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Abstract: Foodborne diseases are an increasing concern to public health; climate and socioeconomic
factors influence bacterial foodborne disease outbreaks. We developed an “exposure–sensitivity–
adaptability” vulnerability assessment framework to explore the spatial characteristics of multiple
climatic and socioeconomic environments, and analyzed the risk of foodborne disease outbreaks in
different vulnerable environments of Zhejiang Province, China. Global logistic regression (GLR) and
geographically weighted logistic regression (GWLR) models were combined to quantify the influence
of selected variables on regional bacterial foodborne diseases and evaluate the potential risk. GLR
results suggested that temperature, total precipitation, road density, construction area proportions,
and gross domestic product (GDP) were positively correlated with foodborne diseases. GWLR results
indicated that the strength and significance of these relationships varied locally, and the predicted
risk map revealed that the risk of foodborne diseases caused by Vibrio parahaemolyticus was higher
in urban areas (60.6%) than rural areas (20.1%). Finally, distance from the coastline was negatively
correlated with predicted regional risks. This study provides a spatial perspective for the relevant
departments to prevent and control foodborne diseases.

Keywords: bacterial foodborne disease; global logistic regression; geographically weighted logistic
regression; urban and rural areas; vulnerability

1. Introduction

Foodborne diseases are infectious or toxic diseases transmitted by the consumption of
food [1] and are one of the most significant public health problems worldwide. According
to a World Health Organization (WHO) Foodborne Disease Burden Epidemiology Refer-
ence Group (FERG) report, 600 million foodborne illnesses and 420,000 deaths were caused
by global foodborne hazards in 2010 [2]. In China, studies have shown that 748 million
cases of acute gastrointestinal illness and 420 million medical consultations occur annually
throughout the country [3]. As a result, foodborne diseases bring significant socioeconomic
burdens and hidden dangers to residential health. According to the national foodborne
disease molecular tracing network established in 2013, Salmonella species, Vibrio para-
haemolyticus, Staphylococcus aureus, and diarrheagenic Escherichia coli are the most common
foodborne pathogens that cause outbreaks in China [4]. Among these, V. parahaemolyticus
is a halophilic, gram-negative bacterium that has been the leading cause of foodborne
disease outbreaks and cases of infectious diarrhea in China, especially in coastal regions [5].
Therefore, it is essential to analyze the influencing factors and risk of foodborne diseases
caused by V. parahaemolyticus.
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Based on surveillance data, many studies on foodborne diseases have explored their
epidemiological characteristics [6–8] and many scholars have conducted research on food-
borne diseases, such as exploring influencing factors and predicting infection risks [9–12].
Chen et al. conducted a multivariable logistic regression analysis to analyze the association
between food-handling behaviors and foodborne acute gastroenteritis in Anhui, China [9].
Zhang et al. used several machine learning models (e.g., support vector machine, random
forest, and XGBoost) to study foodborne disease outbreaks across China and identify their
confounding factors [10]. Wang et al. applied a Bayesian nowcasting model to forecast
the total daily number of foodborne disease cases [11]. Li et al. used the autoregressive
integrated moving average (ARIMA) model to predict foodborne disease incidence in
Shenzhen City [12]. However, these studies assumed each factor affected the diseases
uniformly, ignoring geographical variations in the influencing factors. As a spatial re-
gression method, geographically weighted logical regression (GWLR) allows the intensity
of these factors and their relative importance to vary geographically [13] and has been
widely used in epidemiological studies of infectious diseases, such as thrombocytopenia
syndrome, dengue, and malaria [14–16]. For instance, Zhou et al. found that, compared to
the non-spatial logistical regression, the GWLR model offers better understanding of the
geographical variations of the risk factors associated with infection of hepatitis C virus [17].
Using GWLR to explore influencing factors can provide a unique spatial perspective.

