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Abstract: This study presents our efforts to automate the detection of unofficial roads (herein,
roads) in the Brazilian Amazon using artificial intelligence (AI). In this region, roads are built by
loggers, goldminers, and unauthorized land settlements from existing official roads, expanding over
pristine forests and leading to new deforestation and fire hotspots. Previous research used visual
interpretation, hand digitization, and vector editing techniques to create a thorough Amazon Road
Dataset (ARD) from Landsat imagery. The ARD allowed assessment of the road dynamics and impacts
on deforestation, landscape fragmentation, and fires and supported several scientific and societal
applications. This research used the existing ARD to train and model a modified U-Net algorithm to
detect rural roads in the Brazilian Amazon using Sentinel-2 imagery from 2020 in the Azure Planetary
Computer platform. Moreover, we implemented a post-Al detection protocol to connect and vectorize
the U-Net road detected to create a new ARD. We estimated the recall and precision accuracy using
an independent ARD dataset, obtaining 65% and 71%, respectively. Visual interpretation of the road
detected with the Al algorithm suggests that the accuracy is underestimated. The reference dataset
does not include all roads that the AI algorithm can detect in the Sentinel-2 imagery. We found an
astonishing footprint of roads in the Brazilian Legal Amazon, with 3.46 million km of roads mapped
in 2020. Most roads are in private lands (~55%) and 25% are in open public lands under land grabbing
pressure. The roads are also expanding over forested areas with 41% cut or within 10 km from the
roads, leaving 59% of the 3.1 million km? of the remaining original forest roadless. Our Al and
post-Al models fully automated road detection in rural areas of the Brazilian Amazon, making it
possible to operationalize road monitoring. We are using the Al road map to understand better rural
roads’ impact on new deforestation, fires, and landscape fragmentation and to support societal and
policy applications for forest conservation and regional planning.

Keywords: artificial intelligence; Amazon; road extraction; deep learning; U-Net; Sentinel-2;
planetary computer

1. Introduction

Mapping roads from satellite imagery is an important image processing research topic
to improve urban planning, transportation systems, and agricultural organization [1,2].
For tropical forest regions, such as the Amazon biome, roads are one of the main drivers
of forest change by deforestation [3-5], increasing the likelihood of fires [6] and threats
to protected areas [7]. Therefore, mapping and monitoring roads from space are crucial
for identifying threats to tropical forests and the tradition and indigenous people living
in the region. The first efforts to map roads in the Brazilian Amazon biome used visual
interpretation of Landsat imagery [8,9], revealing an overwhelming spread and extent of
illegal roads in this region. However, mapping and monitoring roads were still dependent
on visual interpretation mapping protocols, which are time-consuming [8,10] and prone to
biases of human performance [11].

Remote Sens. 2022, 14, 3625. https:/ /doi.org/10.3390/1s14153625

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs14153625
https://doi.org/10.3390/rs14153625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1674-6301
https://orcid.org/0000-0002-4726-640X
https://doi.org/10.3390/rs14153625
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153625?type=check_update&version=2

Remote Sens. 2022, 14, 3625

20f17

It is also difficult to automate the detection and mapping of roads using medium-
spatial-resolution satellite data such as Sentinel-2 (i.e., 10-20 m pixel size). The road
detection algorithm has to account for geometric (length, width, and shape), radiometric
(spectral response), topological (connectivity), functional (use), and textural (local spectral
variability) attributes to build a fully automated road detection model [12]. Because of the
challenges described above to automate road detection and mapping, researchers had used
Landsat satellite imagery to develop a road mapping protocol for the Brazilian Amazon
biome based on visual interpretation followed by hand digitizing [6,7]. The road mapping
protocol was applied to map and monitor road expansion over several years (2008 through
2016), resulting in an unprecedented Amazon Road Dataset (ARD). The ARD has been used
to understand road geometry and spatial pattern and its correlation with deforestation
and forest fragmentation [13,14], the proximity effect of roads to deforestation [7] and
fires [6], and to improve deforestation risk models [15,16]. Additionally, the ARD has
also been used to elucidate road-building processes, functions, and drivers [17,18] and to
understand the impact of roads on biodiversity [19]. These ARD applications demonstrate
the relevance of road mapping and monitoring to scientific, conservation, and policy
applications. However, manual mapping of roads with satellite imagery is a laborious task,
making frequent monitoring over large areas challenging.

