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Abstract: In multi-sensor systems (MSSs), sensor selection is a critical technique for obtaining high-
quality sensing data. However, when the number of sensors to be selected is unknown in advance,
sensor selection is essentially non-deterministic polynomial-hard (NP-hard), and finding the optimal
solution is computationally unacceptable. To alleviate these issues, we propose a novel sensor
selection approach based on evolutionary computational intelligence for tracking multiple targets
in the MSSs. The sensor selection problem is formulated in a partially observed Markov decision
process framework by modeling multi-target states as labeled multi-Bernoulli random finite sets.
Two conflicting task-driven objectives are considered: minimization of the uncertainty in posterior
cardinality estimates and minimization of the number of selected sensors. By modeling sensor
selection as a multi-objective optimization problem, we develop a binary constrained evolutionary
multi-objective algorithm based on non-dominating sorting and dynamically select a subset of
sensors at each time step. Numerical studies are used to evaluate the performance of the proposed
approach, where the MSS tracks multiple moving targets with nonlinear/linear dynamic models
and nonlinear measurements. The results show that our method not only significantly reduces the
number of selected sensors but also provides superior tracking accuracy compared to generic sensor
selection methods.

Keywords: computational intelligence; intelligent sensing technique; multi-sensor systems; multi-
target tracking; random finite set; sensor selection

1. Introduction

With the rapid development of sensing techniques, sensing systems with multi-sensor
configurations have attracted lots of attention in numerous fields, such as scene analysis,
military defense, habitat monitoring, and other surveillance scenarios [1–4]. As one of the
most important techniques, multi-target tracking (MTT) in multi-sensor systems (MSSs) is
challenging for two reasons. On the one hand, MTT itself is difficult due to target birth,
target death, false alarm, miss detection, and data association uncertainty. On the other
hand, due to communication and real-time constraints, intelligent sensor management is
required to balance the constraints and the tracking accuracy. Under the complex, dynamic
and variable circumstances, sensor control can be regarded as an optimal nonlinear control
issue, and standard optimal control schemes are not directly applicable [5].

Conventional MTT approaches used in the literature can be regarded as combina-
tions of single-target trackers. Examples of such approaches include multiple hypothesis
tracking [6,7] and joint probabilistic data association [8]. However, they cannot be used
in principled sensor management since it is difficult to formulate a management criterion
that accommodates the multi-target in a mathematical description. A solution to solve
the sensor management problem is to use finite set statistics (FISST) [9,10] in the Bayesian
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paradigm. Under the framework of FISST, the multi-target probability density is used to
describe the uncertainty of the multi-target system and can be systematically handled by
random finite sets (RFSs). The probability hypothesis density (PHD) [11], cardinalized
PHD [12], and multi-Bernoulli (MB) [13] filters are popular FISST-based approaches. The
MB filter uses multiple independent Bernoulli RFSs to model the set of independent targets
and propagates MB parameters over time. Different from the MB filter, the PHD and
cardinalized PHD filters propagate moments of the multi-target posterior density. These
filters were developed as crude approximations of the Bayes filter and cannot output the
trajectory for each target. In [14,15], the labeled RFS was used to solve the problem of
trajectory estimation. Following these studies, Vo et al. developed a multi-target tracker
named generalized labeled MB (GLMB) [16]. The labeled MB (LMB) filter [17] proposed by
Reuter et al. provides an efficient approximation of the GLMB filter. In terms of accuracy,
the LMB filter outperforms the PHD, cardinalized PHD, and MB filters. What is more, it
outputs target trajectories.

Several solutions have been proposed under the FISST framework to solve the sensor
management problem. An objective function is generally required as a criterion for sensor
management. The Rényi divergence [18–20], or alpha divergence, is widely used as the
objective function for sensor management. The Kullback–Leibler divergence or Hellinger
affinity are special cases of the Rényi divergence. Recently, a closed-form expression of the
Cauchy–Schwartz divergence has been developed for Poisson densities [21], the GLMB
filter [22], and the LMB filter [23], providing an alternative objective function for sensor
management [22,24,25]. Although the information divergence is derived in a principled
manner, it is unclear how to translate it directly into practical performance criterions such
as state or cardinality estimation errors. To meet the task of sensor management in a
direct way, the task-driven objective functions have been developed [23,26–29]. In [26], the
cardinality variance was used to enable efficient sensor management. In [23], Gostar et al.
proposed minimizing the posterior dispersion. To deal with multiple tasks simultaneously,
ad hoc methods have been developed in [27–29] by estimating the relative importance
of each task and assigning weights to the objective functions. It is necessary to estimate
the relative importance of each task. In [30], Nguyen et al. studied the multi-objective
path-planning problem and proposed competing objectives for searching for undiscovered
moving targets while keeping track of discovered targets.

In this work, we consider the problem of selecting a subset of sensors acquiring
high-quality measurements to alleviate the energy and bandwidth issues. For the sensor
selection problem, it is usually assumed that the number of sensors to be selected is known
in advance [31], as illustrated in Figure 1.

