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Abstract: The ash produced by forest fires is a complex mixture of organic and inorganic particles
with many properties. Amounts of ash and char are used to roughly evaluate the impacts of a fire on
nutrient cycling and ecosystem recovery. Numerous studies have suggested that fire severity can be
assessed by measuring changes in ash characteristics. Traditional methods to determine fire severity
are based on in situ observations, and visual approximation of changes in the forest floor and soil
which are both laborious and subjective. These measures primarily reflect the level of consumption
of organic layers, the deposition of ash, particularly its depth and color, and fire-induced changes
in the soil. Recent studies suggested adding remote sensing techniques to the field observations
and using machine learning and spectral indices to assess the effects of fires on ecosystems. While
index thresholding can be easily implemented, its effectiveness over large areas is limited to pattern
coverage of forest type and fire regimes. Machine learning algorithms, on the other hand, allow
multivariate classifications, but learning is complex and time-consuming when analyzing space-time
series. Therefore, there is currently no consensus regarding a quantitative index of fire severity.
Considering that wildfires play a major role in controlling forest carbon storage and cycling in fire-
suppressed forests, this study examines the use of low-cost multispectral imagery across visible and
near-infrared regions collected by unmanned aerial systems to determine fire severity according to
the color and chemical properties of vegetation ash. The use of multispectral imagery data might
reduce the lack of precision that is part of manual color matching and produce a vast and accurate
spatio-temporal severity map. The suggested severity map is based on spectral information used
to evaluate chemical/mineralogical changes by deep learning algorithms. These methods quantify
total carbon content and assess the corresponding fire intensity that is required to form a particular
residue. By designing three learning algorithms (PLS-DA, ANN, and 1-D CNN) for two datasets (RGB
images and Munsell color versus Unmanned Aerial System (UAS)-based multispectral imagery) the
multispectral prediction results were excellent. Therefore, deep network-based near-infrared remote
sensing technology has the potential to become an alternative reliable method to assess fire severity.

Keywords: fire severity; post-fire environment; total carbon; spectral model; machine learning;
unmanned aerial system multispectral imagery

1. Introduction

Ash and char production can be used as broad indicators of the temperature reached
or heat produced during a fire and can used to understand the impacts of the fire on
nutrient cycling and landscape recovery [1]. Recent studies have investigated changes in
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ash characteristics, such as color, as an indicator of fire severity [2–4]. Ash color can reflect
the severity of fire in the immediate area and can range from heterogeneous black ash
(char) produced in low-intensity fires to fine, homogenous white-grey ash produced during
higher intensity fires [5,6]. Fire severity is an indirect measure of how fire intensity impacts
ecosystems assessed by organic matter loss [7]. Low-to-medium-severity fires may have
positive effects on soils, such as increased nutrient availability [2]. The negative impacts
of severe fires include a reduction in the organic content of the soil [8], modification of
soil structure [9–11], mineralogical changes [12], and deleterious changes to hydrological
responses [13].

The most widely used method for subjectively determining soil color is by comparison
of samples with the Munsell soil-color chart [14]. The Munsell soil-color chart does not
allow numerical or statistical analysis as the color space is divided into non-contiguous
representation pages. While ash color is an excellent indicator of complete combustion,
color can be perceived and described differently, even when matching against a standard
chart, and color assessment is affected by ambient light.

Vibrational spectroscopy deals with the visible and near-infrared (VNIR) and mid-
infrared (MIR) region of the electromagnetic spectrum and includes a range of techniques
involving the absorption of electromagnetic energy based on the vibrational modes of
molecules. Fundamentals of these vibrational absorption bands appear in the MIR region.
They are strong, distinct, and can act like fingerprints, i.e., be used to identify specific chem-
ical bonds associated with the bands. Overtones and combinations of fundamental bands
characterize the VNIR region. They are generally weaker, overlapped, and challenging to
resolve for specific chemical constituents. VNIR reflectance regions are rapid, require small
samples, and are very reproducible, and these advantages have made VNIR spectroscopy a
powerful tool in soil organic matter (SOM) chemistry. Moreover, the VNIR region illustrates
combinations and overtones of vibrational frequencies of bonds such as those between
oxygen and hydrogen (OH), carbon and hydrogen (CH), as well as nitrogen and hydrogen
(NH) producing indicative NIR absorbance bands [15].

NIR can be used to describe the residual matter following combustion and may be able
to expose the mineralogy of samples of char and ash [16]. Therefore, we may be able to use
the spectral data from the NIR region collected from ash to estimate changes in the levels of
carbon (C), nitrogen (N), and other nutrients [17]. The combinations and overtone features
across the NIR region correspond to a fundamental absorption across the MIR region
measured by diffuse reflectance infrared Fourier Transform (DRIFT) and transmission
mode. These measurement modes differ in resolution and sensitivity; whereas DRIFT is
better at revealing structural information about organic matter, the transmission spectra
are better regarding inorganic material content, but cannot be applied directly to samples.
Many studies describe methods of applying infrared techniques to soil organic matter [18],
usually by direct application to a soil sample and studying relatively simple mineral-organic
matter systems. Studies have also examined the potential of diffuse reflectance mid- and
near-infrared spectroscopy [19] to determine not only carbon content but also levels of
metals such as Co, Cr, Ni.

C levels represent the continuum of organic materials transformed by different degrees
of burning and can be found in many post-fire patches [20,21] with nitrogen and other
elements [5,22,23]. Incomplete combustion in wildfires produces Total C (TC), where
some of the biomass is transformed into pyrogenic organic matter, e.g., charcoal and black
carbon [24]. In general, TC is a part of soil organic carbon (SOC) which is a major planetary
resource supporting ecosystem services and the realization of some of the 17 Sustainable
Development Goals (SDGs).

The low correlation between C and pyrogenic carbon (PyC) gains or losses and fire
severity, reported by [25], highlights the complex impacts of fire on forest C. The severity
of fire indicates the magnitude of its impact on an ecosystem and is described using
numerous definitions and metrics [7,26]. The correlations between fire severity and TC
budgets are complex, because wildfires release C, and also produce PyC that contributes
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to C sequestration in soils [27,28]. The chemistry of these molecules is heterogeneous
and can be considered as a mixture of compounds ranging from the slightly charred
biomass to the highly condensed aromatic materials [29,30] with an overall increase in TC
concentration (%).