Automated road detection methods have been developed for very-high-spatial-resolution
imagery based on deep learning algorithms [12,20]. Artificial Intelligence (Al), particu-
larly the convolutional neural network (CNN) deep learning algorithm, has been used
successfully to detect and map rural roads in large forested areas of Canada with RapidEye
imagery [11]. The AI-CNN method in Canada did not produce full-connected vectorized
roads, requiring post-classification techniques, resulting in a recall accuracy of 89-97% and
precision of 85-91% [11]. A U-Net [21], a CNN variant, was first used for segmentation in
medical imaging. It is [22] considered a state-of-art for image segmentation because it is
based on the deconstruction and reconstruction of images for feature extraction, increasing
object detection in various applications [2,23,24]. U-Net’s differentiating characteristics
are its accuracy and high-speed discriminative learning capacity from a small number of
training images [21]. As a result, several U-Net remote sensing applications have been
proposed, including road extraction using high-resolution imagery [2,22-24]. Therefore,
the U-Net algorithm is promising to automate the detection of rural roads of the Brazil-
ian Amazon, overcoming the visual interpretation mapping protocol [8] used to build
the ARD. We modified the original U-Net algorithm, which erodes image input chips
(256 x 256 pixels), making road discontinuity a problem, and changed the activation and
loss functions of the model to make it more sensitive to detect roads using Sentinel-2 10 m
spatial-resolution imagery.

This study then used the ARD to train our modified U-Net algorithm to detect rural
roads in the Brazilian Amazon. First, we selected a sub-area of the ARD to randomly
define samples to train, calibrate, and test the U-Net model to detect roads using Sentinel-2
imagery. Then, we applied it to the U-Net road model to map roads over the entire Brazilian
Amazon. Next, we implemented a post-Al road detection algorithm to generate a fully
connected vectorized road map for 2020. Furthermore, we built a workflow to integrate
the Sentinel-2 OpenHub and Microsoft Azure Cloud Platform to implement the U-Net
road and post-Al road detection algorithms. Sentinel OpenHub was used to select and
filter cloud-free Sentinel-2 scenes. At the same time, Azure provided the computational
power to preprocess the Sentinel-2 imagery, train and test our modified U-Net model, and
export the data to our Azure Blob Storage. Our main goal with this study is to develop an
automated Al model to monitor roads more frequently in the Brazilian Amazon and assess
the correlation of forests with roads. Our road detection models applied to the Sentinel-
2 images allowed mapping of the road location and extension over the entire Brazilian
Legal Amazon, showing that an intricate and complex road network cuts a significant
percentage of the Brazilian Amazon forest. The Al road model revealed more roads than
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human-based road mapping efforts using moderate-spatial-resolution imagery, improving
the understanding of their harmful ecological effects.

2. Materials and Methods

We used Microsoft Azure Planetary Computer resources to acquire and store data
from Sentinel-2 and ARD to train and make predictions with our modified U-Net road
detection model. We selected the Sentinel-2 satellite imagery based on location, date, bands,
and cloud cover. Then, we used the ARD to define random sample locations (i.e, image
chips of 256 x 256 pixels) for acquiring training data for the Al road detection algorithm,
composed of sampled Sentinel-2 images and rasterized binary images of roads. Finally,
we converted the gathered information into the TFRecord format to minimize size and
seemingly integrate with the Tensorflow Al library inside the Microsoft Azure Cloud
Machine Learning resource. We implemented a post-Al processing workflow to remove
classification errors, automate road vectorization, and connect isolated road segments.
Figure 1 summarizes the entire U-Net road detection and post-Al algorithms. We provide
information about the study area and explain the steps of the road detection algorithms in
detail in the following sections.
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Figure 1. Workflow of the U-Net road detection and post-processing applied to Sentinel-2 imagery.
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2.1. Study Area

The study area covers the entire Brazilian Legal Amazon area. The training chips’
location concentrated on the Southern Region of the Para state, which has diverse road
geometries (i.e., dendritic, geometric, and fishbone) [25] (Figure 2). The road geometry
diversity increased the variety in our training dataset by providing different road shapes
and forms for the Al model to generalize the presence of rural roads in the Amazon region.
The sub-area chosen for training and validating the model is approximately 586 thousand
km? and is delimited by eight International Millionth Map of the World sheets (SB-21-X,
SB-21-Y, SB-21-Z, SB-22-V, SC-21-V, SC-21-X, and SC-22-X) [26] (Figure 2). The sub-area is
mainly covered by dense forests, including old-growth and secondary forests [27], and by
pasturelands, logging, and, to a lesser extent, gold mining. We then sampled the region
into small chunks of data (chips) and randomly selected 2500 chips based on road density
estimated from the ARD. The samples were composed of chips with 256 x 256 pixels of
Sentinel-2 images at 10 m spatial resolution collected from June 2020 to October 2020.
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Figure 2. The study area covers the entire Brazilian Amazon (green). Training and validation chips
(orange) were selected in eight International Millionth Map of the World map sheets (red; SB-21-X,
SB-21-Y, SB-21-Z, SB-22-V, SC-21-V, SC-21-X, and SC-22-X).

