method has been proposed, there
are few studies focusing on the long-term changes of mountain forests, where complex
topography and weather present challenges to forest-change monitoring.

The Himalayas experienced a rapid change in climate, which was estimated to be
far greater than the global average, along with the significant increase in extreme climate
events in recent decades [26,27,38—42]. In this study, we choose the Eastern Himalayas as
an example to investigate its forest status and change. The Eastern Himalayas could be an
excellent test area for monitoring mountain forest dynamics because it is both the highest
mountain in the world and the most sensitive to temperature and climate variations [43,44].
This study aims to derive Landsat-based tree-canopy cover in the Eastern Himalayas
from 1986 to 2021 and monitor forest loss and forest gain. In addition, we provide a
comprehensive assessment for both TCC and forest change datasets in the mountain area.
Monitoring forest dynamics can provide long-term spatiotemporal consistent information
that is valuable for understanding the change of mountain forests and ensuring their
sustainability.

2. Study Area and Datasets
2.1. Study Area

The Eastern Himalayas (longitude: 88°22'-95°26'E, latitude: 26°41'-29°54'N) is lo-
cated at the edge of the Tibetan Plateau, extending from the Yadong River in the west
to Brahmaputra in the east (Figure 1). The Eastern Himalayas are a part of the Alpine—
Himalayan mountain chain with high elevations [45]. The total area covers 156,699 km?,
and elevation ranges from 42 m asl to 7527 m asl. According to data from the Climatic



Remote Sens. 2022, 14, 3638

30f17

Research Unit (CRU) in 2020, the monthly average temperature within the study area
ranged from —3.2 °C to 13.5 °C and monthly precipitation ranged from 1 mm to 340 mm.
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Figure 1. The geographic extent and topographical distribution of the study area.

The complex topography and the steep south-to-north elevation gradient have resulted
in many diverse physiographic landscapes and regional climates [46]. At high elevations,
temperatures are very low, even remaining below 0 °C year-round. Precipitation decreases
from the southern foothills to the northern foothills across the Eastern Himalayas. The
northern portion of the Eastern Himalayas is characterized by less precipitation and a drier
climate because high-elevation mountains block water vapor from the south. On the other
hand, the southern portion of the Eastern Himalayas is predominantly influenced by the
Indian monsoon [26]. The Eastern Himalayas are some of the most ecologically sensitive
areas in the world, with many vegetation zones, including, from southeast to northwest,
montane forests, shrubs, alpine meadows, alpine steppes, and alpine deserts [41]. Spruce is
the dominant forest species widely distributed in the Eastern Himalayas [41].

2.2. Datasets
2.2.1. Landsat Data

Landsat satellite data constitute the longest record of Earth observation with a rela-
tively high spatial resolution of approximately 30 m [47]. Therefore, Landsat data have
been extensively applied to investigating how forests have been changing for decades.
Landsat data are publicly available on the United States Geological Survey (USGS) website
(https:/ /earthexplorer.usgs.gov/, (accessed on 9 April 2022)). We downloaded Landsat-5
Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper Plus (ETM+), and Landsat-
8 Operational Land Imager (OLI) images during the growing season of 1986 to 2021. The
study area consists of 15 tiles of the Landsat World Reference System 2 (WRS-2), including
1983 images in total.

2.2.2. MODIS VCF

The MODIS Vegetation Continuous Fields (VCF) MOD44B Collection 6 data product is
a sub-pixel-level representation of surface vegetation cover. The MOD44B product produces
at a 250-m spatial resolution from monthly composites of the MODIS surface reflectance
data from 2000 [34]. The MOD44B dataset includes three cover layers, i.e., percent tree cover
layer, percent non-tree cover, and percent non-vegetated layer. In this study, the MODIS
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VCEF tree cover data were selected to provide tree cover training data. The MOD44B dataset
was downloaded from the USGS website (https:/ /earthexplorer.usgs.gov/, (accessed on
9 April 2022)).