One study [6] provided the first estimation of pre- and post-fire PyC stocks in a boreal
jack pine forest by calculating changes in C concentration in a high-severity fire neglecting
impacts on mineral soil. A more recent study [25] on fire effects on forest C and PyC in a
mixed-conifer forest using pre-and post-fire measurements following five wildfire events
concluded that using post-fire severity estimates does not give a complete picture. The
limitations and challenges in extrapolating fire severity according to C concentrations at
broader scales are clear.

Remote sensing (RS) tools are widely used for broad-scale fire severity estimation
and mapping via multi-date change detection [31,32]. The standard RS-based indices
include the Normalized Burn Ratio (NBR), differenced Normalized Burn Ratio (dNBR),
soil-adjusted vegetation index SAVI [33,34], and burned area index BAI [35]. Additionally,
field classification of composite effects has been developed and applied [36,37].

Bi-temporal vegetation indices (e.g., differenced NDVI) are used to create a continuous
differenced raster to quantify an absolute measure of change. Continuous differenced index
values are used to characterize fire severity by field survey or aerial photo interpretation,
where fire severity is defined as the loss of biomass [7]. All indices are 60–70% accurate
compared to field validation [38,39] of the spatial variations in severity within a single fire.
Since all suggested indices are sensitive to post-fire changes, they are generally accepted as
robust methods for determining fire scars in the landscape and assessing the recovery of
the vegetation [40–42].

Nevertheless, categorizing the values of spectral indices into standardized (consis-
tent between fires and landscapes) severity groups is complex and almost impossible.
Furthermore, the fact that fire severity indices distinguish between photosynthetic and
non-photosynthetic ground targets means that the pre-fire conditions such as vegetation
structure, moisture, soil type, and topography [43,44] were not considered.

Given that all the state-of-the-art spectral indices for fire severity were developed
for space-borne remote sensors, their main disadvantages are their reliance on physical
landscape parameters, satellite data quality (spatial, radiometric, and spectral resolutions),
and availability (temporal resolution). Thus, many methods are compromised because
of the available imagery, spatial, spectral, and temporal resolution, and access to ground
sampling data [45]. Moreover, the accuracy of fire severity mapping depends on location,
and the target ecosystem, and not only on sensor specifications [46]. Considering that
wildland areas are typically characterized by dense canopies and high topographic relief
with many topographic shadows, they are very challenging for space-borne remote sensors
to capture. Furthermore, the coarse spatial resolution and operational limitations of broad-
scale mapping, yield practically useless products for mapping the burnt understory or low
fire severity [47,48].

Advances in sensor technology provide new opportunities for fire severity mapping
and alternatives to broadband, low to medium resolution multispectral satellite sensors.
Hyperspectral airborne sensors, e.g., AVIRIS, have been widely used to map fire severity in
the USA [32,49]. Similarly, studies have shown the benefits of using active sensors such
as light detection and ranging (LIDAR) [50], Radio Detection and Ranging (RADAR) [51],
and Terrestrial Laser Scanning [52]. The developments in Unmanned Aerial System (UAS)
technology also advanced sensor performance and miniaturization [53]. These systems
are capable of carrying multispectral, high spatial resolution spectrometers, LiDAR, and
thermal sensors. UAS products have the potential to determine initial and extended fire
impacts and offer options for high spatial and temporal severity assessments of burnt
sites [53]. The thermal sensors on UAS have been used to map actively burning fires [54],
and rarely to assess vegetation burn severity [55]. Yet, a post-fire digital terrain model
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(DTM) derived from a UAS survey was differenced from a pre-fire DTM from airborne
LiDAR, to estimate the depth of surface burning in a tropical peatland [56].

These “big data”, i.e., the multi-sensor spectral data cannot be analyzed using con-
ventional methods, e.g., multiple linear regression or partial least squares (PLS) regression
models. Partial least squares-discriminant analysis (PLS-DA) is a supervised modelling
method that uses a PLS algorithm to predict the membership of a sample or spectrum to
a given class. It is often used to deal with the multicollinearity problem in near-infrared
(NIR) spectra because of the very high inter-correlation between measured absorbance at
sequential wavelengths in spectral data analysis.

The current study aims to develop a novel method to assess fire severity using UAS-
based remote sensing. The main goal is to determine whether the UAS multispectral (very
high spatial resolution) data across visible and near-infrared (VNIR) regions, collected from
post-fire environments and advanced classification models, can be used as a fire severity
metric. The suggested supervised and unsupervised shallow and deep classification models
are: PLS-DA, ANN, and 1-D CNN. The main contribution in this work is a predictive
model for the content of total carbon (TC) in residues. Our TC model will have practical
applications because of the findings that in post-wildfire environments, TC content increases
correlate with field-based fire severity assessments [25].

2. Materials and Methods
2.1. Study Area and Sample Collection

Mt. Carmel (32.7699◦N/35.0657◦E), a mountain range in Northwestern Israel, has been
subjected to an increasing number of wildfires of various extents and severities. The region
represents a typical Mediterranean ecosystem with relatively long, hot, dry summers and
short (4–5 months) rainy winters. Spring and autumn months are often characterized by
considerable variations in temperature relative humidity and precipitation. ‘Sharav’/heat
wave episodes, with strong hot and dry eastern winds, are common in the transition
seasons, increasing the risk of extensive wildfires. The experimental datasets derived from
three sources are summarized in Table 1.

Before collecting ground samples in both experimental and urban wildfire sites, the
spectral data were measured with portable field spectrometers OceanOptics USB4000. The
wavelength-dependent signal-to-noise ratio (S/N) for our instrument was estimated by
taking repeat irradiance measurements of the Spectralon® (Labsphere Inc., North Sutton,
NH, USA) white reference panel over a 10-min period and analyzing the spectral variation
over this time. The value for each ground sample was calculated by averaging 3 spectra of
both radiance and reflectance measurements during the UAS campaign. The reflectance
was calibrated against a Spectralon® white reference panel. The optimization procedure
was programmed to work in both radiance and reflectance modes, averaging 10 replications
per measured spectrum. Each ground target (30 × 30 cm) was measured systematically by
collecting about 10 points, and the targets were uniformly distributed across the study site,
creating a grid/matrix over the site. All points in a designed matrix were about 5 m apart
and the spectral measurement was taken from 1 m height with a bare-optics of a 24◦ field
of view (about 60 cm2 footprint on the ground) with spectral error (standard deviation).