2.2. Satellite Data to Detect Roads

We used Sentinel-2 imagery data to train and apply the Al road detection model at
a 10 m pixel size. We acquired the Sentinel-2 image scenes using the Azure Blob data
request API by filters including scene location, date, bands, and percent of cloud cover.
Acquired during June and October 2020, the image scenes included the Shortwave Infrared
1 (SWIR1), Near-Infrared (NIR), and Red spectral bands with less than 30% cloud cover. We
chose the timespan for image acquisition between June and October due to a lesser cloud
persistence. In addition, the bands SWIR1, NIR, and Red are more suitable for detecting
roads in non-urban areas and differentiating from other linear features (e.g., powerlines
and geological lineaments) [8].

With the selected Sentinel-2 scenes, we then built a spatial-temporal mosaic by cal-
culating the median of each band separately and stacking them afterward. The final
preprocessing step included the application of histogram contrast stretching to enhance
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the types of roads we aimed to detect with the Al U-Net algorithm (Figure 3). Image
analysts have recognized three types of roads using RGB color composite images from
the Amazon [8,9]: (i) visible: continuous straight or curved lines visible to the naked eye;
(i) fragmented roadways: discontinued straight or curved lines that are not continuous but
discernible to the naked and possibly traced and connected; (iii) partially visible roads: lin-
ear characteristics, straight or curved, directly visible in the color composite but recognized
and digitized based on their context and spatial arrangement (i.e., adjacent deforested areas
and canopy damage due to selective logging) (Figure 3).
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Figure 3. Example of Sentinel-2 RGB (SWIR, NIR, and Red) median mosaicking used to train the
U-Net model to detect roads in the Amazon biome. The color contrast stretched image was used
to build the training dataset through visual interpretation and hand digitizing three types of roads:
visible, fragmented, and partially visible, based on Ref. [8].

2.3. Amazon Road Dataset (ARD)

The ARD encompasses ten years of road mapping through visual interpretation
and manually traced mapping roads using a protocol for mapping unofficial roads with
satellite imagery in the Amazon [8]. This road dataset is composed of official roads
(80 thousand km) and unofficial roads (454 thousand km) totaling 534 thousand kilometers.
The ARD mapping protocol was applied to different satellites throughout the years, includ-
ing Landsat-5 (2006-2011), Resourcesat (2012), and Landsat-8 (2016). We used the ARD
2016 data to sample areas of interest to build our training, calibration and test datasets. We
applied a vector grid to divide the region into smaller chunks of data over the study area.
These sample points were selected randomly based on the road’s density (i.e., km of roads
per km?) inside the chip areas of 256 x 256 pixels—approximately 6.5 km?.

We randomly sampled 2500 chips to manually remap roads to update the road map to
Sentinel-2 2020 imagery. This process created new road information for the chip areas at a
10 m spatial resolution to train, calibrate, and validate the U-Net road detection model. We
sampled the chip areas (6.5 km?) for updating the road information for the Al model into
five categories:

e Noroad;
e 0 <road density <0.15 km;
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0.15 < road density < 0.76 km;
0.76 < road density < 1.53 km;
Road density > 1.53 km.

The number of image chips samples per road density is shown in Figure 4. We

observed an increase in samples with road density. Therefore, we manually added roads to
the Sentinel-2 2020 samples, following Ref. [8] to update the 2016 ARD dataset (Figure 4).

[ ARD 2016
3 Sentinel 2 2020

1000 -

800 -

600 -

Number of Samples

400 -

200 -

. ]

No roads <0.15 0.15-0.76 0.76-1.53 >1.53
Density (km / km?)

Figure 4. The number of chip samples per road density and a comparison between ARD 2016
(Landsat based, 30 m pixel) and 2020 (Sentinel-2, 10 m pixel) manually mapped for building the
training dataset.