Vulnerability, which comprises exposure, sensitivity, and adaptability [18], plays a
vital role in global environmental change and sustainability research (e.g., flood, heat waves,
dengue, and SARS-CoV-2 infections) [19–23]. The concept of vulnerability first appeared in
the study of natural hazards [24]. Then it gradually developed into an interdisciplinary and
multiscale direction. Adger considered vulnerability as “ . . . the state of susceptibility to
harm from exposure to stresses associated with environmental and social change and from
the absence of capacity to adapt” [24]. The above definition is widely recognized [25–27].
Exposure is defined as the proximity of people or systems to external disturbances [28].
Climate variables, such as temperature and precipitation patterns, extreme weather events,
and ocean warming, have complex effects on the food chain, thus affecting the occur-
rence of foodborne diseases, especially those caused by bacteria. Studies have shown that
rising temperatures and heavy rainfall may increase the number of foodborne disease
cases [29–31]. Sensitivity can be understood as the degree of a system being easily dis-
turbed [26]. The effect of foodborne diseases on crowds varies and the degree of this effect
depends on age, sex, food preferences, and food-handling behaviors [32,33]. Osei-Tutu et al.
found that the most affected group were those between the ages of 15 and 34 in Accra,
Ghana [34]. Moreover, the degree of impact also differs between urban and rural areas; for
example, Czerwinski et al. found that the incidence of foodborne botulism among rural
residents was more than twice as high as that in urban areas [35]. Adaptability reflects
the ability of a system to adapt and adjust to external disturbances [28]. The higher the
level of economic medical development, the stronger the ability to deal with health threats.
Xiao et al. found that per capita gross domestic product (GDP) was negatively associated
with disease incidence [36]. The selection of vulnerability indicators varies depending on
the physical attributes of the event; however, few studies have assessed foodborne diseases
and vulnerability together. Therefore, we propose a comprehensive foodborne disease
vulnerability assessment framework to identify the dominant influencing factors.
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Zhejiang Province is an important part of the Yangtze River Delta urban agglomer-
ation, which belongs to the typical subtropical monsoon climate and has a wide variety
of aquatic products. Geographical and climatic conditions are suitable for the growth of
microorganisms. Among the identified causes of foodborne disease outbreaks, the number
of foodborne illnesses caused by bacterial pathogen infections were the largest [6]. Previous
evidence has shown that V. parahaemolyticus was responsible for the largest number of
outbreaks in Zhejiang Province from 2010 to 2014 [37]. Taking Zhejiang as a case study,
this study aimed to screen the influencing factors of foodborne diseases, based on the
vulnerability assessment framework, and investigate the specific relationship between
these factors and the positive foodborne disease cases caused by V. parahaemolyticus. Fur-
thermore, the GWLR model was combined with foodborne diseases to identify the relative
geographical importance of environmental and sociodemographic variables. Finally, we
produced a map of the predicted probability of foodborne diseases to determine the spatial
epidemiological risk.

2. Materials and Methods
2.1. Study Area

Zhejiang Province is on the southeast coast of China (Figure 1) and covers 101,800 km2

with a long 1805 km zigzag-shaped coastline. It has a subtropical monsoon climate with
hydrothermal conditions that are conducive to microorganism growth. The province
includes 11 prefecture-level cities and has experienced significant economic development.
With rapid socioeconomic development, regional relationships grow closer, and personal
dietary structures become richer. Zhejiang Province has a high incidence of foodborne
diseases, especially bacterial foodborne diseases caused by V. parahaemolyticus. According to
the Zhejiang Province Foodborne Disease Monitoring and Reporting System, the detection
rate of foodborne diseases caused by V. parahaemolyticus has recently increased. Zhejiang
Province first set up sentinel hospitals to conduct foodborne disease surveillance and
reporting in 2010. To ensure that each district and county can be effectively monitored,
101 sentinel hospitals are located in 89 districts and counties in Zhejiang Province. It should
be noted that sentinel hospitals were added in areas with a large resident population.
However, some problems remain unsolved, such as imperfect monitoring mechanisms,
disunity of information construction standards, and inadequate data utilization. Overall,
it is essential to more effectively mine information based on existing monitoring data.
To carry out more detailed research, we used the ArcGIS fishnet tool to generate the
0.1◦ × 0.1◦ grid data.

This study uses the township administrative region as the primary division unit,
dividing the study area into urban and rural areas (Figure 1). The division principles
were defined based on the “Provisions on Statistical Division of Urban and Rural Areas”
designated by the National Bureau of Statistics [38]. Urban areas are those that house
municipal district governments and other subdistrict offices under the jurisdiction of the
district, along with town governments and other neighborhood committee areas under
the jurisdiction of the town. Rural areas refer to the regions outside of these urban areas.
Notably, since regular grids and irregular administrative boundaries do not always fit well,
some grids required manual judgement when dividing the urban and rural areas according
to local knowledge. For example, street administrative divisions are incomplete in a grid.
When the proportion of urban administrative areas in a grid was greater than 70%, we
defined the grid as an urban area. In short, there was an initial division of urban and rural
areas based on the administrative division data of the town, and then a more detailed
judgment was made with the help of remote sensing images and local knowledge.
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Figure 1. Locations of the study area (0.1◦ × 0.1◦ grid size) and positive cases caused by
V. parahaemolyticus.