2.2.3. GEDI

The Global Ecosystem Dynamics Investigation (GEDI) measurements observe the
Earth’s surface between a longitude of 51.6°N and 51.6°S both day and night [48], covering
temperate and tropical forests. The returned lidar waveform measured by the GEDI laser
can be used to derive products such as the canopy cover fraction, canopy top height, and
topographic surface elevation. The GEDI dataset is publicly available on the EARTHDATA
website (https://earthdata.nasa.gov/, (accessed on 17 April 2022)). We used the GEDI L2B
canopy cover data from 2019 and 2020 to validate our Landsat-derived tree-canopy cover.

2.2.4. Ancillary Data

The Advanced Land Observing Satellite (ALOS) World 3D-30 m (AW3D30) is a 30-m
resolution global digital surface model (DSM) dataset produced by the Japan Aerospace Ex-
ploration Agency (JAXA). The AW3D30 is produced using data archived from the Remote-
sensing Instrument for Stereo Mapping (PRISM) onboard the ALOS satellite [49]. We used
this DSM to analyze tree-canopy cover and forest change at different elevations. The dataset
was downloaded from (https://www.eorc jaxa.jp/ALOS/, (accessed on 3 May 2022)). We
obtained the temperature and precipitation data from the Climate Research Unit (CRU)
(http:/ /www.cru.uea.ac.uk/, (accessed on 11 May 2022)) at a resolution of 0.5° x 0.5°. In
addition, we used high-resolution satellite imagery from Google Earth Pro and Normalized
Difference Vegetation Index (NDVI) time-series data derived from Landsat to aid visual
interpretation. The NDVI profile was derived from Landsat NDVI using the Google Earth
Engine platform.

3. Methodology
3.1. Generation of Tree-Canopy Cover

TCC can be estimated using a piecewise linear function of surface reflectance and
temperature parameters as was proposed by Sexton et al. in 2013 [35]:

Cit = f(Xi) +e 1)

where X is a vector of temperature and surface reflectance, ¢ is the error produced by f
applied to X in the estimates, the subscript i represents a pixel’s location, and the subscript
t represents the time indexed by year.

The TCC regression tree model was fitted using CatBoost [50], an implementation
of gradient boosting, which is a type of machine learning boosting technique that relies
on an ensemble of sequentially built models to minimize the overall prediction error [51].
The MODIS MOD44B tree cover estimates were used as training data. Landsat surface
reflectance data were aggregated to 250 m using a spatial mean estimator. In this way, a
joint sample of tree cover and surface reflectance variables was prepared to create a training
dataset for the Eastern Himalayas each year. Then, the fitted model was then used in the
original Landsat data with a resolution of approximately 30 m to estimate TCC at a finer
scale from 1986 to 2021. In this study, we only analyzed forest dynamics in the study area
from 1990 to 2020 due to a large amount of missing data in earlier years.

3.2. Detection of Forest Change

Forest change detection was based on the bi-temporal class-probabilities model pro-
posed by Sexton et al. in 2015 [36]. The model was used to detect forest change in each pixel
using TCC and its corresponding error as the input raster. While the model is applicable to
land cover and any bi-temporal biophysical attribute (e.g., biomass, tree-canopy height,
diversities of land covers), it is most pertinent to detecting forest change using remotely
sensed characteristics. The detection of forest change was performed in two steps.
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Step one: Define “forest” as a kind of land cover category wherein TCC exceeds a
predefined threshold. The probability of a pixel belonging to “forest” is calculated as

the function:
100

pE)Eple>c) = [ pleye @

*

where p(F) is the probability of a pixel being identified as “forest”, p(c) is the probability
density function of TCC, c is the value of TCC, and c¢* is the predefined threshold of TCC.
The probability of a pixel belonging to “non-forest” is then calculated as 1 — p(F).

Step two: Calculate the probability of forest dynamics. Based on the probability of
forest in a pixel for each of two times, each pixel was assigned one of four forest dynamics
categories: Stable forest (FF), stable non-forest (NN), forest loss (FN), and forest gain (NF).
These four probabilities were calculated as follows:

p(FF)i:p(Fi,h/Fi/tz): ( 1t1)xp< lfz) ®)
p(NN)i = p(Ni/tl’Ni,l‘z) = ( ( ltl)) X ( ( lfz)) (4)
p(FN); = p(Fity, Nit,) = p(Fip,) x (1= p(Fip,)) ®)
p(NF)i = p(Ni,h’Fi,tz) = (1—P( Itl)) X P( 11‘2) (6)

where p(FF);, p(NN);, p(FN);, and p(NF); represent the four forest dynamics from time
t; to time tp. Each pixel was assigned to the most probable class.