The imagery data were collected using two sensors on the UAS: RGB camera, and
RedEdge-MX Micasense camera (5 data bands) with output bit depth of 12 bit simultane-
ously with spectral measurements. The DJI Phantom 4 Pro RGB images with a pixel size of
1.2 cm at ~60 m flight altitude. The multispectral data were acquired by Matrice 600 Pro
DJI at ~30 m flight altitude with a pixel size of 2 cm. The cameras were stabilized in pitch,
roll, and yaw by a three-axis gimbal and followed pre-programmed flight plans to assure
complete coverage of a frontal overlap of 90% and an adjusted side overlap (by a number of
flights) using an autopilot module of Pix4D capture application. The image sequences were
collected in perpendicular flight lines using the autopilot ‘double grid’ software option.
The absolute vertical and horizontal accuracies were improved using the dGPS system in
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the field. To that end, 12 ground control points, evenly distributed throughout the study
area, and near-visible horizontally and vertically important objects were measured.

Table 1. Datasets.

Laboratory Dataset Controlled Field
Experiment Dataset Urban Wildfire Dataset

Location 3 unburnt plots (20 m2). Location Mt.
Carmel (32◦43′16.3”N 35◦00′15.8”E).

Isolated 2 × 2 m area
burned by an open fire
without interference and
without combustion
accelerators. Location near
the University of Haifa
(32◦45′28.0”N 35◦01′27.0”E).

Site size 550 × 150 m; Before the
fire, more than 70% of the site was
covered by vegetation and more
than 50% of the vegetation was
trees. Location Haifa
(32◦46′54.3”N 34◦59′56.7”E).

Event Description

The experiment took place
in July 2017. Air
temperature 26 ◦C, average
wind speed 2 m/s, soil
temperature 46 ◦C, litter
temperature 38 ◦C.

In November 2016 following a
typically hot dry summer and
unusually dry autumn, a wave of
fires hit Israel. There were more
than 170 wildfire events. The fire
suppression activities in Haifa
took nearly 24 h. The total burned
area was 13 ha.

Sample Collection

Samples were collected using a
circular sampling ring and leaves,
twigs, soil, and fine fuel were placed
in separate bags.

Multiple subsamples at
evenly spaced intervals
along a transect radiating
from a centroid were
collected and composited.

Samples were collected on
November 26th from an almost
fully burned site. The top-ash
samples (at a depth of 1–3 cm)
were collected along a transect
radiating from a centroid at
the site.

Sample Description

The vegetation is broadly classified as
a Mediterranean forest and the
predominant species are P. halepensis
and P. lentiscus.
OM1 is herbaceous (n = 50)
OM2 is a mixed sample of leaves and
twigs of P. lentiscus, C. salviifolius, and
herbaceous vegetation at a size of
approximately 5–7 cm (n = 50)
OM3 is the needles of P. halepensis
(n = 50)
OM4 is the leaves of P. lentiscus
(n = 50)
OM5 is the twigs of P. halepensis
(n = 50)
OM6 is the twigs of P. lentiscus
(n = 50).

The vegetation is mainly
composed of annual
herbaceous species partially
covered by the needles and
branches of P. halepensis.
Note that the summer
months are very dry.

The natural vegetation is
composed of Pinus halepensis,
Quercus spp. and Pistacia spp.
Pinus halepensis and Quercus spp.
have relatively short
time-to-ignition and long flame
duration, relegating them to the
class of extremely
flammable vegetation.

2.2. Sample Treatments and Measurements

The laboratory soil samples were oven-dried for 48 h at 60 ◦C and then sieved (<2 mm)
to remove stones, plant debris, and large root matter. In total 300 soil samples were prepared
in 500 mL beakers; each sample had a 30 g 13C-depleted biomass placed on top of 80 g
of soil. The samples (see Table 1) were heated in a muffle furnace for 2 h [3] at 250 to
600 ◦C at intervals of 50 ◦C. After cooling to room temperature overnight, all samples were
scanned with the proposed sensors: portable field spectrometers OceanOptics USB4000
using a deuterium-tungsten halogen light source (a single lamp with a wide spectral output,
covering the entire UV-Visible-NIR range) and a bifurcated optical fiber with two fibers in
the common end, DJI Phantom 4 Pro RGB camera, and RedEdge-MX Micasense camera. The
samples were then subdivided into laminas following textural and color variations [16,56].
Only the top ash layer was investigated; it should be noted that the combustion of plant
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biomass in a muffle furnace is not identical to field burning [57,58]. The flaming combustion
creates diverse heat waves over time and results in mixed residues/burned matter.

All the collected top-ash samples (laboratory and field) were spectrally measured
across the mid-infrared region (MIR) to quantify total C content [59] by applying diffuse
reflectance Fourier transforms infrared (DR-FTIR) spectroscopy. 10 mg of the isolated ash
layer was mixed with 200 mg of spectroscopic-grade KBr (Aldrich Chemical Co. Milwaukee,
Brookfield, WI, USA) for analysis. The mixture was initially hand-ground and then ground
again in a Wig-L-bug using a stainless steel vial with a stainless steel ball pestle for 45 s.
FTIR measurements were performed with a Bruker TENSOR series FTIR spectrophotometer
(Bruker, Ettlingen, Germany) equipped with a Pike EasiDiff optical bench. The scans were
from 4000 to 400 cm−1 range with a resolution of 4 cm−1. The spectrum of each sample
was normalized against the background spectrum obtained from the diffuse reflectance
spectrum of pure KBr. Spectra were collected as reflectance and Kubelka-Munk units, they
were not smoothed, and the original resolution was kept for further spectral analyses by
the OPUS software. Moreover, a set of 24 selected samples were analyzed using a Leco
TruSpec CHN to determine and confirm the total carbon (TC) content.

2.3. Spectral and Imagery Data Pre-Processing

The spectral calibration process was normalized using measurements of an internal
standard. This process enables the isolation of noisy wavelengths (from the signal) and the
generation of a noise-less (smooth) data set for further analysis. The reflectance spectra
of the internal standard and the measured reflectance spectra were normalized to the
continuum level by interactively choosing continuum points, linearly interpolating between
them, and then dividing the final spectrum by the continuum. The measure of internal error
mostly reflects the operator’s consistency in choosing the continuum level. A normalization
factor is obtained from the calculated ratio between continuum-removed spectra (spectral
repetitions) of the internal standard [60].

Imagery pre-processing was carried out on RGB and multispectral UAS-based data [61].
The RGB color information of each pixel was calibrated and normalized against Spectralon
reflectance using Equation (1). The normalization step is performed to remove the undesir-
able effect of noisy pixels.