• selected

• selected

• selected

(a) (b)

• selected

• selected

• selected

Figure 1. Illustration of dynamic selection of a fixed number of sensors for MTT: (a) At time k; (b) At
time k + 1. It is assumed that three sensors are selected at each time step, and the blue circles show
the coverage areas of the selected sensors.
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However, in most practical applications, such as multi-sensor MTT, it is impossible for
the system’s designer to know the exact number of selected sensors before the selection
operation begins. Apparently, it is necessary to study a feasible sensor selection scheme
that adaptively determines the optimal number of selected sensors according to the dy-
namics of a multi-sensor multi-target system. In this case, sensor selection is, in fact, a
global combinatorial optimization problem. When the scale of the MSS is large, sensor
selection can be extremely challenging. To alleviate this issue, a spatial non-maximum
suppression algorithm has been proposed in [32], but its performance is affected by a tun-
ing parameter. The work in [33] developed an approach that decoupled the multi-sensor
coordinated management into distributed management of each sensor by maximizing the
local Rényi divergence. This method can be used for distributed MTT but not for sen-
sor selection. Wang et al. [34] proposed a guided search algorithm for multi-dimensional
optimization-based sensor management. It is not applicable to sensor selection applications
and may become stuck at a nonstationary point because of the use of coordinate descent.
Cao et al. [35] proposed a sensor selection scheme with low computational complexity
based on the upper bound of the mutual information. The method is only applicable for
tracking a single target.

The aim of this study is to develop a methodology that allows selection of fewer sensors
while ensuring the performance of MTT. The LMB filter is used for MTT by modeling the
multi-target states as LMB RFSs. In the sensor selection procedure, we develop the number
of selected sensors as an objective function. The variance of the cardinality distribution is
also designed as an objective function to improve the accuracy of the cardinality estimate. In
addition, a constraint of the number of selected sensors is necessary to meet communication
constraints while guaranteeing the performance of the filter. However, minimizing the
number of selected sensors and minimizing the cardinality variance is conflicting. The
problem is further compounded by the number constraint. To solve this problem, we model
it as a multi-objective optimization (MOO) problem and develop a binary constrained
evolutionary multi-objective algorithm to dynamically select a subset of sensors. For each
selection command, the generalized covariance intersection (GCI) scheme [36] is used for
implementing multi-sensor data fusion. The main contributions are summarized as follows.

First, to the best of our knowledge, it is the first study in which an evolutionary
algorithm is used in the multi-objective POMDP for MTT. In general, the ideal solution of
the MOO does not exist since the objective functions are conflicting. We find the Pareto
solutions using an evolutionary multi-objective algorithm via non-dominated sorting and
dynamically select a subset of sensors at each time step.

Second, we develop a novel binary constrained crossover and binary constrained
mutation operators within the evolutionary algorithm to handle the constraint for the
number of selected sensors and obtain feasible solutions.

Third, we compare the proposed evolutionary MOO (EMOO)-based sensor selection
approach with several other sensor selection solutions. Simulation results prove that the
proposed approach has satisfactory state estimation performances and effectively reduces
the number of selected sensors.

The paper is organized as follows. Section 2 presents the existing literature on the RFS
and the LMB recursion. The motivation and implementation of the EMOO-based sensor
selection approach are presented in Section 3. Section 4 presents numerical simulations and
results. Conclusions are given in Section 5.

2. Background
2.1. Labeled RFS

In the stochastic multi-target system, the target state is modeled as an RFS. The single-
target state and the multi-target state are denoted by x and X, respectively. It is difficult
to output the trajectories of multiple targets only by using the representation of RFS, and
we can only estimate the set of states at different time steps, i.e., {X1, . . . , Xk}. To address
this issue, the labeled RFS is introduced. In the labeled RFS, the target state is augmented
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with a label `. To distinguish between labeled and unlabeled entities, labeled entities
are bold, e.g., x and X. At time k, the multi-target state Xk consists of N(k) single-target
states xk,1, . . . , xk,N(k) and the multi-target measurement Zk consists of M(k) measurements
zk,1, . . . , zk,M(k). Then, Xk an Zk are given as

Xk = {xk,1, . . . , xk,N(k)} ∈ F (X×L), (1)

Zk = {zk,1, . . . , zk,M(k)} ∈ F (Z), (2)

where F (Z) denotes the space of finite subsets of Z, and X, L, and Z denote the spaces for
X, `, and Z, respectively.

The multi-target posterior density πk(Xk|Z1:k) is estimated by the Bayesian prediction
and update [9,10]

πk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|X)πk−1(X|Z1:k−1)δX, (3)

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)πk|k−1(X|Z1:k−1)δX

, (4)

where Z1:k = (Z1, . . . , Zk) represents the set of measurements accumulated to the current
time; πk|k−1(Xk|Z1:k−1) is the predicted density; fk|k−1(·|·) is the multi-target transition
density, encapsulating multi-target motion, such as target birth/death and single-target
motion; gk(·|·) is the multi-target likelihood, encapsulating system uncertainty, such as ob-
servation noise, data association uncertainty, and detection uncertainty. The integrals given
in (3) and (4) are not ordinary integrals but set integrals. For a function f : F (X×L)→ R,
the set integral is denoted as [9,10]

∫
f(X)δX =

∞

∑
i=0

1
i!

