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Abstract: Precipitation type is a key parameter used for better retrieval of precipitation characteristics
as well as to understand the cloud–convection–precipitation coupling processes. Ice crystals and water
droplets inherently exhibit different characteristics in different precipitation regimes (e.g., convection,
stratiform), which reflect on satellite remote sensing measurements that help us distinguish them.
The Global Precipitation Measurement (GPM) Core Observatory’s microwave imager (GMI) and
dual-frequency precipitation radar (DPR) together provide ample information on global precipitation
characteristics. As an active sensor, the DPR provides an accurate precipitation type assignment,
while passive sensors such as the GMI are traditionally only used for empirical understanding of
precipitation regimes. Using collocated precipitation type flags from the DPR as the “truth”, this paper
employs machine learning (ML) models to train and test the predictability and accuracy of using
passive GMI-only observations together with ancillary information from a reanalysis and GMI surface
emissivity retrieval products. Out of six ML models, four simple ones (support vector machine, neural
network, random forest, and gradient boosting) and the 1-D convolutional neural network (CNN)
model are identified to produce 90–94% prediction accuracy globally for five types of precipitation
(convective, stratiform, mixture, no precipitation, and other precipitation), which is much more
robust than previous similar effort. One novelty of this work is to introduce data augmentation
(subsampling and bootstrapping) to handle extremely unbalanced samples in each category. A careful
evaluation of the impact matrices demonstrates that the polarization difference (PD), brightness
temperature (Tc) and surface emissivity at high-frequency channels dominate the decision process,
which is consistent with the physical understanding of polarized microwave radiative transfer over
different surface types, as well as in snow and liquid clouds with different microphysical properties.
Furthermore, the view-angle dependency artifact that the DPR’s precipitation flag bears with does
not propagate into the conical-viewing GMI retrievals. This work provides a new and promising way
for future physics-based ML retrieval algorithm development.
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1. Introduction

Surface precipitation comes with different dynamical and microphysical mechanisms.
Take two major types of precipitation—convective and stratiform—as an example, con-
vective precipitation is characterized by a strong upward motion, high intensity, large
hydrometeor particles, and small areal coverage. On the other hand, stratiform precipi-
tation usually forms in relatively less turbulent environment, has low intensity, contains
large snow aggregates, and has large areal coverage. Observations and global model
simulations suggest they contribute to about 60% and 40% of the global total precipitation
amount, respectively, (e.g., [1,2]). There also exist mixtures of both precipitation types and
precipitation that can be classified as neither of the two (such as anvil cloud precipitation).

Being able to discriminate between these two types of precipitation has many ap-
plications in weather forecasting and climate research. From the modeling perspective,
separating precipitation types correctly can help better understand the diurnal cycles
of each one, which allows us to conduct direct comparisons with global climate model
simulations [3]. From a remote sensing point of view, a high-quality classification of pre-
cipitation scenes is the first step for precipitation rate retrieval from measurements. This
is because different microphysics assumptions need to be made to convert the measured
variables (e.g., radar reflectivity, radiance, etc.) to the physical quantity (e.g., precipitation
rate). Both active and passive microwave remote sensing measurements are sensitive to
cloud and precipitation’s microphysical properties. For active sensors such as the DPR
onboard NASA’s Global Precipitation Measurement mission’s Core Observatory (GPM),
the operational algorithm first determines whether its profile has precipitation hydrome-
teor or not, and then further determines if a bright band exists or not, which is equivalent
to the identification of stratiform precipitation. Different coefficients are then applied to
retrieve precipitation rate as the former is a necessary input to the hydrometeor melting
model [4,5]. For passive microwave (PMW) sensors such as the microwave imager (GMI)
onboard the same GPM Core Observatory satellite, although precipitation type is not yet
in its GPM-GMI Radiometer Precipitation Profiling (GPROF) product yet, some recent
research indicate that pregrouping according to different weather systems or atmospheric
stabilities (e.g., convective available potential energy, or CAPE) could potentially improve
the precipitation rate retrieval [6,7].

Researchers have previously tried to separate convective and stratiform precipitation
from PMW radiance observations (e.g., [8–11]). The first three works strove to understand
the brightness temperature (TB) differences between convective and stratiform pixels at low
microwave frequencies (19, 22, 37, and 85 GHz) from the Tropical Rainfall Measurement
Mission microwave imager (TRMM-TMI) measurements, while the last one used GPM-GMI
and DPR datasets similar to ours but with a Bayesian deep learning approach. It is also
worth mentioning that [8,9] are among the few earlier works that associate the 85 GHz
vertically and horizontally polarized radiance difference in the delineation algorithm.
TRMM (TMI/precipitation radar) is the predecessor of GPM (GMI/DPR). Either TRMM-
PR or ground radar is used as the “truth”, and the TB patterns are associated with the
references in a statistical way.

Machine learning/artificial intelligence (ML/AI) has gained a lot of attention over
the last decade with the recent boom of big data. ML techniques are able to tackle higher-
dimensional nonlinear problems without requiring explicit supervisions. ML/AI ap-
proaches have been trending in atmospheric science applications in recent years. This
trend has spread to the retrieval algorithm development for spaceborne passive sensors
after the deployment of spaceborne active sensors such as cloud profiling radar (CPR)
on CloudSat satellite, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on
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CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite,
and GPM-DPR. For example, ref. [12] developed a random forest (RF) model for predicting
MODIS ice cloud flag using collocated MODIS–CALIPSO observations as the training
dataset and a CALIPSO ice cloud mask as the “truth” flag. Ref. [13] recently developed
a neural network (NN)-based cloud-aerosol discrimination algorithm for the Advanced
Himawari Imager (AHI) on board the Himawari-8 geostationary satellite using collocated
AHI–CALIPSO observations as the training dataset and a CALIPSO cloud/aerosol type
mask as the "truth” flag. Ref. [14] developed a random forest model for predicting ice
cloud flag from multiple passive microwave sensors using collocated PMW–CloudSat
observations as the training dataset and a CloudSat ice cloud mask as the “truth” flag.
Efforts on precipitation flag classification, especially for convective and stratiform classes,
have also been carried out previously with ML techniques for PMW (e.g., [11]) and passive
visible/infrared sensors (e.g., [15,16]).

Compared to cloud, aerosol, and atmospheric gas that are ubiquitous globally, pre-
cipitation happens much less frequently. Treating the highly imbalanced training dataset
imposes a challenge to this work. A similar effort has been carried out by [17] before,
using a deep neural network (DNN), where they arrived at a 98% accuracy rate for strati-
form precipitation class assignment using GMI, but only a 39% correct rate for convective
precipitation class prediction. A follow-up study [11] paid more attention to tuning the
DNN approach by providing a Bayesian-based uncertainty estimation. Inspired by those
pioneer studies, this work evaluates extensively different ML models and different data
augmentation techniques as well as different training attributes (or features). The goal is to
generate a GMI-only precipitation type retrieval product that is not only consistent with the
DPR’s retrievals in five precipitation type classes (see the next Section for details of these
five classes) , but also consistent with the physical understandings of radiative transfer
processes at MW frequency.