2.2. Data Source

Meteorological data, including dew point temperature, temperature, surface net solar
radiation, total precipitation, daily maximum temperature, and daily minimum temperature,
were obtained from the European Center for Medium-Range Weather Forecasts (ECMWF).

Road data were derived from OpenStreetMap (https://www.openstreetmap.org (ac-
cessed on 23 March 2021)), and the hospital-related points of interest (POI) data were
extracted from Amap application programming interface (API). The population density
data came from the Gridded Population of the World (https://sedac.ciesin.columbia.edu/
data/collection/gpw-v4 (accessed on 23 July 2022)). Based on the Seventh National Cen-
sus of China in 2020, the population raster data were adjusted [39]. The GDP spatial
distribution kilometer grid data, annual normalized difference vegetation index (NDVI),
spatial distribution data, and the China land use data were downloaded from the Re-
source and Environmental Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn (accessed on 28 April 2021)).

https://www.openstreetmap.org
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://www.resdc.cn
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Data on foodborne diseases caused by V. parahaemolyticus were collected from the
“Zhejiang Province Foodborne Disease Surveillance and Reporting System”, which con-
tained data on 31,932 tested cases came from 101 sentinel hospitals in 2018, including
attributes of date, gender, age, address, occupation, and detection results.

2.3. Foodborne Diseases Vulnerability Assessment Framework

According to the definition of vulnerability, this study proposes an assessment frame-
work for foodborne disease vulnerability based on exposure, sensitivity, and adaptability
(Table 1). Previous studies have shown that climate change will have a complex impact
on the persistence and dispersal of foodborne pathogens [40]; therefore, our exposure
indices here were focused on various meteorological indicators. Urbanization affects
consumption patterns and food production processes, which can increase the risk of food-
borne diseases [41]; therefore, our sensitivity indices were focused on road density and
construction area proportions. As indispensable social resources for combating diseases,
hospitals and health institutes are crucial to maintaining personal health [42]. Additionally,
medical resources are closely related to regional economic development; therefore, our
adaptability indices are focused on regional medical time costs and GDP. The vulnerabil-
ity of foodborne diseases mentioned in this paper refers to the relationship between the
“human–environment” system and foodborne diseases; that is, the susceptibility of the
state of the system to harm from exposure to stresses associated with foodborne diseases
and from the absence of the capacity to adapt. All data were processed using the same grid
size (0.1◦ × 0.1◦) in ArcGIS as shown in Figure 2. The numerical differences among each
variable are shown in Table 2.

Table 1. Evaluation index system of foodborne diseases vulnerability.

Criterion Index Source Resolution Year

Exposure

Wind Speed (m/s)

ERA5-Land
(https://www.ecmwf.int/ (accessed on 20 October 2021)) 2018

Dewpoint Temperature (K)
Temperature (K)

Surface Net Solar Radiation (KJ/m2) 0.1◦ × 0.1◦

Total Precipitation (m)
Daily Maximum Temperature (K)
Daily Minimum Temperature (K)

Sensitivity

Road Density (km/km2)
Road Data

(https://www.openstreetmap.org/ (accessed on 23 March 2021)) Vector 2021

Proportion of Construction Area (%) Land Use Data
(https://www.resdc.cn/ (accessed on 28 April 2021)) 1 km 2015

Rural Areas Administrative Division Data (http://www.ngcc.cn/ngcc/
(accessed on 6 November 2021)) Vector 2018

Population Density (people/km2)
Grid Population Density

(https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
(accessed on 23 July 2022))

1 km 2020

NDVI Grid NDVI
(https://www.resdc.cn/ (accessed on 28 April 2021)) 1 km 2018

Adaptability
Medical Cost (h)

POI from Amap
(https://restapi.amap.com/v3/place/text (accessed on 15

May 2013))
Vector 2012

GDP (million yuan/km2)
Grid GDP

(https://www.resdc.cn/ (accessed on 28 April 2021)) 1 km 2015

https://www.ecmwf.int/
https://www.openstreetmap.org/
https://www.resdc.cn/
http://www.ngcc.cn/ngcc/
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://www.resdc.cn/
https://restapi.amap.com/v3/place/text
https://www.resdc.cn/
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Figure 2. Spatial distribution of variables and detection results of V. parahaemolyticus, including
(a) wind speed, (b) dewpoint temperature, (c) temperature, (d) surface net solar radiation, (e) total
precipitation, (f) daily maximum temperature, (g) daily minimum temperature, (h) road density,
(i) proportion of construction area, (j) medical cost, (k) GDP, (l) population density, (m) NDVI,
(n) distribution of urban and rural areas, and (o) test results.
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Table 2. Mean and standard deviations of urban and rural areas.