∫
f({x1, . . . , xi})d(x1, . . . , xi). (5)

In the following, the standard inner product notation of f and g is expressed as

〈 f , g〉 ,
∫

f (x)g(x)dx, (6)

and the multi-target exponential notation is given as

hX , ∏
x∈X

h(x). (7)

The inclusion function 1S(X) and the Kronecker delta function δS(X) are denoted as

1S(X) ,

{
1, if X ⊆ S
0, otherwise

, δS(X) ,

{
1, if X = S
0, otherwise

. (8)

2.2. Labeled Multi-Bernoulli Filter

In the LMB filter, a target x ∈ X with label ` ∈ L is completely characterized by the
probability of existence r(`) and the probability density p(`)(x). The LMB distribution
is, therefore, represented by π = {(r(`), p(`)(·))}`∈L. Let 4(X) = δ|X|(|L(x)|) denote a
distinct label indicator and L : X× L → L be the projection L(X) = {L(x) : (x ∈ X)}.
The LMB RFS density is parameterized as

π(X) = ∆(X)w(L(X))[p]X , (9)

where

w(L) = ∏
i∈L

(1− r(i))∏
i∈L

1Lr(`)

(1− r(`))
, (10)
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[p]X = ∏
(x,`)∈X

p(`)(x), (11)

and L indicates a set of labels.
If the posterior density follows the LMB distribution and is parameterized as

π = {(r(`), p(`)(·))}`∈L and the birth model also follows the LMB distribution with the
parameter set πB = {(r(`)B , p(`)B (·))}`∈B, then the predicted density is given as

π+ = {(r(`)+,S, p(`)+,s(·))}`∈L ∪ {(r
(`)
B , p(`)B (·))}`∈B, (12)

where
r(`)+,S = ηS(`)r(`), (13)

p(`)+,s(·) =
〈pS(·, `) f (x|·, `), p(·, `)〉

ηS(`)
, (14)

ηS(`) = 〈pS(·, `), p(·, `)〉, (15)

pS(·, `) is the state-dependent survival probability and f (x|x′, `) denotes the transition
density of the target with track `. For simplicity, we denote the predicted LMB RFS by

π+ = {(r(`)+ , p(`)+ (·))}`∈L+
, (16)

where the label space L+ = L∪B (with L∩B = �).
The family of the LMB RFS is closed under the Bayesian prediction but not closed

under the Bayesian update. To solve this problem, the predicted LMB distribution is
converted to a δ-GLMB distribution. Then, the update of the δ-GLMB is implemented,
and the result is approximated by an LMB. The LMB approximation of the multi-target
posterior density is denoted as

π(·|Z) = {(r(`), p(`)(·))}`∈L+
, (17)

where
r(`) = ∑

(I+ ,θ)∈F (L+)×ΘI+

w(I+ ,θ)(Z)1I+(`), (18)

p(`)(x) =
1

r(`) ∑
(I+ ,θ)∈F (L+)×ΘI+

w(I+ ,θ)(Z)× 1I+(`)p(θ)(x, `), (19)

w(I+ ,θ)(Z) ∝ w+(I+)[η
(θ)
Z (`)]I+ , (20)

p(θ)(x, `|Z) = p+(x, `)ψZ(x, `; θ)

η
(θ)
Z (`)

, (21)

η
(θ)
Z (`) = 〈p+(·, `), ψZ(·, `; θ)〉, (22)

ψZ(x, `; θ) =


pD(x,`)g(zθ(`) |x;`)

κ(zθ(`))
, if θ(`) > 0,

1− pD(x, `), if θ(`) = 0,
(23)

and ΘI+ is the space of mappings θ : I+ → {0, 1, . . . , |Z|}, such that θ(i) = θ(i′) > 0
implies i = i′; κ(·) is the intensity of the clutter measurements; g(z|x; `) is the likelihood of
measurement z given (x, `).

In the sequential Monte Carlo (SMC) implementation, the density for each target with
label (`) is approximated by a weighted sum of particles, as follows

p(`)(x) '
J(`)

∑
j=1

ω
(`)
j δ

x(`)j
(x), (24)
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where ω
(`)
j is the weight of particle j, and J(`) denotes the number of particles. For more

details on the SMC implementation, please refer to [17].

3. Method
3.1. Objective Functions Proposal

Using sensor networks with communication constraints, sensor selection for MTT appli-
cations is usually employed to acquire the best set of measurements. As sensor management
solutions, the Markov decision process and partially observable Markov decision process
(POMDP) have received great attention over the last few decades [24]. The POMDP frame-
work enables direct generalization to multiple targets by using the RFS model [9,10,24]. We
model the sensor selection problem as the following discrete-time POMDP:

Ψ = {Xk,S, fk|k−1(Xk|Xk−1, ), gk(Zk|Xk), ϑ(sk)}, (25)

where S denotes a finite set of candidate sensors and ϑ(sk) is the objective (reward or cost)
function. In stochastic filtering, the aim is to find a selection command that optimizes ϑ(sk).