To better interpret the different long-term forest changes, the following four categories
were identified: Forest loss without gain, forest gain without loss (forest newborn), forest
gain after loss (forest recovery), and forest loss after gain.

3.3. Assessment of Tree-Canopy Cover

The GEDI lidar altimeters have been collecting data on forest structure since 2019. In
this study, the GEDI L2B canopy cover data, including 2769 observation points in 2019
and 3731 observation points in 2020 (Figure 2), were used to validate Landsat-derived
tree-canopy cover for the same years. The selected data points were distributed both in
areas with dense forests and areas with sparse trees. For a point from GED], if it meets
one of the following criteria, we set canopy cover to zero: (a) The point was classified as
snow /ice, (b) the point was located in water, or (c) the canopy height of the point was 0 m.

90° E 92°E 94° E

28°N
28° N

GEDI 2019 observations
*  GEDI 2020 observations

90° E 92° E 94° E

Figure 2. Distribution of GEDI observations acquired in 2019 and 2020 in the Eastern Himalayas.
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3.4. Assessment of Forest Change
3.4.1. Sampling Design

A stratified sampling design was developed to assess the accuracy of the forest change
results. The changed area in the Eastern Himalayas was much smaller than the unchanged
area in the region according to our forest change results. To increase the sampling efficiency
and improve the representation of forest change samples, we used a preliminary version
of the forest change layer to divide the Eastern Himalayas into two strata (i.e., changed
and unchanged).

3.4.2. Point Selection

A set of 225 points was designed to be randomly collected for each of the changed and
unchanged strata. The sampling probabilities of strata were calculated as follows:

. 10

p(ilK) = Ny @)
where p(i|K) represents the probability of a pixel being sampled, 1y is the number of
desired pixels, and Nj is the total number of pixels in this stratum. n; was set to 225 for
each stratum. Each pixel was given a random number p*, and pixels that met the criteria
p* < p(ilK) were selected. A total of 448 sample points were selected across the Eastern
Himalayas. The sampling probability for the changed stratum was 0.00126%, and that for
the unchanged stratum was 0.00017%.

3.4.3. Visual Interpretation

Forest dynamics were visually interpreted by experts by examining the historical
high-resolution satellite imagery in Google Earth Pro. To improve its reliability, phenology
based on Landsat’s NDVI was also used. The NDVI profile of each sample point was
derived from Landsat data using the Google Earth Engine. For example, a sample point
(93.8182°E, 27.7992°N) is located in the eastern part of the Eastern Himalayas (Figure 3).
High-resolution satellite imagery from Google Earth Pro shows that large areas of trees
were cleared in 2014. There was a concomitant sharp decline in NDVI (Figure 4). The
high-resolution imagery from 2019 showed that trees had recovered after several years,
and NDVI showed a visible recovery. Therefore, it is reasonable to assume that this
place experienced forest loss in 2014 with a forest recovery process that started after the
loss event.

Figure 3. High-resolution satellite imagery from Google Earth Pro at point (93.8182°E, 27.7992°N).
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Figure 4. NDVI profile at point (93.8182°E, 27.7992°N) from 1986 to 2022.

3.4.4. Validation Metrics

The labeled reference points were used to assess the accuracy of forest changes by
calculating the confusion matrix and the accuracy metrics, i.e., overall accuracy (OA),
producer’s accuracy (PA), and user’s accuracy (UA) [37,52]. Weights were applied to points
to remove the bias of the disproportional sampling between changed and unchanged
pixels. Each point’s weight for the changed (w;), and unchanged (w;) strata were calculated
as follows:

_rllK)
YT k) + p(TK) ®
plIK) o

wi =
! p(ilK;) +P(]|K])

where p(i|K;) and p(j| K;) represent the inclusion probability of a pixel being sampled in
the changed and unchanged stratum, respectively. In this example, the point’s weight for
the changed stratum was 0.1163, while that for the unchanged stratum was 0.8837.
Accuracy assessment of forest change was calculated using a confusion matrix [53].
For each validation point (i), the agreement between the estimate (y;) and reference (y) was

defined as follows:
o 1 lf 61‘ =C;
e {0 if & # ¢ (10)
The OA indicates the probability that a pixel was classified correctly, and was defined

as the ratio of diagonal elements of the confusion matrix to the total weighted number of
sample points, 1,:

OA=Y " yixw /Y " w (11)
The PA and UA were calculated as follows:

PAC = 27;1 Yi X w; / Zznil w; (12)

UAc =) " yixwi/ Y35 wi (13)

where n. represents points labeled as type c (i.e., forest loss or gain) by the reference, and
n¢ represents points identified as type c.

4. Results
4.1. Spatial Distribution of Tree-Canopy Cover

The tree canopy is densest in the southeast portion of the Eastern Himalayas, thinning
from the southeast to the northwest (Figure 5). Trees are mainly distributed on the southern
slopes of the Eastern Himalayas. Areas with zero tree-canopy cover accounted for 36% of
the whole study area, mainly found in the northern slopes of the Eastern Himalayas.
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Figure 5. Spatial distribution of the mean TCC between 1990 and 2020 in the Eastern Himalayas.
The areas associated with different tree-canopy cover show a bimodal pattern with
peaks at approximately 0% to 5% and 85% to 96% (Figure 6a). Tree canopy was found
primarily above sea level to below 5000 m asl, with the tree-canopy cover reaching the
densest values in elevations between 500 m asl and 3000 m asl and becoming nearly absent
in areas above 5000 m asl (Figure 6b). Tree-canopy cover also increases gradually from west
to east with increasing longitude; the densest distribution is found between 93°E and 95.4°E
(Figure 6¢). South of latitude 29.2°N, tree-canopy cover in the Eastern Himalayas decreases,
with the densest distribution between 26.6°N and 27.6°N. In contrast, tree canopy increases
in density as latitude increases above 29.2°N (Figure 6d).
4000 & 100
N a . b
£ 3000 L ®)
s 2000 8 501
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0
10 20 30 40 50 60 70 80 90 100 00 000 2000 3000 4000 5000
TCC (%) Elevation (m)
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Figure 6. (a) Area distribution of the mean TCC between 1990 and 2020 for each percent TCC
range with 1% increment, and distributions along elevation (b), longitude (c), and latitude (d) of the
mean TCC.

4.2. Spatio-Temporal Changes of Tree-Canopy Cover

Forests in the Eastern Himalayas increased in density from 1990 to 2020 (Figure 7).
The mean tree-canopy cover in the region increased by 2.76% over 31 years, from 40.67% in
1990 to 43.43% in 2020, with an annual increase of 0.11% tree-canopy cover per year (i.e.,
percent cover = 0.11x x year — 175.46, R = 0.65, p < 0.001). Trees covered 56,650 km? of the
study area in 1990 and 60,460 km? in 2020, increasing by 3810 km? over the 31-year period.

Tree canopy gains occurred more frequently than tree canopy losses in the Eastern
Himalayas from 1990 to 2020, with the strongest increases occurring in the high elevations
(i-e., roughly 3000~4500 m asl) (Figure 8). In contrast, tree canopy losses in the study
area were smaller in magnitude and occurred primarily at lower elevations where human
activities are more intense.
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Figure 7. Interannual variability in TCC from 1990 to 2020 in the Eastern Himalayas.
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Figure 8. Spatial distribution of TCC change (%/year) from 1990 to 2020 in the Eastern Himalayas:
Gains (green to blue) and losses (orange to red) of TCC.
4.3. Validation of Tree-Canopy Cover
A comparison of our Landsat-derived TCC values with GEDI-derived values displays
strong agreement, with R-squared values of 0.87 and 0.81 for GEDI observations in 2019 and
2020, respectively (Figure 9a,b), indicating Landsat-derived tree-canopy cover estimates
are reliable in the Eastern Himalayas.
_(a) y=1.05x+3.81 R?=0.87 (b) y=1.02x+3.65 R?=0.81
100 0.0025 100
1 0.0100
Q = 0.0020 =
Q60 Q60 0.0075
=2 0.0015 O
© ] ©
3 3
01 0
0 20 40 60 80 100 0 20 40 60 80 100
GEDI 2019 (%) GEDI 2020 (%)

Figure 9. Comparison of TCC estimation with (a) GEDI 2019 observations and (b) GEDI
2020 observations.