2.4. Sampling and Data Preparation

To maximize training speed and performance, we broke down the Sentinel-2 mosaic
and the ARD raster into smaller chunks of data by creating a grid of 256 x 256 cells within
the training area. We used the existing ARD from 2016 to select grids that intersected
with the ARD data to build a reference road dataset to train the U-Net road detection
model. Next, the Sentinel-2 image was clipped with the selected grids (256 x 256 grid),
resulting in 2500 samples. We updated the roads within the sampled grids through visual
interpretation and hand digitizing following the protocol proposed by Ref. [8], which was
further rasterized to a 10 m pixel size. Finally, we stacked the Sentinel-2 RGB bands and the
updated raster roads and divided the 2500 chip samples into training, validation, and test
datasets. We randomly split the chip samples in 80% for training purposes and separated
the 20% equally for validation and test, i.e., 250 each (Figure 1).

Before exporting the datasets to Azure Blob Storage, we applied data conversion from
raster data into TFRecord tensor arrays compatible with Tensorflow data API [28], which
facilitated data consumption during training. In addition, we added each chip’s coordinates
information to the TFRecord, consolidating its contents: image data information (pixel
values), upper left x-coordinate, upper left y-coordinate, lower right x-coordinate, and
lower right y-coordinate (Figure 1).

To minimize the effects of our class imbalance and to prevent overfitting our model,
we applied data augmentation processes to the datasets to increase the variability number
of samples. The transformations applied to the images were rotations of 90°, 180°, and
270° degrees; horizontal and vertical mirroring; three repetitions, increasing the number of
tiles from 2500 to 23,400.
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2.5. U-Net Model for Road Detection

We modified the original U-Net architecture [21] layers and hyperparameters to detect
roads from Sentinel-2 imagery. First, regarding layers, we altered the padding parameters
on convolutional layers to create a zero-padding border around the images, allowing
for the same input (256 x 256) and output (256 x 256) data size to prevent border data
neglection [29,30]. Furthermore, instead of using the Rectified Linear Unit activation
function (ReLU), we opted for its variation, Leaky Rectified Linear Unit (LeakyReLU) [31],
due to the dying neuron problem. In addition, we added a dropout layer of 0.3 before the
last convolutional layer to prevent overfitting [32], which provided variability to the model
structure. Finally, the soft dice loss function [33] replaced the original loss function (i.e.,
pixel-wise cross-entropy loss function) to minimize the impact of imbalanced classes for
image segmentation problems and Nadam [34] as the optimizer (Figure 5).
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Figure 5. The modified U-Net model for road detection and mapping applied to 10 m pixel-size
Sentinel-2 imagery based on Refs. [21,30].

As for the model training parameters, we applied an 8-size mini-batch with a learning
rate of 10~# set to iterate over 25 epochs. We set the learning process to stop at the 25th
epoch because the loss value was minimized around the 21st and 23rd. We also included
other training parameters to prevent unnecessary computational power usage and save
checkpoint versions of the model, such as early stopping and TensorFlow checkpoints.
We set early stopping to end the training process if there was no improvement over nine
epochs, which helped with the generalization problem and prevented resource usage. We
also defined checkpoints to assess whether the validation loss function value had improved
between epochs. The implementation code of the U-Net road detection model can be
accessed on Github through https://github.com/JonasImazon/Road_detection_model.git
(accessed on 1 June 2022).

2.6. Accuracy Assessment

We performed the prediction accuracy analysis of our U-Net road model using the
validation and test datasets (250 chip samples each). Our validation sample metrics (pre-
cision, recall, and F1-Score) were calculated during training and saved onto a log file to
assess the model calibration. In addition, we used an independent test dataset to generate
the following accuracy metrics: user’s, producer’s, and F1-Score (i.e., a harmonic mean
calculated from both precision and recall values) metrics on both datasets. The accuracy
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metrics assessed are shown below. First, the Precision metric utilizes TP (true positives) and
FP (false positives) to assess the number of actual valid positive results over the model’s
total number of positive cases.

. TP
Precision : TP L EP 1)
Differently, Recall uses FN (false negatives) to measure the number of true positives

over the reference data total number of positive information:

TP
Recall : TP+ EN 2)

The culmination of both Precision and Recall lies in the usage of F1-Score.

Precision x Recall 2x TP
Precision + Recall 2 x TP+ FP+ FN

F1-Score = 2 x 3)
We calculated the accuracy assessment metrics in a pixel-wise approach, allowing us
to estimate for each pixel TP, TN (true negative), FP, and FN (false negative).