In our work, two objective functions are considered: the number of selected sen-
sors and the variance of the cardinality distribution. Both of the objective functions are
dependent on binary decision variables. Let

sk = [s1,k, s2,k, . . . , sNs ,k], (26)

be the selection command at time k, and Ns is the number of all candidate sensors in the
MSS. The elements of sk are binary variables, i.e., si,k = 1, if sensor si is selected and si,k = 0
otherwise. For example, if there are ten sensors in the system, sk = [0, 1, 0, 1, 0, 0, 0, 0, 1, 0]
indicates the command that the sensors s2, s4 and s9 are selected at time k.

In many practical applications, the number of sensors to be selected is unknown to
the system designer. To control the number of selected sensors at time k, the following
objective function is considered

f1(sk) =
Ns

∑
i=1

si,k. (27)

The other objective function is the variance of the cardinality distribution, aiming
at minimizing the error for the estimated number of targets. At time k, the cardinality
variance corresponding to the selection command sk is given by

f2(sk) = ∑
`∈L+

r(`)(sk)[1− r(`)(sk)]. (28)

The objective function defined in (28) is computed using parameters of the updated
LMB distribution. However, sensors have not been selected and it is impossible to update
the LMB RFS density using measurements collected by the selected sensors. The predicted
ideal measurement set (PIMS) strategy [37] is utilized to address this issue, which is
dependent on the predicted LMB distribution and ideal assumption of perfect detection,
no clutter, and no measurement noise. First, the predicted LMB distribution is used to
estimate the number of targets and the target states. The maximum a posteriori estimate of
the target number is computed as follows,

n̂ = arg max
n

ρ(n) = arg max
n

ρ(0) ∑
L⊆L,|L|=n

(
∏
`∈L

r(`)+

1− r(`)+

)
, (29)

where ρ(0) = ∏`∈L(1− r(`)+ ). Then, we obtain n̂ labels with the highest existence probabili-
ties from the predicted LMB distribution. The a posteriori estimate of the target state with
label ` is given as
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x̂(`) =
J(`)+

∑
j=1

ω
(`)
j+ x(`)j+ . (30)

A predicted ideal measurement is estimated for each x̂(`) under the assumed ideal
conditions, and the pseudo-update of the LMB distribution is implemented with the PIMS.
Then, the objective function (28) is computed using the generated pseudo LMB distribution.

3.2. Evolutionary Multi-Objective Optimization

Although the number of sensors to be selected is kept unknown, the number of
selected sensors should be limited to a range Nmin and Nmax. This limit not only guarantees
the performance of the filter but also meets the communication requirement. At time k, the
constrained MOO is mathematically described as follows

Minimize F(sk) = [ f1(sk), f2(sk)]
T (31)

Subject to Nmin ≤ f1(sk) ≤ Nmax (32)

where F(sk) is the objective vector.
For the MOO problem, the solutions satisfying the constraint of (32) form the feasible

set. The ideal solution is the one that is optimal for all the objective functions. In general, the
ideal solution does not exist since the objective functions are conflicting. Several methods
have been proposed to handle the problem [38–41]. Among them, the scalarization and
Pareto methods do not need complicated numerical derivations and are widely used. The
scalarization method is easy to implement, but it needs to assign relative weight to each
objective based on prior information. Worse, unless the search space is convex, the solution
may not be found [42]. In the Pareto method, the goodness of a solution is determined by
the dominance, and a compromise solution can be found along the Pareto optimal front.
We solve the above MOO problem and find optimal Pareto solutions using an evolutionary
multi-objective algorithm via non-dominated sorting. First, the initial population of size
Npop is generated in which each solution is a feasible solution, represented by a vector
of Ns binary elements. Then, the offspring solutions are obtained by binary tournament
selection, crossover and mutation operators.

In our problem with binary decision variables, a simple crossover operator called
one-point crossover is used. Two parent chromosomes and a random/given point are
selected. After the given/selected point, genes of parent chromosomes are interchanged.
An example is given in Figure 2, in which point four is selected, and the genes of two-parent
chromosomes P1 and P2 are interchanged. Assuming that the number of selected sensors is
limited to the range Nmin = 1 and Nmax = 3, we can observe that the offspring solutions in
Figure 2 meet the constraints of the number of selected sensors. However, there are some
cases where the offspring solutions need to be modified. An example is given in Figure 3,
where the parent chromosomes P1 and P2 are different from those in Figure 2. In Figure 3,
we also select point four and interchange the genes of P1 and P2. The sum of all the bits
in solutions C1 and C2 are N = 0 and N = 4, respectively. Apparently, these solutions
cannot meet the constraints of Nmin = 1 and Nmax = 3 and, hence, are infeasible for sensor
selection. To solve this problem, we develop a binary constrained crossover procedure, as
shown in Algorithm 1.
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Figure 2. Example of the effective one-point crossover.

Figure 3. Example of the ineffective one-point crossover.

Algorithm 1 Binary constrained crossover.