2. Data, Models, and Methodology
2.1. Data and Preprocessing

Data used for the project came from NASA’s Global Precipitation Measurement (GPM)
mission’s Core Observatory. The Core Observatory has two instruments: the GPM mi-
crowave imager (GMI) and a dual-frequency precipitation radar (DPR). As a passive sensor,
the GMI data make up the features for training, while the active sensor DPR provides
the “truth” label for precipitation type classification. The goal is to develop a GMI-only
precipitation type product. Note that the definition for “precipitation type” in this paper
corresponds to the “rainfall type classification” (stratiform, convective, etc.) term used in
some of the previous works.

Since they are on board the same satellite, we can always identify for every DPR’s pixel
a collocated GMI’s footprint, and hence it is easy to produce a large number of training and
validation data records. However, it is important to acknowledge the differences in swath
width, viewing geometry, and footprint size between them. As shown in Figure 1, DPR’s
scan is cross-track, and has three modes, which are normal scan (NS; green), matched
scan (MS; blue), and high-sensitivity scan (HS; red). NS and HS are from Ku-DPR and
Ka-DPR, respectively, while MS is the mode of dual-scan. Because of the Nyquist scan
design, DPR’s footprint size is kept at ∼5 km. Correspondingly, there are three sets of
precipitation type flag products. For this project, the NS precipitation type retrieval product
(Version 05B) was used as the “truth”. The detailed retrieval procedure can be found in [18].
To summarize, a unified V- and H- method was employed for the Ku-DPR precipitation
flag assignment to make the best use of the bright-band feature and convective feature
from the radar reflectivity profiles [19,20]. Three types of precipitation flags were retrieved
in the NS product: stratiform, convective, and other. Although theoretically speaking, the
MS mode should produce the highest-quality precipitation flag, we had three reasons to
justify using the NS mode product. Firstly, the NS has the widest cross-track coverage
(245 km versus 120 km in the HS/MS scan), hence it produces more collocated samples
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with GMI. Secondly, the minimal detection threshold for Ku-DPR is 15.46 dBZ, which is
only slightly higher than the 13.71 dBZ threshold for MS [4]. Thirdly, Ku-band is more
sensitive to precipitation-sized hydrometeors than the Ka-band. Its precipitation flag is
hence likely more closely associated with ground precipitation per se.

GMI is a conical-scanning passive microwave (PMW) imager with a fixed scan angle
of 48.5◦. Each scan produces 221 footprints covering a swath width of 931 km for low-
frequency channels (10–89 GHz) and 826 km for high-frequency channels, as shown by
the light blue ovals in Figure 1. GMI’s Level-1CR (Version 04) product contains calibrated
and coregistered brightness temperature (Tc) measurements which resolve the footprint
size discrepancies between low-frequency and high-frequency channels [21]. Therefore,
in Level-1 CR data, the effective footprint size for GMI is 4.4 km× 7.2 km, and the swath
width is 826 km, which is still ∼4 times as wide as the NS scan. This means that GMI has
a much higher chance of capturing a full weather system in its different evolution stages
compared to DPR (see Section 4 for an example).

Figure 1. Illustration of GPM–GMI, GPM–DPR and CloudSat radar viewing geometry. Adapted from
Figure 1 in Ref. [22]. See text for detail.

As shown in Figure 1, each GMI’s footprint overlaps with multiple NS footprints.
In this study, we further loosened the collocation and coincidence threshold to 6 km and
90 s to allow some fuzzy logic (FL) learning. If multiple DPR footprints fell within a
GMI’s footprint according to the above threshold and they agreed on the precipitation
type assignment, the GMI’s footprint was assigned with the same type, i.e., stratiform,
convective, or other. A fourth precipitation type category called “mixed” was hence created
when multiple DPR flags inside one GMI collocation footprint disagreed with one another.
Therefore, this category actually included various scenarios (e.g., nonprecipitating + con-
vective, stratiform + convective, etc.). A further deep learning algorithm is in development
to learn how to predict subcategory flags for “mixed” precipitation scenes. In this study, we
targeted five main precipitation type categories, which are enumerated as (0) nonprecip-
itating; (1) stratiform; (2) convective; (3) other; and (4) mixed. One year of collocated
GMI-DPR data (2016) was used for training (among which 12 days of data were randomly
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sampled for validation) and another year (2017) was used for independent testing. Every
three days were sampled for training and testing due to limited computational resources.
As one can clearly see from Figure 1, training was only performed on the narrow swath
(green circles), while prediction happened for every GMI’s L1-CR footprint (blue ovals). Yet
the training sample size was about 37.8 million, large enough to cover all weather scenarios.
We then used the entire 2017 GMI-only prediction to study the climatology of precipitation
flag distribution (Section 4). Since the training only utilized one year of data, we did not
expect the prediction to capture the interannual variability, which was beyond the scope of
this research.

Although the DPR was used as the “truth”, its quality was not assessed globally but
rather only against a few ground validations (e.g., [4,23,24]). Further, it inherently had a
view-angle-dependent artifact at off-nadir views due to the surface cluttering effect [25].
This is a known issue for spaceborne radar. We show in Section 3.4 that this artifact did
not propagate into GMI-only predictions because of its conical scan geometry. This new
finding adds more merits to GMI-only predictions. It is also worth noting the view-angle
discrepancy between the GMI and the DPR. The line-of-sight volume from the pushbroom
scanner GMI and the cross-track scanner DPR is inherently mismatched. This mismatch by
design introduces an extra random error that is very difficult to be quantified. However, in
practice, several mature algorithms/products are produced based on the assumption that
the volume is overlapped (e.g., GPM combined product; [26]). Therefore, we did not think
this mismatch would cause any major issues for this current exercise nor did we intend to
evaluate its contribution to the final errors.

2.2. Data Augmentation

On top of using GMI’s 13 channel brightness temperature (Tc) measurements and their
location (i.e., latitude/longitude) and month of the year in order to learn the seasonality
information, we also used some auxiliary information as input features, such as the cloud
liquid water path (CLWP), total column water vapor (TWV), and 2-meter temperature
(T2m). They came from a collocated and coincident MERRA-2 reanalysis dataset using the
nearest-neighborhood method. Two unique variables were introduced in this study, the
polarization difference (PD, Section 2.2.1) and the surface emissivity (Emis, Section 2.2.2),
totaling 18 new input features. They are listed in Table 1. All variables were normalized
and unitless before training.

Table 1. Features used as input (* = hand-engineered feature; ** = retrieval using GMI TB [27]).