RGBnorm = 2nRGBtarget/RGBspectralon (1)

where n is the number of bits per pixel for each color band.
The images were processed via the structure from motion (SfM) method, implemented

in Pix4D Mapper Pro (v. 4.3.31, Pix4D, Prilly, Switzerland), which completes all the
main SfM steps. The SfM workflow starts with feature identification, followed by feature
matching, camera model optimization, and the final step is the bundle block adjustment [62].
The point density option was set to ‘optimal’ and the minimum number of matches was set
to three using a matching window size of 9 × 9 pixels. The accuracy of RGB based digital
surface model (DSM) is 2 cm in the horizontal (X, Y) coordinates, and <3 cm in the vertical
(Z) coordinate, calculated for 4 validation GPS points that were measured in the field but
were not used in the Pix4D model. The multispectral imagery was not processed by bundle
block adjustment, to preserve the radiometry collected by the system. The orthophoto
produced in Pix4D Mapper for RGB images was converted to the Munsell color system
using the methodology published by [63].

The multispectral UAS-based orthophoto is a radiometric corrected by an advanced
supervised vicarious calibration (SVC) method [60] and the bidirectional reflectance dis-
tribution function (BRDF) applies correction coefficients to every pixel in a point-cloud
and calculates the at-sensor radiance for each pixel according to Figure 1. A depression
angle is calculated for each point in the cloud. This angle represents the orientation of a
given point/pixel towards the sensor. Once the point/pixel/surface is facing the sensor
(in nadir), the calculated angle equals 90◦. The angle describes the situation that when
the point/pixel/surface is tilted then its radiance is scattered and reflected in an off-nadir
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way. The calculated ground target depression angle is used to correct solar information
(azimuth and zenith), which is calculated at a given date, time, and geographic location
at a central coordinate. The corresponding solar information is used to retrieve the BRDF
correction coefficients for the SVC calibration nets target [64]. The calculated coefficients
are then applied to the entire scanned scene, the full point cloud data.

Figure 1. SVC scheme.

According to the suggested approach, the solution is calculated in the following steps:

(1) Radiometric quality indicators—the first step is dependent on a selected region of
interest by the operator. This step is performed on the UAS-based orthophoto and
projected on the reconstructed pout cloud.

Prior to extracting the above-mentioned coefficients, it is important to inspect the
sensor’s radiance performance using quality indicators (QI). The most common radiometric
investigation uses MODTRAN to reconstruct the atmosphere above the sensed surface and
then compare the results with the obtained at-sensor radiance (Secker et al., 2001).

The UAS multispectral data are collected under operational conditions and thus the
simulated AOT might affect the SVC results. Therefore, an additional preparation stage
is needed [61]. The procedure requires atmospheric model applied in an iterative mode
that will be completed only by achieving reliable results. Alternatively, the at-sensor
radiance can be examined by its corresponding reflectance without applying any radiative
model [60] using the radiance to reflectance ratio (Rad/Ref) and radiance-to-reflectance
difference ratio (RRDF) QIs.

According to the calibration theory, the at-sensor measured radiance equal to the sun’s
radiance at nadir zenith angle times the atmospheric transmittance coefficient adding the
selective scattering contribution. The first QI is termed Rad/Ref and calculated by dividing
the at-sensor radiance by the surface reflectance coefficient of a selected ground target (e.g.,
SVC nets). The second QI is assessing the quality of the radiometric output using at least
one set of net measurements and calculating the RRDF. The RRDF ratio is invariant with
respect to the surface reflectance, thus, all calculated responses must be identical.

(2) BRDF correction—following the recommendations reported by [64], prior to submit-
ting the imagery data to the radiometric recalibration (F1 stage), the BRDF effect
must be estimated and reduced. This essential stage was included in the modified
scheme of the SVC method to provide more realistic at-sensor radiance data. Once the
point/pixel/surface is facing the sensor (in nadir), the calculated angle is equal to 90◦.
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The angle decries when the point/pixel/surface is tilted then its radiance is scattered
and reflected in an off-nadir way. The calculated ground target depression angle is
used to correct solar information (azimuth and zenith), which is calculated by a given
date, time, and geographic location at a central given coordinate. The corresponding
solar information is used to retrieve the BRDF correction coefficients (Rcorr) for the
SVC calibration nets target [64]. The calculated coefficients are further applied for the
full scanned scene, the full point cloud data.

(3) The SVC correction-the at-sensor radiance is converted into accurate reflectance by
applying four stages: normalization of the albedo sequence (F1) inspected by QIs,
radiometric calibration gain using the net ground-truth reflectance (F2), applying a
model-based atmospheric correction (F3) using ATCOR5 model, ACORN and empiri-
cal line method, and spectral polishing using the net ground0truth reflectance (F4).
The SVC scheme is guided by the QIs scores. Well-calibrated sensors can proceed
directly to stages F3 and F4. When the Rad/Ref holds a theoretical sequence but the
RRDF indicator gives an indistinct result, the F2 stage should be applied before stages
F3 and F4. Finally, when both Rad/Ref and RRDF indicators generate indistinctly, the
full SVC correction chain is necessary, i.e., F1 and F2 until both parameters (Rad/Ref
and RRDF).

2.4. Data Processing and Analysis
2.4.1. Spectral Model for TC Content

C and N content in the top-ash layer was quantified. While organic C is measured us-
ing elemental analyzers, many studies, e.g., [59,65,66] reported that DR-FTIR spectroscopy
yields good estimates for PyC. To quantify the area of the aromatic and aliphatic n(CH)
bands, the spectra were baseline corrected in the 3200 to 2700 cm−1 region using a quartic
fitting function. The integrated area of the aromatic n(CH) bands was determined by spec-
tral integration of the FTIR spectra between 3150 and 3000 cm−1, and the aliphatic n(CH)
bands were determined based on the area under the curve in the 3000 to 2750 cm−1 region.

The partial least squares regressions (PLSR) based model developed by [67] for fuel
type, heating/combustion temperature and respective C content of residues was applied.
This approach can accurately predict TC content (in %) of ‘real world’ samples based
on DR-FTIR spectra. In practice, the area under each of the individual peaks relative to
aromatic rings in amorphous carbon at 1590–1600 cm−1, carbonate at 1440–1450 cm−1, and
a carboxyl group at 1700–1720 cm−1 was calculated. All measured spectra characterized by
a broad signal in the region 4000–2500 cm−1, attributable to strong stretching vibration of
OH groups in Al-OH (3600–3500 cm−1) and hydroxyl at around 3400 cm−1. A shoulder
between 3082 and 3066 cm−1 was assigned to C-H stretching in alkanes and/or aromatic
rings (=CH). The asymmetric (2930 cm−1) and symmetric (2840 cm−1) CH stretching
appeared in all spectra, therefore the peaks in the range 1240–1200 cm−1 associated to C-N
and phenolic C-O stretching were selected for further analysis. The region 2400–2000 cm−1

showed peaks to assign to the CN stretching vibration of nitrile and cyanimide groups [68].