2.7. Post-Processing

Given that the U-Net road model outputs the same data type (i.e., a raster image) as
its inputs, we ended with an image representing each pixel’s probability of being one of
two classes: road and no-road. To detect the road center line, we first empirically define
a confidence threshold of 20% (i.e., pixels with a probability value equal to or greater
than 0.2) over the output values, creating a road binary image. The output image data
(in raster format) are helpful for visual interpretation and comparison between the road
mapping results and the reference road dataset. However, the road raster output does
not provide road attribute information regarding length, shape, and connectivity. We
then applied post-processing techniques to convert the raster road map into a vector road
center line and extracted attributes of road segments (e.g., length and connectivity). These
processes include georeferencing the TFRecord file, road vectorization, connecting flawed
road segments, and noise removal (e.g., natural geomorphological lineaments such as
narrow rivers and geological faults). We explain these steps in detail below.

First, we applied the georeferencing process by accessing each chip’s coordinate
information presented in its TFRecord file. Then, using Gdal [35], we set the result image’s
geographic location by setting its extent and resolution (10 m). Each georeferenced image
is stored in memory to be quickly accessed by the following processes. Next, we applied a
water body mask with a 200 m buffer to remove false positives created by natural linear
features (i.e., primarily channels) along rivers. Furthermore, a sequence of dilation and
erosion processes was applied to fix some of the missing links between road segments
using a geometric orientation of a 10 x 1 rectangle. The rectangle was rotated around
each pixel to increase the reach between close pixels. Finally, a skeletonization process was
applied to create 1 x 1 pixel segments.

Finally, we converted the chip’s raster data into vector data using the Grass Python
Module [36]. In addition, we used the model also to remove other identified false positives,
such as small unconnected segments and scene borders. We divided the process into four
steps: (i) deletion of segments with a length less than 1 km; (ii) removal of segments that
match the geographic location of charts borders; (iii) removal of segments that match the
geographic location of scenes border (i.e., 100 m); (iv) deletion of segments inside areas with
road density less than 10 km per 100 km?. These steps allowed us to deal with different
categories of false positive road detection in an automated manner. The final road map
is in a shapefile format containing segments of roads in vector format, which enables
statistical and geospatial analyses and also the cartographic representation of the road
dataset, including estimation of the total length.
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3. Results
3.1. U-Net Road Model

We implemented a modified U-Net for road detection in the Azure platform with the
Machine Learning Studio instance configured with one NVIDIA Tesla K80, six cores, and
56 GB RAM. The total run time to train the proposed neural network was approximately
2 h. We chose the soft dice loss function results as a checker for the calibration and selection
of the U-Net road model as it is the model’s convergence indicator. Furthermore, the soft
dice loss function is ideal for imbalanced datasets [22], which minimizes the results to
obtain a maximum overlap between reference and predicted data. Figure 6 shows that
our model started the training process with a validation loss value of ~0.8, indicating poor
performance. However, as the training progressed along the epochs, we observed that
the difference in the loss values between validation and training decreased, indicating
convergence and stabilization of the model.

Soft Dice Loss Function

0.8 | —— Training
Validation

0.7 |

0.6 .

wn

%]

9

0.5

0.4

0.3
0 ] 10 15 20

Epochs

Figure 6. Model’s training and validation Soft Dice Loss curve along 25 epochs.

We capped epoch iterations at the 25th epoch due to improvement stagnation. In addi-
tion, by visually analyzing the results, we noticed that our model reached the generalization
point and satisfactory road detection after the 15th epoch, not improving significantly after
it. We ordered the loss function values from max to min to verify the best iteration of our
model. The best epochs reached similar results: 16th (0.292), 15th (0.291), 21st (0.290), 22nd
(0.288), and 17th (0.287) (Figure 6). We then chose the lowest loss function result, presented
by the 17th epoch, based on the minimization of the loss function. However, we did not
test each of the mentioned iterations for visual checking.

3.2. Road Mapping

We applied the trained model to our entire dataset (training, validation, and testing)
(716,250 km?) to check its visual accuracy. The prediction process took approximately 49 s
to generate 2500 binary images. Although the U-Net road model showed connectivity flaws
and background noise, the model predicted most of the roads presented in these datasets.
Those false positives were mainly found close to rivers and open areas with strip-tillage
where their spectral characteristic of the images was similar to roads’. In addition, the
model predicted other roads that were not included in the reference data, indicating the
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presence of human error while composing our reference dataset (which potentially affected
our accuracy assessment analysis, as we further discuss) [37].