4.4. Forest Loss and Gain

The area of forest gain in the Eastern Himalayas was much greater than that of forest
loss from 1990 to 2020 (Figure 10). In addition, forest gain exceeded forest loss in every
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3000

elevation zone except below 500 m asl. More than 10,700 km? in the Eastern Himalayas
demonstrated forest gain, with an average increase of 350 km? per year over the 31-year
period. Approximately 6990 km? of forest were lost in the Eastern Himalayas in the past
three decades, with an average loss of 230 km? per year over the 31-year period. Forest gain
and forest loss mainly occurred between elevations of 3000 m asl and 4500 m asl. Barely

any forest gain and loss occurred at elevations greater than 5000 m asl since trees were
nearly absent there.

I Forest gain

2400 { ™% Forest loss
“E 1800
=
©
© 1200
<
600 1
O A
S 600 \000 »\600 rLQQo rzf.)00 3000 q,‘.)()g 5‘000 5‘600 6000
Altitude (m)
Figure 10. The area of forest loss and gain during 1990-2020 summarized by elevations.
The spatial distribution of forest changes was analyzed across the entire study area.
Significant forest losses were concentrated in the lowlands of the Eastern Himalayas
(Figure 11a), which have been subjected to deforestation for decades. In contrast, forest
gains were mainly found at higher elevations. The mountain forests exhibited a net gain in
each longitude and latitude zone of the Eastern Himalayas (Figure 11b,c). Over the 31-year
period, more than 3870 km? of forest were recovered after loss. Approximately 1420 km? of
the forest experienced loss without recovery detected, and the area was the smallest among
the four categories and mainly distributed across lower elevations (Figure 12). Forest gain
without loss detected was identified in a 5135 km? area, which has the largest area among
the four categories and exceeded other categories in every elevation zone above 1000 m asl.
400
"g 300 { M Net gain (gain —loss) (b)
< 200
£ 100
0 4
90° E 92°E 94° E
()
z z
Types of forest change
z z
z z
& r&
o N
gsggo 90° E 92°E 9%° E
0 © < N
() B2y I Forest loss without gain [ Forest loss after gain

[ Forest gain without loss (Forest newborn) [l Forest gain after loss (Forest recovery)

Figure 11. (a) Spatial distribution of four kinds of forest changes in 1990-2020 and area statistics
along longitude (b) and latitude (c) of net gain.
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Figure 12. Distribution of four kinds of forest changes by elevations.

4.5. Validation of Forest Change

We performed an accuracy assessment of the forest change dataset using a total of
448 visually identified sample points (Figure 13). The results of the accuracy are shown
in Table 1. Forest loss had higher accuracy than forest gain with an OA of 97.6%, PA of
78.0%, and UA of 60.9%. The OA of forest gain was 95.9%, and the PA and UA were
61.7% and 56.7, respectively. There are four kinds of forest dynamics categories, including
change status (i.e., loss, gain) and unchanged status (i.e., no loss, no gain). The producer
and user accuracies of the unchanged pixels were much larger than that of the changed
pixels. It was likely that many unchanged sample points were located on bare lands at high
elevations. The overall accuracy of forest change was high (>95%) in this study, indicating
the reliability of Landsat scenes in identifying forest changes.

90° E 92° E 94° E

28°N

+  Unchanged stratum
Forest changed stratum

a

90° E 92°E 94° E
Figure 13. Distribution of points collected for validating the forest dataset in the Eastern Himalayas.

Table 1. Accuracy of forest change detection.