2.4.2. Partial Least Squares Discriminant Analysis and Machine Learning for TC Content

The input training data (sample from the field, and all laboratory samples) is presented
as an unfolded matrix where the rows represent observations (spectral measurements in
three different datasets (varies in spectral resolution): OceanOptics USB4000 portable
spectrometer (across VNIR spectral region), RedEdge-MX Micasense multispectral UAS-
based imagery and severity map calculated by Char Index based on color coordinates
(Brightness Index of DJI Phantom 4 Pro RGB images) and columns represent the true
classes (TC content of residues calculated based on DR-FTIR spectra via PLSR model).
Since spectral image enables quantification and classification at the individual pixel level,
the following classification approaches were applied and then evaluated. The proposed
methods were implemented in a MATLAB computing environment (release R2019b, The
MathWorks, Inc., Natick, MA, USA).
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PLS-DA classifier, a well-known classification method for spectral imaging datasets,
was used to build spectral models. Since model performance is highly connected to the
selection of the appropriate number of latent variables, cross-validation was applied to
determine the optimal number by ranking the evaluation of the correct classification rate.
Normally the accuracy increases rapidly for the first few latent variables and then remains
relatively constant. However, a wrong number of latent variables is unsatisfactory as it will
result in under or over-fitting of the data and poor model performance.

Artificial Neural Networks (ANN) is a system modeled on the human brain. It consists
of a large number of interconnected processing nodes called neurons, structured in different
layers of varying numbers, enabling the system to process multiple inputs from external
sources. The heuristic approach was adopted for multi-layer perceptron. It has been used
for back-propagation training of feed-forward neural networks and utilized in several
real-life applications such as prediction and estimation. Feed-forward back-propagation
networks were developed with the training functions Levenberg–Marquardt and Bayesian
regularization. A grid search with two tuning parameters (the number of nodes in the
hidden layer from 3 to 20, and the decay of weight at each iteration set at 0.01, 0.05, and 0.1)
was used to select the model with the lowest RMSEP values.

The input of the 1-D CNN is a spectrum one-dimensional vector, therefore the first step
was to extract the spectral vector from the multispectral image by unfolding the images
(rows by columns over bands). The function of the convolutional layer is to convolve the
input data by applying sliding convolutional filters and producing the convolved features
as the output also known as a feature map. Each type of extracted feature was generated
by a convolutional kernel. Usually, the kernel is moved from left to right and then from top
to bottom over the input with a step of 1. Stride convolution has a larger user-defined step
size for traversing the input. In 1-D CNN, the convolution kernel and feature map are both
one-dimensional. The convolution extracts feature according to Equation (2).

xi
k = ∑ wi,c

k ∗ xi−1,c + bi
k (2)

where the ith layer, k is the index for a specific feature map, c refers to the band number
of the input xi−1, wkˆ(i,c) is the kth convolution kernel corresponding to the cth band, bkˆi
refers to the bias of the kth feature map.

Batch normalization (BN) was carried out before activation to avoid distribution shift
by applying transformation that maintains the mean of the convolved features close to zero
and the variance of the convolved features close to one [69]. It normalizes its inputs xkˆ(i−1)
the input at kth feature map via the computed mean µ and variance σ2 of a mini-batch and
over each input band (Equation (3)).

x̂i
k =

xi
k − µ
√

σ2 + ε
(3)

where ε improves numerical stability in small mini-batch variance where inputs with a
mean of zero and variance of one are not suitable for the subsequent layer.

In this case, the BN layer can be shifted and scaled. The offset and scale factors are
learnable parameters that are updated during network training. The normalized features
are input into a layer with rectified linear unit (ReLU) activation function (F(x) = max(0, x),
and a dropout layer is then applied to prevent overfitting the model. The choices of dropout
neurons are random with a given probability, defined by the user. After the dropout layer,
a fully connected (FC) layer is used to merge all feature maps. Therefore, the number of
neural nodes depends on the convolution kernel size, the sampling kernel size, and the
number of feature maps.

Since a multi-classification task was performed a softmax layer was performed after
the last FC layer. The input of softmax comes from k different neurons of the FC layer.

In order to select proper parameters for the model, the influence of filter size, number
of filters, and stride on performance was assessed. The filter size was gradually increased



Remote Sens. 2022, 14, 3632 10 of 22

from 5 to 50 at a step of 5, and the 1-D CNN models were developed keeping the other
parameters constant (e.g., number of filters and fixed stride). The model with the best
classification result at the convolution kernel size was selected (by plotting classification
accuracy against filter size for the validation set). Finally, the optimal stride was defined
using the conditions already determined by filter size and the number of filters. Generally,
the size of the stride needs to be smaller than the filter size, therefore, the models are built
with an increase of between 1 and 5 steps.

The proposed method was compared to a conventional and popular remote sensing-
based index that highlights and maps burned regions based on spectral imagery. The
burn area index (BAI) identifies burned land in the red to near-infrared regions of the
electromagnetic spectrum on atmospherically free data, by emphasizing the charcoal signal
in post-fire images. The index is computed (Equation (4)) from the spectral distance from
each pixel to a spectral reference point, where recently burned areas converge. It has been
identified as one of the best indices to map burnt areas [70] and maps four fire severity
classes: unburnt, low-, moderate- and high fire severity.

BAI =
1

(0.1− Re f650nm)2 + (0.06− Re f800nm)2 (4)

A new UAS-based index called the Char Index was proposed by Smith (Smith et al.,
2005), to highlight charred organic surfaces (Equation (5)). This is a composite index based
on observation and quantified using a Brightness Index and a flat reflectance spectrum
across the VIS region (Maximum RGB Difference Index MaxDiff or lack of colour). The
results of the Char Index (CI) were categorized into severity by predefined thresholds [55].

Char Index = Brightness + (MAxDi f f ∗ 15) (5)

2.5. Validation and Verification

The spectral information measured by portable spectrometers (across the VNIR spec-
tral region) in situ and under laboratory conditions assisted in the calibration and validation
of the UAS-based spectral imagery. To compare how well the spectra in the multispectral
UAS-based imagery match the validation spectra collected in situ, the spectral angle map-
per (SAM) metric [71] was calculated. SAM compares spectral signatures by calculating the
angle between two spectral vectors in the n-dimensional feature space. Three validation
spectra and the corresponding image spectra are collected and, subsequently, averaged
for each validation site within the study area. The spectral comparison was performed
between two mean spectra at each validation location. The effect of spectral and spatial
resampling on spectral similarity is further presented and discussed.