Index
Total Urban Area Rural Area

964 Grids 155 Grids 809 Grids

Wind Speed (m/s) 0.655 (0.405) 0.767 (0.456) 0.633 (0.391)
Dewpoint Temperature (K) 286.204 (0.980) 286.673 (0.792) 286.114 (0.987)

Temperature (K) 290.307 (0.892) 290.788 (0.592) 290.215 (0.911)
Surface Net Solar Radiation (KJ/m2) 231,698.574 (8818.364) 229,737.638 (9464.728) 232,074.279 (8644.563)

Total Precipitation (m) 0.052 (0.008) 0.049 (0.006) 0.053 (0.008)
Daily Maximum Temperature (K) 294.143 (0.875) 294.423 (0.830) 294.089 (0.874)
Daily Minimum Temperature (K) 287.010 (1.316) 287.614 (1.150) 286.894 (1.315)

Road Density (km/km2) 3.105 (2.288) 5.486 (3.544) 2.649 (1.597)
Proportion of Construction Area (%) 7.946 (11.614) 22.643 (15.630) 5.131 (8.052)

Population Density (people/km2) 638.452 (1098.019) 2048.545 (2105.047) 407.526 (546.304)
NDVI 0.783 (0.121) 0.655 (0.130) 0.807 (0.102)

Medical Cost (h) 0.041 (0.063) 0.017 (0.038) 0.046 (0.065)
GDP (million yuan/km2) 4762.486 (9651.622) 10,687.459 (15866.161) 3627.293 (7417.539)

Note: Standard deviations are in parentheses.

2.4. Global Logistic Regression

We applied classic logistic regression to explore the relationship between vulnerabil-
ity to environmental factors and foodborne diseases caused by V. parahaemolyticus. The
logistic regression model is a generalized linear model with a binomial distribution for the
dependent variable [43]. The dependent variable of the logistic regression in this study was
the presence or absence of foodborne disease cases caused by V. parahaemolyticus. When
Y = 1, there were positive cases in the grid; otherwise, Y = 0. The independent variables
were temperature, total precipitation, road density, proportion of the construction area,
distribution of urban and rural areas, and GDP. The classic logistic regression is called
global logistic regression (GLR), expressed as follows:

logit(Y) = β0 + ∑ k
n = 1βnXn + ε (1)

where βn is the regression coefficient of independent variable Xn, β0 is the intercept, logit
(Y) is a linear combination function of the covariates, and ε is the error term. To detect and
reduce the multicollinearity of these independent variables before regression modeling, we
calculated the variance inflation factor (VIF). When VIF > 10, collinearity in the explanatory
variables was considered problematic [44,45]. The probability (Y = 1) can be calculated
as follows:

P(Y = 1) =
exp

(
β0 + ∑k

n = 1 βnXn

)
1 + exp

(
β0 + ∑k

n = 1 βnXn

) (2)

where P (Y = 1) represents the probability of detecting foodborne disease cases caused by
V. parahaemolyticus. Areas with larger probability values represent a higher risk of foodborne
diseases. Thus, we can identify the risk of foodborne diseases in the analysis area.



Remote Sens. 2022, 14, 3613 8 of 17

2.5. Geographically Weighted Logistic Regression Model

Figure 2 shows the geospatial heterogeneity of independent and dependent variables.
Therefore, using the GWLR model is instrumental for considering the spatial dependence
and capturing spatial variations. The GWLR model is a local regression method for
investigating spatial non-stationarity [46], and it can explore the variation of the coefficient
of each covariate geographically. For GWLR, the variables involved in the operation of the
model were the same as those previously described. GWLR model is expressed as follows:

y = β0
(
uj, vj

)
+ ∑ k

n = 1βn
(
uj, vj

)
Xnj + ε j (3)

where uj and vj are the spatial coordinates of grid j, βn (uj, vj) is the regression coefficient
of the independent variable Xn at location j, and εj is the error term specific to location j.
Similar to the GLR model, the probability that (Y = 1) is expressed as follows:

P(Y = 1) =
exp

[
β0
(
uj, vj

)
+ ∑k

n = 1 βn
(
uj, vj

)
Xnj

]
1 + exp

[
β0
(
uj, vj

)
+ ∑k

n = 1 βn
(
uj, vj

)
Xnj

] (4)

To compare the performances of the GLR and GWLR models, we used the deviance,
corrected Akaike information criterion (AICc), and area under the receiver operating
characteristic curve (AUC) to evaluate the model fitness and prediction accuracy. For
example, the lower the deviance and AICc, the better the model fits the data [47,48]; the
higher the AUC, the better the prediction accuracy of the model [47].