Accuracy Metrics Forest Loss (%) Forest Gain (%)
OA 97.7 95.9
Loss No loss Gain No gain
PA 78.0 98.3 61.7 97.6

UA 60.9 99.3 56.7 98.1
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5. Discussion
5.1. Mountain Forest Changes

This analysis reveals that the mountain forests of the Eastern Himalayas exhibited
a net gain of forest over the three decades. This is likely the result of human activities
and climate change [19]. The United Nations Framework Convention on Climate Change
defines forests as having a minimum tree cover greater than 10-30% [54]. Using this
definition, the Eastern Himalayas contained between 69,385 km? and 76,083 km? of forest
in 1990 and increased to between 71,176 km? and 76,620 km? of forest in 2020. Forest gains
were distributed in the southern slopes of the Eastern Himalayas, and there were no gains
in the northern slopes due to the area’s high elevation and associated dry, cold climate.
More specifically, the forest gains were mainly distributed at high elevations greater than
3000 m asl, which agrees with the results from Zheng et al. [26]. Forest loss occurred mainly
at lower elevations, likely due to human activities being more intense at lower elevations.
Similar patterns were also reported in other regions worldwide [17,18,55]. For example,
Curran et al. [18] point out the lowland forests in Indonesian Borneo decreased by 56%
from 1985 to 2001. The study from Aide et al. [17] in the Andes showed that forest loss
mainly accrued at elevations below 1500 m asl due to agriculture expansion, while above
1500 m asl, it was dominated by forest gain. In addition, our findings were consistent
with the results from Song et al. [19] who researched global land change from 1982 to 2016.
Song et al. [19] pointed out that tree cover in mountain systems of Earth has increased
from 1982 to 2016. Curtis et al., estimated the drivers of forest loss [56]. Although the
data are of a coarser resolution and only span 2000 to 2015, they can still be considered a
reference for understanding the causes of forest loss in the Eastern Himalayas (Figure 14),
and forestry (i.e., large-scale clearcutting within managed tree plantations and forests) was
the primary cause of forest loss in the Eastern Himalayas, accounting for 60% of the forest
loss. Commodity-driven deforestation leading to permanent land use change was the
secondary driver of forest loss in the Eastern Himalayas, accounting for 28%. The felling
of trees for paper pulp, timber, and plantation expansion is the major commercial activity
that adversely affected the forests. Forest loss for the remaining areas was attributed to
wildfires (7%) and shifting agriculture (5%).

I rorestry I Commodity driven deforestation
- Wildfire ] Shifting agriculturc

Figure 14. Distribution of drivers of forest loss in the Eastern Himalayas [56].

5.2. Forest Dynamics Monitoring

The long-term Landsat-derived tree-canopy cover provided a consistent dataset for
capturing complex mountain forest dynamics at a high resolution and large scale. Com-
pared to our estimates of forest loss, the Global Forest Change product produced by Hansen
et al. [9] seriously underestimated forest loss in the Eastern Himalayas. Our findings on the
underestimation issue agreed with those reported by Milodowski et al. [57] in the Amazon.
From 2001 to 2020, more than 5630 km? of the Eastern Himalayas experienced forest loss,
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while only 1440 km? of co-occurring forest loss were detected by the Hansen Global Forest
Change product. This difference is likely due to the fact that the Hansen Global Forest
Change product only considered forest loss under conditions of a stand-replacing distur-
bance or complete canopy removal [9], while we were able to include weaker disturbances
such as selected logging and forest degradation when calculating forest loss. For example,
this sample point (91.7642°E, 26.9048°N) is located in the southern part of the Eastern
Himalayas (Figure 15). Satellite imagery from Google Earth Pro shows that large areas
of trees were disturbed due to the construction of roads. Forest losses were relatively
accurately identified by our study, while much forest loss information in this area was lost
in the Global Forest Change product (Figure 16).

B Hansen Global Forest Change

Forest loss: I this research

Figure 16. Comparison of forest loss dataset between this research and Hansen Global Forest
Change [9].