We selected examples of road types to demonstrate the generalization capacity of our
U-Net road model (Figure 7). By visually assessing the road mapping results relative to the
Sentinel-2 input image, we can infer the following conclusions about the model:

1.  The model can detect roads similar to the reference data, leaving some road segments
disconnected.

2. Roads detected from the Sentinel-2 imagery are wider because adjacent pixels (i.e.,
1 to 3 pixels wider) to roads are also detected.

3. The U-Net road model might clump closed road segments as individual roads in
dense road areas.

4. The model detected more ‘partially visible roads’ than roads mapped visually to
generate the reference dataset, especially in private rural lands.

5. We also found false-positive roads (not new roads) created near water bodies’ borders
and on the edge of forest areas, and in agriculture fields (i.e., strip tillage).

Formation .
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Figure 7. Comparison between the reference data and the predicted roads with the U-Net model.
(a) RGB (SWIR1, NIR, and Red) Sentinel-2 input image for road prediction. (b) Grey level Sentinel-2 Red
band for better visualization of roads. (¢) Manually mapped reference data. (d) Raw road prediction
result. (e) Filtered result with more than 20% confidence used as input for the post-classification.
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We also assessed the road U-Net model’s accuracy using the user’s (prediction) and
producer’s accuracy (recall) and the F1-Score metrics. First, we calculated these metrics
using the training dataset through each epoch of the training process. During the training
phase, our model reached a 69% precision, 64% recall, and 68% F1-Score. Then, we calculated
the accuracy metrics using the validation and test datasets (i.e., not used to train the U-Net
road model), achieving a user’s accuracy of 72.2% and 71.7%, respectively. The producer’s
accuracy (61.1% and 65.6%) and F1-Score (65.5% and 68.4%) were lower than the user’s
accuracy for validation and test datasets (Figure 8).

Accuracy Assessement

[ User's accuracy
3 Preducer's accuracy
[ Fl-Score

Training |

Validation |

Test |

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 8. Accuracy of the U-Net road model for the training, validation, and test datasets.

As previously mentioned, these accuracy metrics may underestimate the accuracy
of the U-Net road model. A careful visual comparison of the reference data against the
roads detected with the U-Net revealed unmapped roads in the reference dataset. These
additional road segments were considered as false positives by the accuracy metrics as they
were not present in the reference data. Previous studies have shown that inaccuracies in
the reference dataset can underestimate the accuracy (e.g., ref. [37]). We did not attempt
to recalculate the metrics using improved reference data, because the U-Net model’s
qualitative visual interpretation of road detection pointed to a satisfactory result.

3.3. Estimation of Road Extension in the Brazilian Legal Amazon

The following step in our analysis was to test the U-Net road model’s performance on
a large-scale prediction of roads for the entire Brazilian Legal Amazon territory (approxi-
mately 5 million square kilometers). First, we created a mosaic composed of the Sentinel-2
RGB image color composite from 2020 with the same parameters as the images used to train,
test, and validate our model. The road prediction and post-processing ran in the Azure
planetary computer platform for approximately seven hours to return the predicted roads
and clean the data, reducing its false positives, connecting loose segments, and converting
images to vectors for better geospatial analysis. In addition, we managed to speed up the
computational process by utilizing the in-memory file system of Gdal (vsimem), which
saved each data information on memory instead of holding each 256 x 256 pixel input and
output image on disk.

The U-Net road model identified 3.46 million kilometers of roads covering the Legal
Amazon area, spreading across nine states. The mapping area of this study was larger than
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the ARD one, which focused mainly on the forest biome. We split our analysis of road
extension into two perspectives: a general and per land category. The general approach
calculated the roads’ presence throughout the Legal Amazon area by estimating the road
density (Figure 9). The density map used a 10 km x 10 km cell grid (i.e., 100 square
kilometers) to estimate the length of roads present in each cell. At the same time, the
histogram calculated the road density distribution (Figure 10). We found that the density
varied between 0 and 5.75 km-km 2, mainly concentrated around the south, southeast,
and east regions of the Legal Amazon (Figure 9). Additionally, the central and northwest
regions have fewer road presences; therefore, the calculated density was approximately
near-zero or inexistent.

(a)
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Figure 9. Road density obtained with the U-Net road model. A comparison of the U-Net model
(2020) and the Amazon Road Dataset (ARD, 2016) is shown in the image panels: (a) the BR-319
highway with unconnected segments by the U-Net road model (black line) and ARD showing the full
connected length; (b) the fishbone road pattern of the Trans-Amazonia highway main road (BR-230)
and perpendicular ones; (c) a typical road pattern of selective logging; (d,e) a geometric road pattern
in agriculture lands.
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Figure 10. Histogram of road density detected with the U-Net road model within a 10 km x 10 km cell
throughout the Brazilian Legal Amazon.