1. Select one crossover point.
2. Copy the binary string from the beginning to the crossover point of the first parent

and the rest from the other parent.
3. Compute the sum N of all the bits of the child solution.
4. If Nmin ≤ N ≤ Nmax, the child solution is reserved; otherwise, go to line 5.
5. Select and flip a point of the child solution, and go back to line 3.

Along with the binary constrained crossover, the mutation is also performed. For the
binary issue, the bit flip mutation is one of the most commonly used mutation operators.
In the bit flip mutation, one or more random bits are selected and then flipped. Figure 4
illustrates an example in which point four is selected from the parent chromosome P and
flipped. We assume that the number of selected sensors is limited to the range Nmin = 1
and Nmax = 3. Then, the offspring solution in Figure 4 meets the constraints. There are
some cases where the offspring solutions of the mutation need to be modified. Figure 5
shows an example, where we also select point four and flip it. The sum of all the bits in
solution C is N = 4, which cannot meet the constraint of Nmax = 3. To solve this problem,
we develop the binary constrained mutation, as shown in Algorithm 2.

Figure 4. Example of the effective bit flip mutation.



Remote Sens. 2022, 14, 3624 9 of 20

Figure 5. Example of the ineffective bit flip mutation.

Algorithm 2 Binary constrained mutation.

1. Randomly select one mutation point.
2. Flip the selected mutation point.
3. Compute the sum N of all the bits of the child solution.
4. If Nmin ≤ N ≤ Nmax, the child solution is reserved; otherwise, go back to line 1.

After the variants (crossover and mutation), the offspring for the next generation are
generated. The new population formed by the parents and offspring is sorted according
to the non-dominant relationships. The size of the population is decreased to Npop by
eliminating the solutions with lower ranks. For the next generation, the new population
is generated using binary tournament selection, binary constrained crossover, and binary
constrained mutation. After several generations G, the Pareto-front is obtained.

The Pareto front is formed from non-dominated solutions, and it is necessary to
choose one compromise solution from them. We use the gray relational analysis (GRA)
strategy [43] to find the compromise solution. GRA does not require the weight of each
objective function or other prior information. The gray relational coefficient (GRC) approach
is used to estimate the similarity between the candidate network (formed by values of the
objective functions for the Pareto solutions) and the optimal reference network (formed by
the optimal value of each objective). Assuming that there are m Pareto solutions obtained
by the evolutionary algorithm, fij is the ith value of the jth objective in the objective matrix,
f ij is the value of fij after normalization. The main steps involved in GRA are summarized
as follows.

i: Normalizethe objective function values of Pareto solutions, as follows

f ij =
maxi∈m fij − fij

maxi∈m fij −mini∈m fij
. (33)

ii: Find the reference network points

f ∗j = maxi∈m f ij. (34)

iii: Estimate the difference between f ∗j and f ij

4Iij =
∣∣∣ f ∗j − f ij

∣∣∣. (35)

iv: Find the value of GRC for each optimal solution:

GRCi =
1
m

n

∑
j=1

4min +4max
4Iij +4max

, (36)

where4max = maxi∈m,j∈n(4Iij) and4min = mini∈m,j∈n(4Iij). v: Find the largest GRCi,
and the corresponding solution is recommended.

3.3. Multi-Sensor Fusion

For each selection command candidate s ⊆ S, the posteriors are LMB RFSs with
parameters π(·|Z(s)) = {{(r(`)i,si

, p(`)i,si
(·))}`∈L+

}|s|i=1. The posterior density of each selected
sensor is approximated by
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p(`)i,si
(x) =

J(`)+

∑
j=1

ω
(`)
i,si ,j

δ
x(`)j+

(x). (37)

During the update step of the LMB filter, the weights of particles are updated but the
particles themselves are not changed. Therefore, the particles in (37) are the same particles
used in the prediction.

We use the GCI scheme [36] to fuse those posterior LMB densities, which returns the
following existence probabilities and densities,

r(`)s =

∫
∏
|s|
i=1(r

(`)
i,si

p(`)i,si
(x))vi dx

∏
|s|
i=1(1− r(`)i,si

)vi +
∫

∏
|s|
i=1(r

(`)
i,si

p(`)i,si
(x))vi dx

, (38)

p(`)s (x) =
∏
|s|
i=1(p(`)i,si

(x))vi∫
∏
|s|
i=1(p(`)i,si

(x))vi dx
, (39)

where vi is a weight indicating the importance of sensor si in the fusion process. The
sum of all the weights is equal to 1, i.e., ∑

|s|
i=1 vi = 1. We assume that all the sensors

have equal importance in the simulation studies, i.e., vi = 1/|s|. When using the particle
approximation (37) to represent each LMB density, the integrals in (38) and (39) turn to
weighted sums over the particles.

3.4. Step-by-Step Implementation

We introduce a sensor selection solution for MTT in this paper. The framework consists
of four main steps: prediction, estimation of PIMS, EMOO-based sensor selection, and
fusion of local posteriors. The schematic diagram is shown in Figure 6.