Feature Name No. of Variables Channel Info Data Source Note

Tc
GMI bright-
ness tempera-
ture

13

10V, 10H,
18V, 18H, 23,
36V, 36H, 89V,
89H, 166V,
166H, 183/3,
and 183/7
GHz

L1-CR Obser-
vation Ref. [21]

* PD
GMI po-
larization
difference

5 10, 18, 36, 89
and 166 GHz

L1-CR Obser-
vation Ref. [28]

** Emis Surface Emis-
sivity 13 Same as 1st

row Retrieval Ref. [27]

CLWP Cloud liquid
water path 1 MERRA-2 Auxiliary

TWC Total column
water vapor 1 MERRA-2 Auxiliary

T2m 2meter Tem-
perature 1 MERRA-2 Auxiliary

Lat/Lon Latitude/
Longitude 2 L1-CR Obser-

vation
Rounded to
integer

Month Month of the
year 1
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2.2.1. Polarization Differences

The main motivation behind creating hand-engineered features was to try to manually
construct associations between variables which may prove to be useful in training the
machine learning model. Polarization difference, or PD, was the most important hand-
engineered feature for this training exercise. PD was defined as

PD = TcV − TcH |channel f requency

where TcV (TcH) is the Level-1CR brightness temperature observed at vertically (horizon-
tally) polarized channel. For GMI, there were a total of 5 channel pairs that had PDs, which
were at 10.65, 18.7, 36.5, 89 and 166.5 GHz. An example of the PD distribution collected
from a random day is given in Figure 2 for 89 and 166 GHz, where we see considerable
differences between the distributions for different precipitation types. The disparity is
especially pronounced between the PD166GHz distributions under stratiform (blue) and
convective (orange) scenarios. Ref. [28] previously found that large PD values at these two
channels with medium cold Tc values were explained by scattering from a layer composed
of large horizontally oriented snow, which could only happen in the stratiform regime.
Ref. [29] further identified PD’s positive association with stratiform precipitation occurrence
as well as precipitation strength. Ref. [8] in the TRMM (Tropical Rainfall Measurement
Mission; the predecessor of the GPM mission) era explored the use of 85 GHz PD for
detecting stratiform rain from TRMM’s microwave imager (TMI; the predecessor of GMI)
observations. As is shown in Section 3.3, PD89GHz and PD166GHz are proved again from an
ML/AI perspective to be substantial factors in accurate precipitation type prediction.

Figure 2. Density distribution of PDs by precipitation types at (a) 89 GHz, and (b) 166 GHz from one
day global GMI-DPR observations on 1 January 2017.

2.2.2. Surface Emissivity

Surface Emissivity is a notoriously known to “contaminate” precipitation retrievals for
PMW sensors as MW can penetrate through a top layer of land surfaces. It is particularly
challenging to retrieve precipitation over snow-covered surfaces or certain desert surfaces
because the signals they emit often exhibit similar features to precipitation [30]. Even for
ocean surface where emissivity is relatively well understood, physics-based emissivity
models often require a variety of inputs (e.g., ocean surface wind) that are usually not
readily available or of poor quality (e.g., reanalysis data). For example, the GPM team
currently uses an empirical surface emissivity model called TELSEM (Tool to Estimate
Land-Surface Emissivities at Microwave frequencies) [31] for their precipitation product.
This model uses a clustering approach to identify self-similar adjacent pixels on spatial and
temporal grids from Special Sensor Microwave/Imager (SSM/I) observations to empirically
retrieve surface emissivity from 19 to 89 GHz. For GMI, this means 10, 166, and 183 GHz
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emissivities are extrapolated; further, the spatial and temporal resolution is too coarse for
GPM’s precipitation retrieval.

A recent work by [27] applied an optimal estimation (OE) approach to retrieve clear-
sky emissivity from GMI’s clear-sky Tcs. The clear-sky flag was jointly determined by GMI,
DPR, and MERRA-2 data. This emissivity database provides pixel-by-pixel land surface
(including snow-covered and sea-ice-covered surfaces) emissivity retrievals at every GMI
channel, and are hence easily adaptive features in our study. For precipitation- and/or
ice-cloud-affected pixels, a larger χ2 value is produced that indicates a larger error in the
emissivity retrieval. Liquid cloud also brings a negative impact on the emissivity retrieval
error, so MERRA-2’s cloud liquid water path (CLWP) was also included in this product for
users to screen out potential liquid-cloud-impacted scenes. Note that CLWP was included
as one of the 37 features as shown in Table 1, which should work as a liquid-cloud screening
flag within the machine learning process.

One could argue that this emissivity database is a repetitive use of Tc information and
hence should not have been included in the features. Our rationale to include emissivity
was as follows. Firstly, χ2 values were not included in the input features, so we were
not repetitively using any existing precipitation or cloudy-sky flag information that was
otherwise indicated by large χ2 values. Secondly, surface-induced PD signals are often
hard to differentiate from cloud-induced PD signals, especially for low-frequency channels.
Emissivity data over clear-sky pixels could help differentiate them. We elaborate more
in Sections 3.2 and 3.3 about the reasons why emissivities are among the top factors in
determining a precipitation flag. Furthermore, a sensitivity experiment was carried out in
Section 3.2 to remove emissivity as the input feature. As is shown in Section 3.2, removing
emissivity had some marginal benefit for simple ML models, elevating the accuracy rate
of “other” type but decreasing the accuracy of “convective” as a trade-off. For a more
sophisticated model such as CNN, the impact is rather trivial.

2.2.3. Sample Balancing

A challenge we had in this work was that some classes (i.e., no precipitation and
mixed) had a notably higher number of data samples than other classes. The total number
of samples under each precipitation type is shown in Figure 3 as blue bars (note that the
vertical axis is in a log-scale to amplify the small sample size for “convective” and “other”
types). This class imbalance could significantly compromise the process of learning because
the model tended to focus on the prevalent class and to ignore the small classes with much
less data samples. The scarcity of data from small classes resulted in poor estimates of the
model’s accuracy of those classes.

To address the class imbalance problem, we used the random majority undersampling
method [32] to reduce the class size by randomly removing data samples from the big
classes (i.e., no precipitation and mixed). In addition, we used a smoothed bootstrap-
resampling-based technique [33] to rebalance the class distribution for this imbalanced
dataset. Essentially, we drew from the training dataset an example from each small class (i.e.,
“convective” and “other”) to generate a new example in its neighborhood, and retrained
the models until the recall of the small class was maximized. The rebalanced sample size
is shown as orange bars in Figure 3. Note that this rebalancing process was tuned to
holistically maximize the accurate prediction rate for all 5 classes for the CNN model, while
it was not necessarily the best choice for other simple ML models.
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Figure 3. Number of samples under each precipitation type from the training dataset from the
original (blue) and after rebalancing (orange) for the entire training dataset.