The comparison between TC measured via Leco TruSpec CHN and DR-FTIR spectra
were performed using Student’s t-test to measure the variability for group A: the analyt-
ical TC content (CHN) and group B: the spectral based TC content (DR-FTIR). The null
hypothesis was that there was no difference between the groups.

The mean squared error (MSE in Equation (6)) and mean absolute error (MAE in
Equation (7)) between the expected values and the true values was estimated and reported.

MSE =
1
n

n

∑
t=1

(xt − x̂t)
2 (6)

MAE =
∑n

t=1|xt − x̂t|
n

(7)

where, x̂t is the predicted TC content (in %) of the model’s tth observation (step), xt is the
targeted one, and n indicates the number of samples.

Classification models were built on a training set and then applied to a validation set
(comprising spectra extracted from each dataset before training), to enable comparison of
model performance. In addition, a test set, using an experimental field site, was used for
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model evaluation. Primarily, the performance of the developed model was assessed by the
classification accuracy, also known as correct classification rate (CCR).

3. Results

The spectra comparison was calculated using the SAM approach. SAM for image and
ground validation spectra across the VNIR region were collected using USB400 OceanOptics
at each sampling spot. The ground truth VNIR spectra were resampled into 5 bands of the
RedEdge-MX Micasense camera and 3 bands (RGB) of the DJI Phantom4, according to its
spectral configuration (central wavelength and bandwidth).

Student t-test results show insignificant variation in the analytical and spectral-based
TC content of 24 selected samples (F 0.71, p-value 0.41), confirming that there is no difference
between the analytical and the spectral-based protocols used to determine TC.

The effect of data calibration steps is presented in Figure 2. All examined datasets
responded to the radiometric calibration in general and to the BRDF correction in particular,
with increasingly higher similarity (lowering of spectral angle values) from raw (DN) data
with the greatest dissimilarity to data corrected via SVC with BRDF correction. Moreover,
the level of heterogeneity in the data gradually decreased after applying the SVM method
and then implementing the BRDF correction, as shown by the reported error bars (minimum
and maximum values) getting closer to the average spectral angle. These impacts were more
pronounced for the multispectral dataset collected by the RedEdge-MX Micasense camera
than the RGB imagery data collected by the DJI Phantom4, this is due to its limitation in
the spectral domain (only three wide bands across the VIS region). Likewise, the level of
heterogeneity in all examined datasets reported as raw data (Figure 2) was greater in the
data collected by the DJI Phantom4.

Figure 2. The similarity of image spectra (as raw data, partially calibrated data based on SVC, and
fully calibrated data SVC with BRDF correction) and ground validation spectra derived from SAM
for the three examined datasets: the laboratory dataset in light grey, the control field experiment in
grey, and the urban wildfire site in black. The error bars show minimum and maximum values for
each dataset.

The classification model performance of PLS-DA calculated training datasets and the
validation and test datasets are shown in Tables 2 and 3, respectively.
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Table 2. Performance measurements of the PLS-DA model.

LVs RMSE MAE R2

Spectrometer Reflectance 15 0.08 0.07 0.989

RedEdge-MX Micasense
camera

DN 5 1.32 1.11 0.594
SVC without BRDF
correction 4 1.18 0.92 0.874

SVC with BRDF
correction 4 0.41 0.32 0.923

DJI Phantom4 RGB
camera

DN 3 1.50 1.43 0.588
SVC without BRDF
correction 3 1.21 1.13 0.752

SVC with BRDF
correction 3 0.98 0.84 0.855

Table 3. PLS-DA model performance for validation and prediction of TC content reported as correct
classification rate (CCR in %).

Validation Test

Dataset Laboratory
Controlled

Field
Experiment

Urban
Wildfire Laboratory Controlled Field

Experiment
Urban

Wildfire

Spectrometer Reflectance 98.12 99.84 96.39 99.14 96.72 94.92
RedEdge-MX

Micasense
camera

DN 59.42 59.86 59.73 57.81 57.29 58.11
SVC without

BRDF 93.67 87.67 64.55 92.18 81.44 63.91

SVC with
BRDF 95.94 92.45 91.16 91.78 90.84 89.57

DJI Phantom4
RGB camera

DN 58.77 49.06 47.82 49.94 49.27 40.81
SVC without

BRDF 80.73 78.59 69.61 79.68 73.64 66.21

SVC with
BRDF 87.52 83.61 70.63 88.42 85.31 72.09

According to Table 2, the full reflectance (601 wavelengths) model with 15 LVs showed
the best performance with values of 0.08, 0.07, and 0.989 for RMSE, MAE, and an R2,
individually. The multispectral model (5 bands) achieved a relatively low RMSE of 0.41,
MAE of 0.32, and a relatively high R2 (0.923) for fully corrected and calibrated data (SVC
with BRDF correction) with only 4 LVs. The RGB imagery data showed the weakest
performance with an R2 of 0.855 and a relatively high RMSE of 0.98, and an MAE of 0.84.

Overall, as reported in Table 3, the prediction results for the test set (i.e., TC content
in %) were slightly lower than that of the validation set. It is important to note that the
pre-processed and radiometrically corrected images improved the accuracy of the test set,
for example from CCR of 59.73% for raw data to 91.16% for SVC and BRDF corrected
multispectral data (RedEdge-MX Micasense camera) as well as 47.82% for raw data and
80.63% for severity map based on CI calculated by Brightness index (based on raw and
calibrated RGB DJI Phantom4 imagery) at the urban wildfire site.

The average of the summed RMSEP was recorded for each neuron, and the model
with the lowest RMSEP value (Figure 3) was considered the best. This process was repeated
using three inputs for validation and test datasets simultaneously: laboratory, controlled
field experiment, and urban wildfire site, for each sensor: OceanOptics USB4000 portable
spectrometer, RedEdge-MX Micasense multispectral UAS-based imagery, and DJI Phantom
4 Pro RGB images, in order to compare the performance of the spectral image datasets.
The aforementioned steps in ANN were carried out using the Levenberg–Marquardt and
Bayesian regularization training functions to find out which one was better suited for this
purpose. The results for reflectance spectra (measured by spectrometer), multispectral, and



Remote Sens. 2022, 14, 3632 13 of 22

CI data show that networks with 3 to 5 neurons performed poorly, and the addition of a
6th neuron greatly improved the models. Adding more neurons was beneficial until the
network had 9–10. The error of the models slightly increased at the 10 neuron threshold,
implying that 6 neurons were sufficient for TC content prediction, with more neurons
producing overfitted models. The performance of the Levenberg–Marquardt-based ANNs
was inferior to the Bayesian regularization models for all examined criteria. Despite the
longer time needed to train the Bayesian regularization models, the use of the Levenberg–
Marquardt model remains unjustified (Figure 3).