5.3. Corelation between TCC and Climate Factors

Since climate change directly influenced the phonology of vegetation [42,58-60], we
investigated the correlation between Landsat-derived tree-canopy cover and key climate
variables, e.g., temperature and precipitation. According to the CRU dataset, the Eastern
Himalayas experienced rapid warming with an increase of 0.44 °C over the past three
decades, from 9.47 °C in 1990 to 9.91 °C in 2020, with an annual increase of 0.025 °C per
year (i.e., temperature = 0.025x x year + 9.4575, r = 0.53, p = 0.002) (Figure 17a). This result
aligned with previous studies that the Himalayas experienced significant warming during
the recent decades [38,42,61]. The annual precipitation in the study area decreased by
94 mm with significant fluctuation, from 1678 mm in 1990 to 1584 mm in 2020 (Figure 17b).
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The fluctuation of precipitation agrees with the data reported by Shrestha et al. [62], which
pointed out that precipitation from 78 station records showed significant fluctuation both
on decadal and annual scales. The annual mean tree-canopy cover from 1990 to 2020
showed a significant positive correlation with the annual mean temperature in the Eastern
Himalayas (r = 0.47, p = 0.008), and no statistical correlation with annual precipitation
(r = —0.10, p = 0.593) (Figure 17c,d). A similar conclusion was made by Li et al. [43] in
the Eastern Himalayas. Zheng et al. [26] also pointed out that tree growth in the Eastern
Himalayas, especially the southeastern Tibetan Plateau, showed an overall increase in
growth with a rapid increase after 1982, which was likely due to continuous warming.
In addition, our findings also aligned with previous studies reported by Mohammat
et al. [63] in Inner Asia, which demonstrated that the increase in NDVI was more strongly
correlated with temperature than with precipitation in high-altitude regions. Therefore,
the temperature was likely the dominant driver of the increase in tree-canopy cover in the
Eastern Himalayas.
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Figure 17. Annual mean temperature (a) and annual precipitation (b) from 1990 to 2020 of the forests
in the Eastern Himalayas; correlations of the TCC estimations against (c) annual mean temperature
and (d) annual precipitation.

5.4. Validation and Uncertainties

Both Landsat-derived tree-canopy cover estimates and forest change data in the
Eastern Himalayas were assessed. The Landsat-derived tree-canopy cover estimates were
found to be strongly consistent with GEDI observations in 2019 and 2020, indicating that
the tree-canopy cover estimates are reliable in the Eastern Himalayas. The lower agreement
at lower- and higher tree-canopy cover was likely due to the fact that GEDI’s data were
somewhat overestimated at the higher end of the tree cover range and underestimated at
the lower end of the tree cover range [64]. In addition, the capture of within-canopy gaps in
GEDI'’s measurements [65] could also contribute to the differences in the Landsat-derived
tree-canopy cover estimates. Our validation results indicate that forest change derived
from tree-canopy cover is able to capture forest dynamics (loss and gain). However, forest
gain was found to be less accurate than forest loss, which agrees with results published by
Hansen et al. [9]. This finding is likely due to the long and slow process of canopy recovery
and the high uncertainty associated with visual identification of forest gain, which was also
reported by Feng et al. [37].



Remote Sens. 2022, 14, 3638 15 0f 17

6. Conclusions

In this study, we validated Landsat-derived tree-canopy cover, as well as forest loss
and forest gain in the Eastern Himalayas. Even though the method and accuracy of forest
detection had been improved in recent years, forest change detection remains a challenge,
especially for mountain forests. Understanding the accuracy and uncertainties is critical for
researchers and governments to use this data. In particular, the space-based laser altimeters,
such as ICESat-2 and GEDI, provide the ability to more accurately detect forest structure
for forest change analysis. Given the high consistency between our Landsat-derived tree-
canopy cover estimates and GEDI-based estimates, our methods show promise for use in
mountain forest monitoring, as well as other forest systems, and further research should be
conducted to ensure that this technique provides accurate monitoring for forest change in
more areas.

During the past few decades, with the vast number of newly available satellite and
airborne sensors [66], more remote sensing data can be integrated and fused with Landsat
data to improve the spatial and temporal scale and consistency of forest change detection.
Additional data from these sensors would dramatically increase our ability to monitor
forest structure and change dynamics. Tree-canopy cover could be a key variable for
incorporating these multi-source satellite data and promoting robust forest change detection
and real-time monitoring.
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