2.3. Machine Learning Models

For this project, we trained and evaluated 6 different machine learning models, which
were support vector machine (SVM), logisitic regression (LR), random forest (RF), gradi-
ent boosting (GB), neural network (NN) and convolutional neural network (CNN). The
former 5 models were trained, tuned, and evaluated using the Python scikit-learn pack-
age, while the CNN was constructed using the Python tensorflow package. The working
mechanism/philosophy behind these models are briefly described below.

The support vector machine (SVM) model uses a subset of the training data, known as
support vectors, and applies the combination of a kernel with a modified loss function to
make predictions. The SVM was originally designed for binary classification but can be
extended to multiclass classification as in our case via the one-versus-the-rest approach to
maximize the margin from each to the remaining classes. The logistic regression model
uses a logistic function to model the features and class variables by minimizing the sum
of the squares of the residuals for each data sample in the training set. With a goal to
reduce the variance of the prediction, the random forest, proposed in [34], trains different
decision trees on different subsets of the training data, chosen randomly with replacement,
and then computes the ensemble. It tries to decorrelate the base learners based on a
randomly chosen subset of input variables. Such models often have very good predictive
accuracy [35]. Moreover, we trained a multilayer perceptron model, a class of feedforward
neural networks that use backpropagation for training in this work. We also trained an
XGBoost model, a parallel gradient-boosted decision tree model that uses decision trees as
weak prediction models in gradient boosting [36].

Convolutional neural networks (CNN) are specific types of neural networks that
contain convolutional layers. They are based on the idea of transforming the input data
with a set of differentiable operations with feature extraction, which allows them to learn
meaningful representations of the data. In this work, we used a CNN composed of three
types of layers: convolutional layer, max-pooling layer, and fully connected layer. The
high-dimensional input data were fed to the convolutional layers and max-pooling layers.
The last pooling layer replaced the output of the network at certain locations by deriving
a summary statistic of the nearby outputs. This helped reduce the spatial size of the
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representation, which decreased the required amount of computation and weights. Then,
the low-dimensional features were fed to the fully connected layers. Neurons in that layer
had full connectivity with all neurons in the preceding and succeeding layers as seen in
regular feed-forward neural networks.

3. Results

In this section, the statistical metrics from the testing datasets are first presented, and
two models with the highest overall accuracy—GB and CNN—are selected for generating
the final predictions. The final predictions from the full-swath GMI observations were
evaluated from multiple perspectives, including their consistency with physical under-
standings, their view-angle dependencies, their performance on a single weather event,
and their climatological distributions.

3.1. Prediction Accuracy

Two metrics were used for evaluating the model performance, the overall accuracy
and the area under the ROC curve (AUC ROC). The overall accuracy was calculated by
dividing the total number of correct predictions over all types by the total number of
predictions (the number of data samples in the testing set). The AUC ROC score is a metrics
to better evaluate the performance of a classifier, especially for highly imbalanced data [37].
The AUC ROC score for a classifier ranges from 0 to 1, where a score of 0.5 is given to a
random classifier. From Table 2, we can clearly see that the CNN produced overall the
highest accuracy (93.53%). Four out of the five relatively simple ML models achieved
similar accuracy at ∼90%, while the LR model performance was the lowest. As the GB
model comes with explicit ranking of feature importance (Section 3.3) and it produced the
second highest accuracy score, CNN and GB were selected for producing further statistics
for comparison.

Table 2. Comparison of prediction accuracy (%) and area under ROC curve (AUC ROC) from different
ML/AI models tested. Three models that achieved the highest accuracies are highlighted in bold,
and all results shown below are from these three models.

Classifier Overall Accuracy (%) AUC Score
Support Vector Machine (SVM) 91.15 N/A
Logistic Regression (LR) 76.07 0.8995
Gradient Boosting (GB) 93.31 0.9672
Random Forest (RF) 89.99 0.9594
Neural Network (NN) 93.56 0.9661
Convolutional Neural Network (CNN) 93.53 0.9678

A further evaluation of the distribution of the accuracy (number of correct prediction
out of total predictions) and misclassification rate in each precipitation category revealed
that the accuracy rate was the highest for nonprecipitation scenes (top left cells in Figure 4).
This is understandable from a physics point of view, as it is a relatively easier task to
separate precipitating and nonprecipitating scenes, especially considering that more than
half of the latter contained clear-sky pixels that were reflected by warmer Tcs at high-
frequency channels. This fact is also expected from a computer science point of view, as
ML model evaluations were carried out on sample-size weighted metrics in every layer,
where nonprecipitation pixels still occupied the majority of samples even after rebalancing
(Figure 3). We can also notice that although the deep learning model CNN produced only
a slightly higher overall accuracy rate, it outperformed other simple ML models in the
“other” precipitation category significantly.
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Figure 4. Confusion matrices to show the numbers of samples that are accurately predicted (along
the diagonal) or misclassified using: (a) GB model; (b) CNN model.

Among the four types of precipitation, three monotype ones—stratiform, convective,
and other—had comparable accuracies (80–87%) with the CNN. Figure 4 only showcases the
results from the GB and CNN models, but the RF and NN models produced similar statistics
(not shown). The robustness of the single-type precipitation accuracy using GMI-only data
revealed that PMW like GMI could differentiate precipitation features at about 80–87%
of the scenes, as long as the footprint was occupied by the same type of precipitation.
Hence, it is important to have a small footprint size for PMW sensors, especially for
convective precipitation scenes, as the area for convective precipitation is usually small
and highly inhomogeneous. For the 16–20% scenes that were misclassified, features from
them were likely ambiguous and a confident classification could not be made. For example,
misclassified convective scenes were often assigned to the “stratiform” or “mixed” classes,
which likely happened at the boundary of a convective cell and stratiform layer for weather
systems such as mesoscale convective systems (MCSs) or winter frontal systems, while
it was unlikely to be assigned to the “other” type, as the “other” precipitation is mainly
associated with anvil clouds that are high in altitude and relatively thin in thickness, which
hence usually produces less depression in the Tc signal for the GMI channels [29].

The ML models can produce class probabilities in addition to class labels. In practice,
we did not set a rigid threshold of probability to select the predicted class, but rather chose
the one with the highest probability output, which is a normal fashion. In Figure 5, we
reported the probability distribution for each class produced by the CNN model for the
ones that were correctly (a) and wrongly predicted (b), respectively. Note that the negative
value at the left tail of Figure 5b resulted from a plotting package artifact, while the true
value was always between zero and one. One can see that apparently, the “mixed” type was
the hardest to predict, as the CNN model was not very confident even when the prediction
was correct by giving a probability value between 0.3 and 0.6. This was mainly because
we assigned all GMI’s footprints with multiple DPR’s precipitation flags to this category,
which was apparently not an optimal way for the classification. The confidence of the
prediction in this category was also the lowest (purple line in Figure 5). We are currently
exploring the optimal way of subgrouping under this “mixed” class. Other than this class,
we can see the probability is a good measure of the confidence of the model performance
for the other four categories.