Algorithm 3 shows a complete step-by-step pseudocode for a single run of the pro-
posed algorithm that outputs a fused LMB posterior. Assume that the following parameters
are always available:

• Sensor model parameters: the number of candidate sensors Ns and their positions

s(j) = [sx, sy]T, detection probabilities p(j)
D (·), and clutter intensities κ(j)(·) with

j = 1, 2, . . . , Ns;

• Birth model parameters: {r(`)B , {ω(`)
j,B , x(`)j,B}

J(`)B
j=1}`∈B;

• Likelihood g(z|x, `) and transition density f (x|·, `);
• Survival probability function: pS(x, `);
• Constraints on the number of selected sensors: Nmin and Nmax.

Similar to the standard particle filter, particle degeneracy is inevitable [44]. To alleviate
the particle degradation problem, the particles for each hypothesized track are resampled in
line 12. In a typical particle filtering implementation, Markov chain Monte Carlo steps are
performed after resampling to improve the diversity of particles [44]. In line 13, multi-target
states are extracted from the posterior LMB distribution and are used for error performance
evaluation. The pseudocode of the algorithm for the EMOO-based sensor selection in line 6
is given in Algorithm 4.
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Figure 6. Schematic diagram of sensor selection with LMB filtering.

Algorithm 3 Step-by-step pseudocode for the proposed approach with LMB filtering, sensor
selection, and fusion.
INPUTS:
→ LMB distribution π = {r(`), {ω(`)

j , x(`)j }
J(`)
j=1}`∈L from previous time step

OUTPUTS:
→ The posterior parameters π = {r(`), {ω(`)

j , x(`)j }
J(`)
j=1}`∈L to be propagated to the next

time step
→ Estimated multi-target states at the current time

1. Predict the LMB distribution π+ = {(r(`)+ , p(`)+ (·))}`∈L+
using (12)–(14)

2. Estimate the target states X̂ using π+ = {(r(`)+ , p(`)+ (·))}`∈L+
based on (29) and (30)

3. for every sensor si ∈ Ns do
4. Compute the PIMS Z(i) of sensor si
5. end for
6. EMOO-based sensor selection
7. Collect Z(s∗) from the selected sensors s∗

8. for every sensor si ∈ s∗ do

9. Update the local LMB distribution π(·|Z(si)) = {(r(`)i,si
, p(`)i,si

(·))}`∈L+
using (17)–(23)

10. end for

11. Obtain the posterior distribution π̂(·|Z(s)) = {r(`), {ω(`)
j , x(`)j }

J(`)
j=1}`∈L based on the

GCI method using (37) and (38)
12. Pruning and resampling to obtain the posterior LMB distribution
13. Extract multi-target states using (38) and (39)
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Algorithm 4 Step-by-step pseudocode for the EMOO-based sensor selection.
INPUTS:
→ The predicted LMB distribution π+ = {(r(`)+ , p(`)+ (·))}`∈L+

→ PIMS from each sensor si ∈ Ns
→ The population size Npop

→ The maximum number G of generations
OUTPUTS:
→ The sensors s∗ selected at current time
1. Initialize population of size Npop, which meet the constraint in (32)
2. Set the generation t = 0
3. while t < G
4. Evaluate individual fitness using (27) and (28)
5. Create a new population of offspring with the implementation of the tournament

selection operator, the proposed binary constrained crossover (Algorithm 1) and
binary constrained mutation (Algorithm 2)

6. Combine the parents and offspring to create the next population
7. Set t = t + 1
8. end
9. A set of non-dominated solutions is obtained
10. Select the compromise solution using the GRA strategy (33)–(36)

4. Experiments

The performance of the proposed sensor selection approach is demonstrated within a
multistatic sensor system. Compared with the traditional monostatic sensor, the multistatic
sensor has many advantages [45]; for example, the information on target signatures is
enhanced because of the multi-perspective and differences in the clutter properties. What is
more, the receive-only multistatic sensor is passive, which provides obvious advantages in
military applications. However, measurements collected by the multistatic sensor system
are generally affected by noise corruption, missed detections, and false alarms, since its
transmit and receive antennas are located in different places.

We use a multistatic sensor system whose structure is borrowed from [46]. As shown
in Figure 7a, there is one transmitter and ten receivers within the surveillance system. The
receivers are selected adaptively during the tracking of targets. The probability of detection
for each receiver j = 1, 2, . . . , 10 is modeled as follows [46]

p(j)
D (xk) = 1− φ(

∥∥∥pk − r(j)
∥∥∥; α, β), (40)

where pk and r(j) denote the target position and the position of receiver j, respectively;
φ(d; α, β) =

∫ d
−∞N (v; α, β)dv is the Gaussian cumulative distribution function with

α = 12 km and β = (3 km)2;
∥∥∥pk − r(j)

∥∥∥ is the distance between the receiver and the
target. Figure 7b plots the contour lines of the detection probability for each sensor in the
x − y plane. It can be observed from Figure 7b that the probability of detection for the
multistatic sensor system decreases with the increase in the distance [47].