Figure 3. Average RMSEP prediction values using TC content estimations from (a) reflectance spectra
(portable spectrometer), (b) multispectral (raw and calibrated RedEdge-MX Micasense imagery) and
(c) CI severity data (calculated using raw and calibrated RGB DJI Phantom4 imagery) input to ANN
with Levenberg–Marquardt (bright grey plot) and Bayesian regularization (dark grey plot) models.

The validation performance (regression plots with R-scores) for the RedEdge-MX
Micasense camera with and without the BRDF correction and for the DJI Phantom4 RGB
camera with and without the BRDF correction, on 15% of the input data (95 spectra) are
reported in Figure 4.

Figure 4. Regression plots for the ANN validation with the Bayesian regularization on Laboratory
data where (a) is the RedEdge-MX Micasense camera with the BRDF correction, (b) is the RedEdge-
MX Micasense camera without the BRDF correction, (c) is the DJI Phantom4 RGB camera with the
BRDF correction and (d) is the DJI Phantom4 RGB camera without the BRDF correction.

The TC predicted by ANN with the Bayesian regularization model was compared to
the measured TC by calculating the CCR (Table 4).

The ANN model was validated by comparing its predictions to those of a PLS-DA
model built using the same data and inputs. The main difference between the performance
of the ANN and PLS-DA models was the ability of ANN to recognize the nonlinear effect of
TC content and spectral data. Of note is that the severity data calculated by CI (calculated
on raw and calibrated RGB DJI Phantom4 imagery) was too coarse. Since the multispectral
imagery data collected by RedEdge-MX Micasense camera and processed via SVC with
BRDF correction gave the most accurate results, these data were further examined and
subjected to a 1-D CNN model.
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Table 4. ANN model performance for prediction of TC content reported by RSMEP and correct
classification rate (CCR in %).

Lowest RMSEP
for Bayesian

Regularization

Lowest RMSEP
for Levenberg–

Marquardt
Test

Dataset Laboratory Controlled Field
Experiment

Urban
Wildfire

Spectrometer Reflectance 0.06 0.08 98.28 98.3 96.2
RedEdge-

MX
Micasense

camera

DN 1.2 1.35 64.31 61.38 53.65
SVC without BRDF

correction 0.98 1.2 88.29 87.67 79.62

SVC with BRDF
correction 0.26 0.96 92.11 90.52 91.48

DJI
Phantom4

RGB camera

DN 1.5 2.4 66.72 41.27 43.84
SVC without BRDF

correction 1.8 2.1 82.91 81.49 81.43

SVC with BRDF
correction 1.3 1.9 84.28 83.17 82.67

Tuning parameters for DL requires extensive processing. In order to select suitable
parameters for the 1-D CNN model, the effects of the filter size, number, and stride on
performance were studied. Filter size was gradually increased from 5 to 50 with an interval
of 5, and the 1-D CNN models were developed while keeping the other parameters constant
(e.g., number of filters = 20, stride = 1). The classification accuracy for the test samples
plotted against filter size is seen in Figure 5a. The best classification was found when
the filter size was set to 15 and this was used for the subsequent tuning of the other
parameters. The number of filters ranged from 5 to 30 increasing by 5 while keeping the
other parameters constant (e.g., filter size = 15, stride = 1). The accuracy of the test samples
was plotted against the number of feature maps in Figure 5b. The accuracy increased
rapidly until 15 filters and then decreased. The optimal stride (sampling step size), was
determined for 15 filters. The models were built by increasing the stride in increments of 1
from 1 to 5. As shown in Figure 5c, the best classification performance was achieved when
the stride was set to 2.

Figure 5. Classification performance of validation set (all sites at once) with different filters: (a) sizes;
(b) numbers; (c) strides for the following datasets: reflectance spectra (black dashed line), multispec-
tral calibrated RedEdge-MX Micasense data (dark grey line) and severity data based on CI calculated
on calibrated RGB DJI Phantom4 data (light grey).

As seen in Figure 6a,b the loss on the training set decreased rapidly for the first
25–30 iterations, suggesting that the network was learning to classify TC spectra quickly.
The loss of the validation set decreased as fast as the training loss, implying that this model
generalizes reasonably well to unseen data. We also noted that high accuracy (above 90%)
for training data was achieved with much less loss after approximately 30 iterations.
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Figure 6. Training progress of 1-D CNN with (a) loss and (b) accuracy plotted against iteration
(number of epochs) for the following datasets: reflectance spectra (black dashed line), multispectral
calibrated RedEdge-MX Micasense data (dark grey line) and severity data based on CI calculated on
calibrated RGB DJI Phantom4 data (light grey).

The classification results were compared with the previous approaches described. The
1-D CNN showed higher accuracy with a CCR of 96% for reflectance spectra data, 95.4% for
multispectral calibrated RedEdge-MX Micasense data (dark grey line), and 85% for severity
data based on Char Index (CI) calculated on calibrated RGB DJI Phantom4 data from test
samples from the urban wildfire site.

Figure 7 shows test samples from the controlled field experiment compared to the
results of BI (Figure 7a), PLS-DA model (Figure 7b), ANN model (Figure 7c), and 1-D CNN
model (Figure 7d). The BI map (Figure 7a) is a binary map of post-fire pixels that can only
be compared to the ground truth and other three products by calculating intersecting areas,
without considering fire severity. The results for the PLS-DA model, ANN model, and 1-D
CNN applied to the same data (Figure 7b–d) show that 1-D CNN has better classification
performance (higher CCR and lower FDR in Figure 7).

The results of the experimental (control) dataset in Figure 8 show the rates of success
for PLS-DA, ANN, and 1-D CNN. The PLS_DA had the lowest performance rate, and 1-D
CNN applied to the same data improved classification performance. The greatest confusion
in 1-D CNN was within the second class (10% TC) with a success of 91.4%.