Remote Sens. 2022, 14, 3631 11 of 23

Figure 5. Distribution of probabilities for each precipitation type class produced by CNN model for
(a) correct predictions and (b) incorrect predictions. Density corresponds to the absolute occurrence
rate among all situations.

Different from the probability, the uncertainty provides another measure of the qual-
ity of the prediction. Existing approaches based on Bayesian deep learning capture ei-
ther aleatoric uncertainty or epistemic uncertainty for different tasks, e.g., in computer
vision [38] and precipitation type classification [11,39]. These uncertainties are formalized
as probability distributions of the model parameters and model outputs. As we did not
employ a Bayesian model in this study, instead we employed a non-Bayesian approach.
Ref. [40] showed that non-Bayesian solutions can produce good predictive uncertainty
estimates on many tasks including classification task. We followed the notion of expected
calibration error (ECE) in [40] as a measure of our model’s uncertainty. Specifically, ECE
approximates the difference in expectation between a model’s confidence and accuracy. An
ECE score runs between zero and one, with zero meaning the model is well-calibrated, as
confidence closely approximates the expected accuracy. On the other hand, if ECE is close
to one, the model is not highly confident about its prediction even if the model’s accuracy
is better. One can see from the last column of Table 3 that the ECE scores were close to
one another among different models with adding or removing the emissivity inputs (see
the following section for the sensitivity experiment). This means there was no significant
difference regarding the model’s confidence. All three models listed in Table 3 had good
performance in terms of both classification accuracy as well as ECE score.

Table 3. Accuracy rate (%) with including emissivity and without emissivity in the training process
for each precipitation class for GB, RF and CNN model from independent tests. The uncertainty
score using the ECE method is listed in the last column, where we did not compute the score for
“CNN-emis” model. See text in Section 3.1 for details of the uncertaincy calculation.

Classifier Non-Precip
(%)

Stratiform
(%)

Convective
(%) Other (%) Mixed (%) Overall

Accuracy (%) ECE Score

GB + emis 97 90 79 44 25 93.29 0.557
GB − emis 97 87 83 76 20 92.78 0.554
RF + emis 92 85 74 43 45 89.99 0.547
RF − emis 94 86 73 66 36 91.29 0.553
CNN + emis 98 83 87 80 18 93.53 0.555
CNN − emis 97 86 86 80 15 92.68 –

To summarize, GMI-only prediction worked exceptionally well at distinguishing non-
precipitation and precipitation scenes (>97% accuracy rate for predicting a nonprecipitating
scene). For precipitation scenes, GMI-only prediction worked for 80–87% of the cases when
its footprint was occupied by one single type of precipitation if a CNN model was em-
ployed. It worked poorly when the footprint had large inhomogeneity or at the transition
boundary between two major types. The latter point is demonstrated later by a weather
event study in Section 4.
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3.2. Sensitivity to Surface Emissivity

As emissivity was a new hand-engineered feature included in the training, it was
necessary and beneficial to test how sensitive our trained models were with respect to these
variables. The confusion matrices for the GB, RF and CNN models without emissivity
are shown in Table 3. The overall accuracy change for every of the six ML models was
less than 1% (only GB, RF and CNN results are shown). However, we can see from
the statistics that excluding emissivity particularly further downgraded the capability of
differentiating the signature for the “mixed” class category (numbers with underlines). For
the CNN, the prediction accuracy for the other four monotype classes remained robust.
Interestingly, however, for the other five simple ML models, prediction for the “other” type
was significantly improved if the surface emissivity database was excluded for the training
(bold numbers), while the other three monotypes remained robust.

Although it was a simple sensitivity test and we did not try to exclude emissivity at
each channel one-by-one, the results were indicative of at least two important implications.
Firstly, the fact that all six ML models remained robust in producing a high accuracy rate
for the “nonprecipitation”, “stratiform” and “convective” classes indicates that these three
monotypes were well separated in terms of the Tc features in the multidimensional space.
Such a separation is hard to model with radiative transfer models (RTMs) as hydrometeor
scattering and absorption involve great variability and uncertainties; instead, even simple
ML models can capture the feature separation easily. Second of all, the benefit of including
surface emissivity in the training process is rather hard to determine. There is enough hint
that including surface emissivity helps better identify the “mixed” class from the other
types. However, the degradation and sensitivity of the “other” class from all five simple
ML model to surface emissivity features suggests that the emissivity product itself might
not be good enough to separate light precipitation against surface emissions. The deep
learning CNN model was the only one among the six ML models that stayed robust against
adding or removing emissivity in the training features.

3.3. Rank of Importance and Corresponding Physics Mechanisms

As described in Section 2.2, one of the most important novelties of this work is to
include the PDs and retrieved surface emissivity for the training and prediction, both of
which come with a solid radiative transfer theoretical basis. In this section, we demonstrate
from the ML point of view how its results are consistent with the physical basis. This is a
critical step to build-up physics-consistent retrieval algorithms using an ML/AI approach
in the future.

For simple ML models such as GB and RF, the rank of the feature importance is pro-
vided together with the trained models. Feature importance refers to a class of techniques
to assign a score to each input feature that indicates the marginal importance of each feature
when a prediction is made. An RF model is essentially composed of a set of decision
trees. For each decision tree, it is made from a set of internal nodes and leaves. The nodes
determine how to divide the dataset into two different branches. The internal nodes are
the most important features, and the ranking of the feature importance helps elucidate
the important factors in the decision (or voting) process. The GB model employs a similar
decision tree process, except it tries to minimize the cost function in each layer, rather than
voting. This feature is not present in NN or CNN models. Here, only the top 15 most
important features are listed in Table 4 for the GB and RF models, with emissivity included
in the training (+ emis) and without (− emis).
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Table 4. First 15 most important features listed for the GB and RF models with (+ emis) and without
(− emis) emissivity in the training process. High-frequency channels Tcs are highlighted by bold
letters, and PDs are further underlined.

Feature Importance
Rank GB + emis RF + emis GB − emis RF − emis

1 Emis166H Emis10V CLWP TWV
2 Emis10V Emis10H Tc166HTc166HTc166H Ts
3 CLWP Emis166H Tc166VTc166VTc166V Tc89VTc89VTc89V
4 Emis10H PD89PD89PD89 Tc36V Tc183/7Tc183/7Tc183/7
5 Tc166HTc166HTc166H Tc89VTc89VTc89V Tc89VTc89VTc89V CLWP
6 Emis89H CLWP TWV PD89PD89PD89
7 TWV Emis89V Tc183/7Tc183/7Tc183/7 Tc166HTc166HTc166H
8 PD89PD89PD89 TWV PD89PD89PD89 Tc166VTc166VTc166V
9 Tc89VTc89VTc89V Ts Tc183/3Tc183/3Tc183/3 Tc183/3Tc183/3Tc183/3
10 Tc166VTc166VTc166V Tc183/7Tc183/7Tc183/7 Ts Tc89HTc89HTc89H
11 Emis89H Emis166V PD166PD166PD166 PD166PD166PD166
12 Ts Emis183/7 Tc89HTc89HTc89H Tc36V
13 Emis36V Emis183/3 Tc10V Tc24
14 PD166PD166PD166 PD166PD166PD166 Tc36H Tc10V
15 Tc166HTc166HTc166H Tc166HTc166HTc166H Tc24 Tc36H