The sampling interval of the system is fixed as T = 10 s, and all the receivers have
identical measurement noise. The measurement vector consists of a bearing and bistatic
range, as follows

zj
k =

[
ϕ
ρ

]
=

 arctan

 py,k − r(j)
y

px,k − r(j)
x

∥∥∥pk − r(j)
∥∥∥+ ‖pk − t‖

+ ε
j
k, (41)
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where ε
j
k ∼ N(·; 0, Rk), with Rk = diag([σ2

ϕ, σ2
ρ ]) and σϕ = (π/180) rad, r(j) = [r(j)

x , r(j)
y ]T,

and σρ = 5 m. The clutter measurements are uniformly distributed in [−π, π] rad ×
[0, 15, 000] m with κ = 2× 10−5(radm)−1.

(a) (b) 

-

-
- - - -

Figure 7. Simulation setup: (a) The locations of the transmitter (star) and receivers (squares); (b) con-
tour plot of the probability of detection.

We use two MTT scenarios to study the performance of the EMOO approach. The first
scenario has a time-varying number of targets moving with nearly constant turn (NCT)
motion. The second scenario consists of three targets moving with nearly constant velocity
(NCV) motion. To evaluate the performance of the EMOO approach, we compare it with
three sensor selection solutions: (i) the heuristic random selection method, in which each
sensor has an equal probability of being chosen; (ii) the variance-based approach using
the cardinality variance defined in (28) as the cost function; (iii) the Cauchy–Schwarz
divergence-based approach, which uses the Cauchy–Schwarz divergence between the
predicted and updated LMB densities as the reward function. The traditional exhaustive
search scheme is used to find the selection command in methods (ii) and (iii), in which
the objective function is computed for all possible combinations of a fixed number of
sensors in the MSS. In the following, a fixed number N = 3 of sensors are selected in these
comparative algorithms.

The average tracking performances are obtained using 100 Monte Carlo (MC) runs.
The optimal sub-pattern assignment (OSPA) [48] and OSPA(2) [49,50] distances are used
to evaluate the tracking errors. By measuring the distance between two sets of states, the
OSPA metric [48] can estimate errors in both cardinality and localization. As an adaptation
of the OSPA metric, the OSPA(2) metric [49,50] considers sets of tracks and carries the
interpretation of a per-track per-time error. All experiments are tested in Matlab R2010a
and implemented on a computer with a 3.40 GHz processor.

4.1. Scenario 1

In this scenario, the tracking of two targets with NCT motion is studied. The target
state vector is xk := [px,k, ṗx,k, py,k, ṗy,k, ωk]

T, in which ωk is the turn rate. The transition
model is

xk = f (xk−1) + Gwk−1, (42)

where
f (xk−1) = F(ωk−1)xk−1, (43)
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F(ωk−1) =


1 sin ωk−1T

ωk−1
0 − 1−cos ωk−1T

ωk−1
0

0 cos ωk−1T 0 − sin ωk−1T 0
0 1−cos ωk−1T

ωk−1
1 sin ωk−1T

ωk−1
0

0 sin ωk−1T 0 cos ωk−1T 0
0 0 0 0 1

, (44)

G =


T2

2 0 0
T 0 0
0 T2

2 0
0 T 0
0 0 T

, (45)

wk−1 := [wx,k−1, wy,k−1, wω,k−1]
T, (46)

and wk−1 ∼ N (wk−1; 0, Qk−1) is white Gaussian process noise with covariance
Qk−1 = diag(σ2

x , σ2
y , σ2

ω), where σx = σy = 1.0× 10−4 m/s2 and σω = 1.0× 10−9 rad/s2.
The covariance of the additive process noise Gwk−1 is GQk−1GT.

The birth process follows the LMB distribution {(rB, p(i)B )}2
i=1, where rB = 0.02 and

p(i)B = N (x; m(i)
B , PB)with the mean m(1)

B = [2500, 0,−1000, 0, 0]T, m(1)
B = [1750, 0, 1000, 0, 0]T,

and the covariance PB = diag([50, 50, 50, 50, 6(π/180)]T)2. The units are meters for x and
y and meters per second for ẋ and ẏ . The maximum and minimum numbers of particles
for each hypothesized track are Lmax = 1000 and Lmin = 300, respectively. For each hy-
pothesized track, the number of particles is proportional to its probability of existence. The
probability of survival is fixed as pS = 0.99. The number of components for each forward
propagation is set to 100. The ground truth and estimated tracks for a single MC run with
Nmin = 1 and Nmax = 3 is illustrated in Figure 8, showing the true and estimated tracks
in x and y coordinates versus time. The plots indicate that the EMOO approach is able to
identify target births and successfully accommodate nonlinearities.

-

-

Figure 8. True and estimated tracks versus time in Scenario 1.