The road density map’s histogram reinforced this information. According to the
distribution, a higher number of grid cells in the road density map ranges from 0 to
0.2 km-km~2. This lower road density region concentrates in areas mostly covered by
forest and along the major rivers (Figure 9). The lower road density zone extends until
0.5 km-km 2 on the transition to the so-called Arc-of-Deforestation, a region where land
occupation is consolidated. The road density in the consolidated frontier ranges from
0.5 km-km~2 to 3.2 km-km 2. There are a few hotspots where the road density is higher
than 3.2 km-km 2 in rural settlements and peri-urban regions (Figures 9 and 10).

Furthermore, we assessed the road extent and density by state (Table 1) and land
category (Table 2). We calculated each state’s road length and average density within
the Brazilian Legal Amazon. We observed that the state of Tocantins had the highest
average road density of 1.77 km-km~2 comprising 490 thousand kilometers of road, fol-
lowed by Maranhao, Mato-Grosso, and Rondoénia, each having a density of 1.57, 1.44, and
1.31 km-km~2, respectively (Table 1). These four states are the only ones that surpass
the 1 km-km~?2 average road density mark, indicating a more continuous construction
of road networks in their territory. The two largest states, Para and Amazona, showed
similar average road densities (0.57 and 0.56 km-km 2, respectively), but the road extent in
Para was nine times higher than that in Amazonas (Table 1). Mato Grosso had the most
considerable extent of roads with 1.3 million km, followed by Pard with 45% less (i.e.,
715 thousand km) of roads in that state. Acre and Roraima had a similar road density and
Amapa had the lowest one (Table 1).

Table 1. Comparison between the length of roads detected per state in the Legal Amazon Area.

States Roa((ikl;:;l sth Average Road Density (km-km~2)
Acre 53,614 0.33
Amazonas 79,801 0.56
Amapa 25,010 0.02
Maranhao 412,306 1.57
Mato Grosso 1,296,946 1.44
Para 715,730 0.57
Rondénia 310,119 1.31
Roraima 80,025 0.36
Tocantins 490,513 1.77

Total 3,464,066
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Table 2. Road extent and density by land category.

Land Data Source Road Extent Relative Extent Average Road Density
Category (km) (%) (km-km~2)
Indigenous Land ISA 91,579 2.6% 0.08
Federal Protected Area ISA 42,319 1.2% 0.07
State Protected Area ISA 141,735 4.1% 0.28
Quilombo INCRA 4904 0.1% 0.82
Military Area CNFP 1713 0.0% 0.07
Rural Settlement INCRA 426,139 12.3% 1.27
Public Forest CNFP 7660 0.2% 0.10
Private Land INCRA 1,893,738 54.7% 1.46
Public Land Imazon 854,279 24.7% 0.72
Total 3,464,066

Understanding road expansion in a land category is also necessary to assess its impact
on deforestation and logging, road pressure in protected areas, and the appropriation of
public lands (Table 2). Most roads concentrate on private land with 1.9 million km (i.e.,
54%), with a road density of 1.46 km-km~2 (Table 2). Astonishingly, 24.7% of the total road
extent mapped with U-Net, i.e., 854 thousand km, is within public land, which is open and
vulnerable to illegal appropriation, a process known as land grabbing. The third-largest
occurrence of roads is within rural settlements with 426 thousand km (12% of the total
extent), where the fishbone deforestation pattern prevails. Protected areas for conservation
and sustainable use combined, including Indigenous Land, Federal and State Protected
areas, and Quilombo, concentrate 8% of the total road mapped (i.e., 280.5 thousand km;
Table 2). The most threatened categories of protected areas are State (4.1%) and Indigenous
Land (2.6%).

4. Discussion

With the development of new cloud-based computing technologies and advances in
Artificial Intelligence, large-scale mapping for various scenarios has become faster and
more common [30,38,39]. In addition, open-source code allowed for an adaptation of the
original U-Net architecture to train and map roads in the Amazon in a fraction of the time
required to identify and trace roads [8] visually. Our new U-Net road model detected
approximately 3.46 million kilometers of roads in the Legal Amazon region within 7 h of
cloud computing to run the U-Net model and post-processing and vectorize the data. This
process generally would take several months of human analysis and visual interpretation.
The previous effort to monitor road expansion in the Amazon region paid off because it
provided valuable data for assessing the negative road impact on the Amazon. The ARD
also offered vital information to build the new Al model by statistically selecting areas to
create the training, calibration, and road datasets. The new Brazilian Amazon road map
for 2020 cannot be directly compared with the ARD from 2016. First, the latter focused the
road mapping in the Amazon biome region, an area 22% smaller than the Brazilian Legal
Amazon. Second, the U-Net road map is more detailed than the ARD one because it detects
more road segments, especially in rural properties.