The first difference between “+ emis” and “− emis” experiments we can observe is
the dominance of surface emissivities at 10, 89, and 166 GHz in the rank of importance if
emissivity is included. In the meantime, Tc values at 89 and 166 GHz also play some of the
most dominant roles across the board. This indicates that there is a redundancy of input
information at least for 89 and 166 GHz for surface emissivity characteristics. The original Tc
observations at these two channels contain enough distinctive surface emission and cloud
scattering/emission signatures that can help us separate the five precipitation classes. When
emissivity is removed from the input features, Tc at the 183/3 and 183/7 GHz channels
show up among the top ones. The high-frequency channels (>85 GHz) are much more
sensitive to cloud ice and snow scattering rather than rain/liquid emission [41]. In contrast,
classical PMW rainfall or liquid water path (LWP) retrieval channels (18–36 GHz; [42,43])
are not highly ranked in any of these models. All these findings strongly suggest that
the precipitation type is more closely related to the cloud regime (frozen or liquid) above
rather than surface precipitation characteristics, which is consistent with the definition of
stratiform and convective for DPR’s retrievals. A stratiform pixel is identified in DPR’s
profiles by the melting layer at ∼0 ◦C, which reflects in changes at high-frequency MW
channels and also in PDs [29]. Such a consistency suggests that an ML/AI technique can
learn radiative transfer physics internally if the information is embedded in the training
parameters, and a feature importance matrix such as that in Table 1 can be used to evaluate
the consistency and may be used for channel optimization for future instrument designs.

The second commonality we can easily observe is that PD at 89 and 166 GHz are
ranked highly on the list for all four experiments, especially when surface emissivities
are removed from the training. Furthermore, PD89GHz ranks higher than PD166GHz across
the board. The frequency band 85–89 GHz is a band that is sensitive to both liquid-water
emission and ice scattering. This complicated nonlinear feature makes it particularly
challenging to simulate cloudy-sky Tc signal at this band for RTMs. However, the ML
models successfully identified the connection between the 89 GHz PD and precipitation
type, which is consistent with the previous findings in [8,29], where they identified the
association between snow aggregates and the 85–89 GHz PD in the stratiform layer using
radiative transfer theories.

To summarize, the fact that Tcs at 89, 183/7, and 166 GHz are the top three direct
radiance observations when determining the precipitation type suggests that precipitation
type is tightly correlated with the middle troposphere snow amount and distribution, while
the high ranks of PDs at 89 and 166 GHz indicate that snow microphysics details are closely
related to precipitation type as well. It should be noted that these two variables are also
useful to differentiate surface and cloud/precipitation when Tc is relatively warm [29].
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Interestingly, the liquid cloud water amount (CLWP) from the auxiliary MERRA-2 reanaly-
sis data ranked among the top factors from all experiments, which fits into the common
sense, as the liquid cloud layer is closer in vertical distance to the surface precipitation.
The importance of the total water vapor (TWV) and surface temperature (Ts) were also
learned by the ML models to differentiate clear-sky and cloudy-sky. Surface emissivities
at 89, 166 and 10 GHz, when included, played a major role in determining a prediction.
However, as the overall prediction accuracy barely dropped or even increased for certain
types (Table 3) when the emissivity was excluded, it is temporarily concluded here that
there is some redundant information between raw Tc observations and surface emissivity
at these channels. However, further thorough investigations are needed, for example, to
understand whether including emissivity could help improve the “mixed” class prediction,
as suggested in Table 3.

3.4. View-Angle Dependency

The DPR conducts cross-track scan consisting of 49 incidence angles in the range from
−17◦ to 17◦ relative to nadir for achieving a three-dimensional precipitation measurement.
However, the measurements from off-nadir incidence angles are subject to contamination
of surface clutter, leading to the DPR’s blind zone in which precipitation measurements
are unavailable near the surface [25]. The degree of impact of surface clutter on the DPR’s
precipitation measurements near the surface depends on the incidence angle and surface
roughness. In general, the near-surface range contaminated by surface clutter increases
with an increase of the off-nadir incidence angles. This caveat poses a practical problem in
detecting shallow rain and classifying precipitation type when the bright-band/melting
layer is close to the surface [44]. Moreover, the precipitation retrieval cannot be made
without assumption in the blind zone. As the influence of surface clutter on the DPR’s
measurements depends on the incidence angle, it is expected that some of the DPR product
might exhibit angle dependence to various degrees. Therefore, it is intriguing and beneficial
to study the view-angle dependency of the GMI-only retrieval product to understand
whether the view-angle dependent artifact in the DPR product is propagated toward GMI
or not.

The GMI’s and DPR’s precipitation occurring frequency (OF) as a function of the
view-angle are shown for each precipitation type in Figure 6 for the GB model and Figure 7
for the CNN model outputs. “Wide-swath training” (Black lines in Figure 6) corresponds
to the entire NS swath, while “narrow-swath training” (blue lines in Figure 6) corresponds
to only the near-nadir 20 Ku-DPR’s footprints. The latter was a sensitivity experiment to
test whether mitigating the DPR’s precipitation flag artifact at off-nadir angles would or
would not affect the training results.

Evidently, DPR’s off-nadir artifact is clearly seen for the nonprecipitating, stratiform,
and mixed classes. These are the three most frequently occurring types globally. Luckily,
GMI did not learn this view-angle-dependent artifact because view-angle was not an
input feature for the training. Rather, for this 1D retrieval, GMI treated each DPR view
independently and hence did not propagate this error to larger oblique view angles. As a
sensitivity study, we limited the training “truth” to only the near-nadir 20 DPR footprints
(10 on each side), but the prediction results barely changed in terms of the view-angle
dependency, although there was a hint that the narrow-swath training tended to result in
predicting more stratiform and convective precipitations, while the “other” class tended to
be less predicted (Figure 6).
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Figure 6. The view-angle dependency of occurrence frequency of each precipitation type from DPR
(red), wide-swath training result using GB+emis model (black), and narrow-swath training result
using GB+emis model (blue).

Figure 7. Same as Figure 6, except using CNN model, and only wide-swath training result is shown.