The average OSPA error (with parameters p = 1 and c = 300 m) and OSPA(2) error
(with the same c, p, and window length w = 10) are given in Figure 9a,b, respectively. The
average number of selected sensors is shown in Figure 9c. We observe that both the variance-
based approach and the proposed EMOO approach outperform the Cauchy–Schwartz
divergence-based approach in terms of OSPA and OSPA(2) errors. This is mainly because
the objective functions of the variance-based approach and the EMOO approach are derived
from the cardinality distribution, which is strongly related to the error terms computed in
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OSPA and OSPA(2) metrics. In addition, the detection probability is unsatisfactory in the
considered scenario. This underlines the importance of cardinality estimation, which is the
focus of the objective function developed for the variance-based approach and the EMOO
approach. Compared with the variance-based approach, the EMOO approach uses fewer
sensors at each time step (as shown in Figure 9c) but provides better tracking accuracy
(as shown in Figure 9a,b). For the variance-based approach, a fixed number of N = 3
sensors are selected at each time step. However, using more sensors does not indicate a
better tracking performance. When the uncertainty of the multi-sensor tracking system is
high, such as the scenario we consider, using more sensors for tracking may reduce the
tracking performance.

(a)

(b)

(c)

Figure 9. Average performance comparison in Scenario 1: (a) OSPA error; (b) OSPA(2) error; (c) the
number of selected sensors.

The average computing times for the random selection approach, the CS divergence-
based approach, the cardinality variance-based approach, and the EMOO approach to
execute a complete MC simulation are 2.14, 153.28, 194.76, and 87.02 s, respectively. Com-
pared with other methods, the random selection method requires less computing time
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because it does not use any technical method. The EMOO approach runs faster than the CS
divergence-based approach and the cardinality variance-based approach.

4.2. Scenario 2

In this scenario, three targets with NCV motion move into the surveillance area. The
state of the moving target at time k is denoted as xk = [px,k, ṗx,k, py,k, ṗy,k]

T. The NCV
motion of each target is modeled as

xk = Fk−1xk−1 + wk−1, (47)

where

Fk−1 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, (48)

and wk−1 is white Gaussian process noise with covariance Qk−1 denoted as

Qk−1 = σ2
w


T4

4
T3

2 0 0
T3

2 T2 0 0
0 0 T4

4
T3

2
0 0 T3

2 T2

, (49)

and σw = 0.01 m/s2 is the standard deviation of the acceleration noise.
The birth process is an LMB RFS with parameters {(rB, p(i)B )}3

i=1, where rB = 0.02

and p(i)B = N (x; m(i)
B , PB) with m(1)

B = [3000, 0, 0, 0]T, m(2)
B = [2250, 0, 2000, 0]T,

m(3)
B = [3000, 0, 2500, 0]T, and PB = diag([50, 50, 50, 50]T)2. The units of these elements

are the same as those in Scenario 1. The position estimates for a single run of the EMOO
approach, assuming Nmin = 1 and Nmax = 3, are illustrated in Figure 10. It can be observed
that the trajectory estimates of the EMOO approach are close to the true trajectories.

Figure 10. True and estimated tracks versus time in Scenario 2.

The average OSPA and OSPA(2) errors (with the same parameters as used in Scenario 1)
are given in Figure 11a,b, respectively. The average number of selected sensors is shown
in Figure 11c. It can be observed that the tracking errors of the EMOO approach are less
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than those of other methods in terms of OSPA and OSPA(2). Although the variance-based
approach and the proposed EMOO method converge to similar error values, the error of
the latter arrives there much earlier. Figure 11c shows that the number of selected sensors
for the EMOO method is always less than that of other methods. The average computing
times for the random selection approach, the CS divergence-based approach, the cardinality
variance-based approach, and the EMOO approach to execute a complete MC simulation
are 3.29, 279.85, 343.79, and 157.66 s, respectively. Referring to the tracking accuracy,
computing time, and the number of selected sensors, the EMOO approach provides an
alternative solution for sensor selection.

(a)

(b)

(c)

Figure 11. Average performance comparison in Scenario 2: (a) OSPA error; (b) OSPA(2) error; (c) the
number of selected sensors.

5. Discussion

In the above experiments, we use two different MTT scenarios with the NCV and NCT
target motions to demonstrate the performances of the proposed EMOO approach. The
OSPA and OSPA(2) errors are used to measure the tracking accuracy, which is widely used
in the RFS-based tracking field. The average tracking results obtained over 100 MC runs
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show that the EMOO approach performs better than the existing methods in terms of the
OSPA and OSPA(2) errors. What is more, the EMOO approach can significantly reduce
the number of selected sensors at each time step. Therefore, the energy and bandwidth
problems can be effectively alleviated. The experimental results are well consistent with
previous theoretical analysis.

6. Conclusions

A novel sensor selection approach based on evolutionary computational intelligence
has been proposed under the FISST framework. The multi-target state is modeled by the
LMB RFS, and the posterior density is propagated using the LMB filtering. We model the
sensor selection problem as an EMOO problem with two conflicting objective functions,
i.e., the number of selected sensors and the cardinality variance. The selection command is
determined by optimizing the MOO problem using a novel binary constrained evolutionary
algorithm. The performance of the proposed EMOO approach was verified using two
scenarios in which a multistatic sensor system with poor detection ability is used for MTT.
Simulation results demonstrate that the EMOO approach performs better than existing
methods in terms of OSPA and OSPA(2) errors and significantly reduces the number of
selected sensors. Our future work will consider integrating data from multiple scans to
improve the tracking performance. Furthermore, the proposed EMOO methodology also
applies to other advanced RFS filters such as GLMB, and this is another direction for
future work.
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