The 1-D CNN results were compared with the severity map calculated by the CI
(Figure 9). The area of the charred surface was similar indicating the extent of burning in
the surface organic layer. The CI corresponded to the presence of light-colored ash, which
indicates that the fire completely combusted the organic material. However, the ash, unlike
char, was misclassified and mixed with rocks, as the index was only based on color. The high
degree of flattening/coarseness in severity data makes it relatively less useful than UAS
data, compared to the developed TC model. This is mainly due to the fact that the remote
sensing indices were primarily developed for coarser spatial resolution, therefore have
a negligible response to higher resolution data. According to Figures 9 and 10, it is clear
that both BAI and CI indices are not informative and too rough (e.g., no details, generally
patchy representation) for UAS-based multispectral data, which can quantitatively map
biochemical properties using appropriate spectral information and high-resolution imagery
data, as shown in Figure 9.
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Figure 7. TC classification performance of models on the experimental (control) dataset (8 of 22 two
sites of 2 m2, were test sites and one selected subplot was plotted) by (a) BI, (b) PLS-DA, (c) ANN (d)
1-D CNN, according to five classes: 20–17% (cyan), 17–16% (yellow), 16–15% (blue), 15–14% (green),
14–10% (red) on multispectral calibrated RedEdge-MX Micasense image.

Figure 8. Confusion matrix for TC classification maps produced by (a) PLS-DA, (b) ANN, (c) 1-D
CNN models on the control dataset (eight subplots) using multispectral calibrated RedEdge-MX
Micasense images.

Figure 9. 1-D CNN based TC (a) five class map: 20–17% (cyan), 17–16% (yellow), 16–15% (blue),
15–14% (green), 14–10% (red), versus the CI (b) severity categories: very high (blue), high (yel-
low), moderate (cyan) and low (orange), performed on a multispectral calibrated RedEdge-MX
Micasense image.
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Figure 10. 1-D CNN based TC (a) five class map: 20–17% (cyan), 17–16% (yellow), 16–15% (blue),
15–14% (green), 14–10% (red), versus (b) continuous stretched quantitative mapping of TC content
(blue to red–10% to 20%).

The results of urban wildfire ROIs in Figure 11 show similar rates of success, PLS-
DA had the lowest performance rate, and 1-D CNN applied to the same data improved
classification performance. The greatest confusion was between the second and the third
classes in both PLS-DA and ANN models (10% to 15% TC).

Figure 11. Confusion matrix for TC classification maps produced by (a) PLS-DA, (b) ANN, (c) 1-D
CNN models on the urban wildfire test dataset (11 subplots) using multispectral calibrated RedEdge-
MX Micasense images from four classes: (1) <10%, (2) 10–14%, (3) 14–15%, (4) >15%.

The 1-D CNN continuous stretched quantitative mapping of TC content shows a
strong linear and even stronger polynomial correlation in four fire severity categories (very
low to high), but not for the very high fire severity category (Figure 12). A positive linear
and second-degree polynomial relationship between the suggested method and the CI
fire severity and the fact that high severity fire was not observed in the field verified the
spectral model accuracy as a metric of actual fire severity.

The burn severity map based on CI calculated using brightness data was compared
with the proposed TC content model using the full urban wildfire scene (Figure 13). The
coarseness of severity categories and their general patchiness versus highly detailed and
more accurate (according to the confusion matrix in Figure 10) TC content map is illustrated.
However, it is important to note that both methods could recognize and extract the burned
area equally well, without getting confused by the living biomass, in particular trees
and shadows.
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Figure 12. Average TC content (with standard deviation STD) for each severity category based on
the intersection between the CI severity categories and 1-D CNN continuous stretched quantitative
mapping of TC content. The dashed grey line shows the linear correlation (R2 0.95 with p-value 0.0004)
and the dotted black line shows a second-degree polynomial function (R2 0.98 and p-value 0.000)
between TC content and Severity Category up to High-Severity.

Figure 13. UAS-based orthophoto with vegetation layer (in green) calculated by (a) NDVI index,
(b) CI severity categories: very high (maroon), high (sea green), moderate (cyan), low (yellow), very
low (blue), (c) 1-D CNN continuous stretched quantitative mapping of TC content (blue to red—5%
to 18%).

4. Discussion and Conclusions

Efforts to define and classify fire severity only began recently. All of the currently used
metrics have strengths and weaknesses when evaluating the type and magnitude of fire
effects within a specific ecosystem.

The main disadvantage of the most widely held remote sensing approach, known
as the spectral indices, is its moderate accuracy for mapping the post-fire environment
in general, and fire severity of a single fire in particular (60–70% accurate compared to
field validation [38,39]). Furthermore, since, fire severity indices differentiate between
photosynthetic and non-photosynthetic ground targets they are considering many pre-
fire conditions (e.g., vegetation structure, moisture, soil type, and topography [43,44]).
The main advantage is that those indices are generally accepted as robust methods for
determining fire scars in the landscape and assessing the recovery of the vegetation [40–42]
with a limited ability to demonstrate the spatial variability and patchiness. However, all
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the efforts categorizing the values of spectral indices into standardized severity groups are
mostly coming to failure.

Our study demonstrates that TC can be mapped with high accuracy (mean accuracy
of 93% across all classes) using a spectral model derived from multispectral calibrated
RedEdge-MX Micasense images with 1-D CNN. In addition, classification accuracy was
very high (>95%) for unburnt and higher severity classes but slightly lower for the lower
severity classes (83–88%). These findings agree with previous studies using satellite imagery
(Landsat and Sentinel 2), showing that machine learning classifiers are well suited to the
broad-scale mapping of fire severity with remotely sensed imagery [48,72,73]. However,
even the most recent studies are not sensitive to local scale and spatial patchiness [74,75].

The practical application of the severity maps in fuel assessment and fire behavior
analysis requires a clear understanding of how mapping approaches perform across differ-
ent severity classes. Using spectral information and 1-D CNN classification of UAS-based
multispectral imagery reflectance, our approach produced a highly accurate map of un-
burnt and high severity wildfires in landscapes with high to moderate canopy density and
variable topographic roughness.

The study in [7] emphasized the limited ability of remote sensing to predict ecosystem
response and recommended using field studies to improve the interpretation of ecosystem
responses from severity levels acquired using remote sensing. Our study shows that
estimating post-fire severity with color or CI does not give a complete and accurate picture
as areas classified as very high severity by ash color were not necessarily associated with
extremely high burning temperatures and in fact, were wrongly categorized.

The higher spatial resolution of UAV multispectral data allows detailed mapping with
almost no unmixing effect. The high spatial resolution improves the classification of low
severity fire in areas with a dense canopy. Advanced ML in 1-D CNN helped overcome the
limitations of the pixel-based approach used in this study, particularly for improving the
classification of low and moderate severity fires.

The proposed TC content model applied to UAV multispectral imagery offers an
alternative to satellite-based approaches (calculated via spectral/vegetation indices) to map
fire severity.
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