Comparing the results generated from GB versus the CNN, the CNN’s prediction for
nonprecipitation scenes were closer to that of the DPR. However, if we closely inspect the
breakout from Figures 6 and 7, there is not much difference between them for stratiform,
convective, and other precipitation types, except the CNN model predicts 50% more
convective and 60% more other types of precipitation compared to GB and RF (not shown)
results. All three models overestimated the monotype precipitations, which may likely
not indicate a bias, but rather a sensitivity of GMI to light precipitation that DPR is not
sensitive to. This was also found previously in [22,27]. A future sensitivity study using the
MS as the “truth” could help better elucidate this point and quantify the difference. The GB
results overpredicted the occurrence chance for the “mixed” class while the CNN showed
the opposite result. Since the accuracy rate for the “mixed” class was low for all the models,
it was not very meaningful to compare their prediction.
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4. Application of GMI-Only Prediction on Weather and Climate Studies

The spatial and temporal distribution of each precipitation type is not only critical
for making good weather forecast and potentially useful for enhancing weather-related
warning products, its occurring frequency (OF) is also a straightforward matrix that can
be used for comparing with GCM outputs, as GCM produces convective, stratiform, and
anvil precipitation separately in each grid box [3]. In this section, we showcase the power
of using GMI-only precipitation type classification for weather and climate research.

A squall line case passed by Mali, Africa on 6 June 2017, which was captured by the
DPR and GMI. On the Ku-DPR’s retrieval shown in Figure 8a, the major squall line body,
including the front line of convective cells (green), the large stratiform tail (blue), and the
periphery anvil precipitation (orange), are well captured. We can further see another line of
convection forming at its tail that seems to propagate northwestward, and the tip of another
smaller squall line at the bottom right corner of the DPR swath. The full-swath (850 km)
GMI-only prediction using the GB and CNN models are shown in Figure 8b–d, respectively,
while the DPR swaths are bounded by the white dashed lines to ease a visual comparison.
One can clearly see the overall structure agrees very well along the overlapped swaths,
but the GMI also captures the long and complicated “goldfish tail” structure, and the
other squall line system in the lower bottom corner. Further, the GMI prediction captures
the anvil-head-associated precipitation signal ahead of the convection line (other, orange)
which the DPR missed probably due to its low reflectivity. This anvil-head precipitation
was previously identified in [29] from an ensemble collection of squall line cases that the
GMI captured but the DPR missed.

Subtle differences were identified among the three model outputs. Notably the GB-
emis model (Figure 8c) produced some convective flags in the middle of the vast area of
stratiform trailing layers which the DPR did not observe, nor did the CNN and GB+emis
models predict. A further inspection of the DPR’s vertical structure along the nadir path of
the DPR swath (Figure 9) suggests that the CNN and GB+emis model predictions were of
more fidelity for this case. As shown in Figure 9, the bright-band signature corresponding to
the stratiform precipitation is evident in scan # 2305–2330 (black box). Yet, the enhancement
of the Ku-DPR reflectivity at ∼scan #2305 indicates larger hydrometeor sizes or a stronger
melting signature, which the GMI may likely capture and the GB-emis model learned.
Besides this disparity, the GB-emis model predicted the least “stratiform” area and the most
“other” precipitation area in the periphery of the main storm, while the GB+emis and CNN
model results compared better with the DPR “truth”. We can find from this case study that
including emissivity helped improve the overall quality for mesoscale weather systems.
This is just a speculation, and extensive case studies will have to be carried out before
any conclusion can be drawn. Furthermore, all three models predicted a lot of “mixed”
pixels along the long gold fish tail, which apparently preferred to occur at the boundary of
stratiform and nonprecipitating pixels. This fact supported our speculation that the mixed
class tended to be overpredicted in a GMI-only product mainly because of the coarser
resolution of the GMI’s footprint. Overall, we can conclude again from this case study that
the three monotypes (nonprecipitating, stratiform, and convective) stayed robust against
which ML model to choose. There were subtle differences, but the underlying physics
played the dominant role. For the “other” and “mixed” classes, as the DPR has difficulties
to sense light precipitation, and our “mixed” class was not well defined, we did not expect
our model to produce very good results; nevertheless, they were still useful especially for
the “other” type using the CNN model.
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Figure 8. Precipitation types from (a) DPR “truth”; predicted from (b) GB+emis model; (c) GB-emis
model; and (d) CNN model for a squall line event on 6 June 2017. The DPR swath is marked by the
two white dashed lines in (b–d).

Figure 9. Cross-section along the center of the swath in Figure 8 from DPR-Ku reflectivity. The
area where GB-emis and CNN/GB+emis predictions have discrepancies is highlighted by a black
rectangle box.

The global distribution of OF for each precipitation type is shown in Figure 10 for
the CNN prediction for the boreal winter of 2017 (January, February, and December). The
geographic distribution of stratiform and convective precipitation OFs agrees very well
with previously reported features using TRMM-PR and GPM-DPR in the tropics and sub-
tropics ([1,45]; and Figure 11 below). As expected, stratiform precipitations are found over
tropical convection active centers as well as along the boreal winter storm tracks, while
convective precipitations are found to frequently occur in the tropical convection active
centers (i.e., Amazonia, Central Africa and West Pacific/Maritime continents). Because
of the conical-scan geometry, the GMI covers a little bit more high-latitude areas than the
DPR, and it is noticeable that stratiform precipitation occurs frequently over Southern
Ocean above the sea-ice-covered area (i.e., where MERRA-2 has a land surface temperature
retrieval), especially near the Antarctica Penninsula and McMurdo station where persistent
mixed-phase cloud and associated pockets of ice precipitation have been reported in several
ground measurement works [46,47]. Although all passive sensors have issues at snow/ice
covered surfaces, the good comparison between the DPR and GMI-only prediction over
the Antarctic sea ice suggests that high-frequency polarized passive MW measurements
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may provide some capability at distinguishing surface ice from frozen hydrometeors aloft
in the air.

Figure 10. Geographic distribution of precipitation type occurring frequency (%) over land and sea
ice during January, February and December of 2017 from CNN model predictions using full-swath
GMI’s L1-CR data for (a) stratiform, (b) convective, (c) other, and (d) mixed. Color bars correspond
to the occurring frequency in the unit of %.

Here, we found “other” precipitation also occurred quite often in the similar regions
where stratiform and convective precipitations prefer to happen, but the former generally
covered a broader area. “Other” precipitation occurred as frequently as convective and
stratiform precipitations in most of the tropical land areas. There were significant regional
differences in terms of their relative importance. For example, in maritime continents—
West Pacific area, convective precipitation occurred as frequently as stratiform precipitation,
while that was not the case at other tropical convection active areas. We can also find
convective precipitation rarely occurred over the winter storm tracks. As an extension of
the North America storm track, the Middle East winter-time precipitation nearly all came
from stratiform and “other” type of precipitations. Previous research had never reported
a distribution of “other” type of precipitation to the authors’ best knowledge, probably
because it is thought to happen less frequently due to the fact that precipitation radars such
as TRMM-PR and GPM-DPR often miss to detect them. As also demonstrated in Figure 11,
the “other” type saw by the DPR was in general one order of magnitude smaller than what
GMI saw. At this point it is still too early to associate “other” class to anvil precipitation,
but it is strongly indicated as such, and we will inspect collocated CloudSat radar echos to
further study this type of precipitation. Part of the “other” type could also be associated
with shallow convection or light precipitation that the DPR is not sensitive to.
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Figure 11. Same as Figure 10, except from the DPR “truth” during DJF, 2016 and 2017.