We estimated the forest area affected by roads in the Amazon biome with the road
density map within a 10 km grid cell. We used the forest area obtained from the MapBiomas
project [40] for 2016 and 2020 to estimate the expansion of roads in forested areas (excluding
0.2 million km? of second-growth forests and highly degraded forests). We found that of the
3.1 million km? of remaining forest, 1.83 million km? were roadless forests (i.e., 59%). The
remaining forests in 2020, i.e., 1.27 million km? (41%), are carved by roads or within 10 km
of all roads (Figure 9) and, consequently, are under deforestation and forest degradation
pressure. Further analysis is required to understand the relationship of roads with forest
fragmentation, fires, and deforestation in light of this new road dataset we obtained with
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AI U-Net road post-Al detection models, as well as the estimation of the roadless forests in
the Brazilian Amazon.

Several applications can also be implemented with the new road dataset obtained
with the AI U-NET mode. Previous analysis of the correlation of road distance with
deforestation [41] and fires [6] can be updated. We already used the new Al-mapped road
to update a deforestation risk model for the Amazon. As one of the predictor variables, the
original deforestation risk model used the ARD map based on visual interpretation with
data from 2016 [16]. The deforestation risk model depends on the annual update of roads (as
the distance to roads is one of the most important predictor variables [16], a task considered
prohibitive using human interpretation). The new Al road model allowed us to update the
ARD to 2020 and operationalized the deforestation risk model (see: https:/ /previsia.org
accessed on 1 June 2020).

Other applications can be explored with the new Al ARD, such as transportation
and logistic planning for agriculture and agroforestry commodities, model landscape
fragmentation, determining roadless forest landscape, and access to logging and settlement
roads, e.g., Ref. [13]. The new Al road detection model will allow for keeping the ARD
updated for these and other applications and support forest conservation efforts and the
protection of (open) public lands.

Although our results are accurate and somehow better than the road maps produced
with human interpretation of satellite imagery, some challenges persist in reducing false-
positive road detection. One possible and standard solution to overcome this problem is
to improve the training dataset of roads by increasing data samples and data variation.
This is the case for our model because most of the false positives were found in areas with
a low density of training data. The second-largest mapping issue is the discontinuity of
road segments, which happens for various reasons. First, the spectral signal of roads can
be obscured by vegetation cover and by the spectral similarity of adjacent pasture and
agricultural lands with the road substrate, which is mainly formed by dirty compacted
soil. The road discontinuities can be partially fixed by automatically setting line snapping
thresholds, but this works only for small distances (i.e., <100 m). Further research and Al
modeling is needed to determine a fully automatic solution to deal with fragmented roads;
meanwhile, a task will be implemented with human aid. We also recommend comparing
our proposed U-Net road detection model with another Al algorithm for future research.
Our next goal is to expand our model to create historical maps of roads in the Amazon, with
available Landsat and Sentinel datasets. Preliminary learning transfer tests applying our
U-Net Al road model built with Sentinel-2 to Landsat imagery showed promising results.

5. Conclusions

The ARD, generated with human effort throughout the years, together with open-
source algorithms and cloud-based computing, allowed the development of a new Al
road detection model. The updated road maps for the Amazon region will enable the
implementation of scientific, societal, and policy applications. The correlation of roads with
deforestation, fire occurrence, and landscape fragmentation can be further investigated
with the more detailed and extensive Al road dataset. Our initial learning transfer of the Al
road model obtained with Sentinel-2 imagery is promising to apply the U-Net road model
to the Landsat data archive to reconstruct the road dynamic of the region. Further research
includes improving the post-road center line vectorization of fragmented roads and road
categorization. Finally, our results pointed out that large portions of the Brazilian Amazon
forests are dominated by an intricate and complex road network expanded from the main
official roads and prolonged over the pristine forests and protected areas for conservation.
The Al U-Net road model revealed more roads than the human-based road mapping efforts
requiring further research to understand their negative ecological impacts. In addition,
because roads predominantly come first, the new Al road detection model opens up an
untried class of forest monitoring, avoiding future deforestation and forest degradation.
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