Another merit of this GMI-only precipitation flag product is that one can construct
and study the diurnal cycle of precipitation type. The diurnal cycle of precipitation is a
well-known challenge for climate models to represent (e.g., [2]). In the tropics and mid-
latitude summer, convection is thought to be responsible for initiating the precipitation
processes. However, the time scale it takes for the decaying/dissipation processes deter-
mines the spread area and intensity of stratiform precipitation. Hence, it is necessary and
a great benefit this product can bring to the precipitation community to separate out the
diurnal cycle of different precipitation processes. In the winter hemisphere, it is stratiform
precipitation process that dominates the surface precipitation variation, and hence it is
more meaningful to single out this type of precipitation and study it.

GPM flies on a large inclination angle (65◦) to cover high latitudes, hence it takes more
than 3 months to sample the entire diurnal cycle at different latitudes. For this consideration,
we combined June, July, and August (JJA) of 2016 and 2017 GMI-only predictions together
to generate the diurnal cycle contours for different latitude bands shown in Figure 12 for
DJF and Figure 13 for JJA. In the tropics, as well observed and reported before, convection
peaks in the late afternoon, but we can still see the peak time tends to drift toward a later
time moving away from the equator. The peak and trough of the diurnal cycle of the “other”
class follows closely with that of the deep convection with a lag of about 2–3 h. This strongly
indicates that the “other” class is associated with anvil precipitation which is subject to
the development and dissipation of the convective core. However, the decay of stratiform
precipitation takes a significantly longer time and has subtle latitudinal variations that do
not follow closely with that of the deep convection.
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Figure 12. Diurnal variation of cloud fraction (%) from GMI-only prediction during DJF, 2016 and
2017 for (a) stratiform, (b) convective, and (c) other precipitation classes, respectively.

Figure 13. Same as Figure 12, except for JJA, 2016 and 2017.

Interestingly enough, the stratiform precipitation over the Southern Ocean wintertime
(Figure 13) exhibits a distinctive diurnal cycle with peak occurrence at local night to
early morning and a quiet period of precipitation in local afternoon. This is consistent
with Macquarie Island’s ground rain gauge observations [48]. However, the summertime
(Figure 12) diurnal cycle disagrees with ground measurements in the same paper. Boreal
winter storm tracks also exhibit a weak but interesting diurnal cycle. These discrepancies
and new features warrant further investigations.

5. Conclusions

This work developed a machine learning/artificial intelligence (ML/AI) approach
to retrieval precipitation types from passive microwave (PMW) radiometers/imagers.
This approach was applied to collocated GPM-GMI and GPM-DPR data, where the latter
was used as the “truth” for training, validation, and independent testing. In principle,
this approach can be easily extended to other spaceborne PMW instruments as the DPR
overpasses frequently with polar orbiting satellites.

Different ML models were trained to classify five precipitation types and to make predic-
tions simultaneously. The five types were (0) nonprecipitating; (1) stratiform; (2) convective;
(3) other; and (4) mixed. The last class was created when the GMI footprint was filled
with multiple DPR’s footprints that did not share the same precipitation type as the first
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four. A total of six ML models were tested, and only the logistic regression model failed
to make a good prediction. Gradient boosting (GB) and the convolutional neural network
(CNN) produced overall the highest accuracy at 96.7%. Although the overall accuracy was
sample-size-weighted (i.e., total correct samples divided by total samples), the GMI-only
CNN prediction was correct 80–87% of the time when it was precipitating, and the scene
was filled with a single type of precipitation. Challenges were identified for the mixed class
as the radiance signal was rather a mixture of different precipitation categories.

Different from previous ML/AI explorations on a similar topic (e.g., [17]), this work
strove to separate nonprecipitation (>95% of the time) and precipitation scenes simul-
taneously by predicting the precipitation types, so the training dataset was extremely
unbalanced. A data augmentation was subsequently introduced to subset the nonprecip-
itation scenes and bootstrap from the “convective” and “other” sample pools. This data
augmentation technique is particularly useful for precipitation-related science as data
imbalance frequently occurs in this field.

Other than using all 13 GMI channel observations and some ancillary features from
the MERRA-2 reanalysis, the most important novelty of this work was to include hand-
engineered features—polarization difference (PD), and emissivity retrieval products. In-
cluding these attributes turned out to be extremely useful, as PDs and emissivities at
high-frequency (>89 GHz) channels were ranked among the top ones for making a precip-
itation type prediction. Simple ML models were sensitive to the emissivity by showing
a trade-off of accuracy rate between the “other” and “mixed” classes. The deep learning
CNN model remained robust with or without the surface emissivity included in the train-
ing features. We demonstrated in this paper how an ML model could learn the radiative
transfer physics internally and reach microphysics- and emissivity-consistent results. This
finding adds fidelity to use the ML/AI approach for developing retrieval algorithms.

While many of the current spaceborne PMW instruments have high-frequency chan-
nels, they barely hold the dual-polarized channel pairs nor have a pixel-by-pixel emissivity
retrieval product readily available. This poses challenges for achieving high accuracy in
predicting precipitation types from other PMW instruments using this approach, and it
will be a good exercise for future works. Other possible future working directions could
include assessing light precipitation and “other” precipitation from GMI-only predictions
against collocated CloudSat data to further understand the capability or limitations of the
GMI’s precipitation retrieval.

Besides demonstrating the advantages of using the GMI’s precipitation type retrievals
for weather and climate studies, we identified two particular merits that GMI’s precipitation
type retrieval exhibited while the DPR did not. Firstly, the DPR’s view-angle dependent
artifact does not propagate into GMI’s oblique view angles. Combined with the fact that
microphysical signals embedded in the PD observation are less complicated in a fixed
view-angle conical scanner, this finding implies that conical scanning is a better design for
future PMW instruments compared to cross-track scan, if mission budget is not factored in.
Secondly, the GMI’s precipitation type retrieval captures more light precipitation scenes
than that of the DPR, especially for the “other” type. Both findings suggest that ML/AI
can not only learn from the “truth”, but it also has the capability to unearth embedded
information in the training features that is highly intertwined and nonlinear that RTM
simulations cannot reveal.

Admittedly the current work is far from a complete study. The quality of the DPR’s
precipitation flag retrieval has not been widely assessed globally, so we do not have a good
knowledge of the quality of the “truth” dataset. Consequently, the probability prediction
(e.g., Figure 5) apparently does not include the uncertainty of the “truth” dataset. The
GMI-only product should also be assessed against ground observations globally, especially
at known difficult places such as coastal, arid, mountainous, or snow/ice-covered surfaces.
These remain to be potential areas for future investigation.
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