3. Results
3.1. Global Logistic Regression

Based on correlation analysis, we eliminated some variables because of the multi-
collinearity problem. For instance, proportion of construction area, population density,
and NDVI were significantly collinear; dewpoint temperature, temperature, and daily
minimum temperature were highly correlated. After evaluating the performance of the
models from the perspective of collinearity, temperature, total precipitation, road density,
proportion of construction area, dummy variable for rural areas, and GDP were included as
the dependent variables in the regression model. Table 3 shows that the VIF values of these
covariates (VIF = 1.443, 1.412, 1.820, 2.207, 1.503, and 1.456, respectively) are all smaller than
the preselected threshold. The results of the GLR model showed that except for dummy
variable for rural areas, most selected variables had a significant positive association with
foodborne disease cases caused by V. parahaemolyticus (p < 0.05), which indicated that as
temperature, total precipitation, road density, construction area proportions, and GDP
increased, the probability of a grid converting from negative to positive also increased
(Table 3). Furthermore, the positive effects of these independent variables on the pres-
ence or absence of foodborne disease cases, from strong to weak, were construction area
proportions, GDP, road density, temperature, and total precipitation.
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Table 3. Parameter estimates for the global logistic regression model.

Variable β S.E z-Value p Exp(β) VIF

Temperature 0.390 0.104 3.747 <0.001 1.476 1.443
Total Precipitation 0.262 0.099 2.652 0.008 1.300 1.412

Road Density 0.272 0.142 1.914 0.056 1.312 1.820
Proportion of

Construction Area 0.373 0.122 3.053 0.002 1.452 2.207

Is Rural Areas −0.924 0.231 −4.007 <0.001 0.397 1.503
GDP 0.559 0.212 2.644 0.008 1.750 1.456

Intercept −1.222 0.094 −13.000 <0.001 0.295 -

AICc 952.390 Deviance 938.390
AUC 0.772

3.2. Geographically Weighted Logistic Regression

To capture geographical spatial variations, we applied GWLR to the same dataset
of 964 grids, which showed a clear improvement over the GLR model, as shown in
Tables 3 and 4. While the AICc and deviance values for the GWLR model (AICc = 874.659;
deviance = 760.530) were much lower than those of the GLR model (AICc = 952.390; de-
viance = 938.390), which meant that the GWLR model had a much better model fit, the
higher AUC value of the GLR model (AUC = 0.871) compared to that of the GWLR model
(AUC = 0.772) suggested that it had a higher prediction accuracy for foodborne diseases.

Table 4. Summary statistics for geographically weighted logistic regression parameter estimates.

Variable Mean STD Min Max % − % +

Temperature 0.458 0.469 −0.491 1.693 16.5% 83.5%
Total Precipitation 0.297 0.637 −0.830 1.982 37.4% 62.6%

Road Density 0.461 1.076 −1.790 2.072 32.4% 67.6%
Proportion of

Construction Area 0.273 0.506 −0.712 1.777 29.0% 71.0%

Is Rural Areas −1.324 0.745 −3.187 0.389 97.9% 2.1%
GDP 1.218 1.768 −6.442 7.535 12.5% 87.5%

Intercept −0.001 1.131 −3.697 4.111 51.1% 48.9%

AICc 874.659 Deviance 760.530
AUC 0.871

Parameter estimates and pseudo-t-statistics for each grid were generated using the
software package GWR4. The summary descriptive statistics of the local parameter coeffi-
cients are shown in Table 4, suggesting that temperature, total precipitation, road density,
construction area proportions, and GDP each have negative and positive parameter values.
The majority of the local parameter coefficients for all the variables were positive except for
the dummy variable for rural areas.

The spatial distributions of the generated coefficients and t-statistics surfaces with
a grid size of 0.1◦ × 0.1◦ are shown in Figures 3 and 4, respectively. Figure 4 shows that
all the selected variables had certain areas where they were not statistically significant.
For example, temperature had a significant positive effect on foodborne diseases in the
northwestern and southeastern portions of the study area, while total precipitation had a
larger significant positive impact area. In significantly affected areas, only the coefficient
of road density and rural areas were negative. The construction area proportions had a
positive relationship, mainly in the northern regions of the study area. The significantly
positive influence areas of GDP extend in a strip from the northwest to the center of
Zhejiang Province.
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3.3. Mapping the Risk of Foodborne Diseases

Figure 5 illustrates a map of the predicted probability of foodborne disease infection
based on the GLR and GWLR models. We divided the risk of foodborne diseases into five
grades, from low to high, based on GWLR. The areas of each risk region were 55.7%, 20.1%,
12.3%, 6.7%, and 5.2%, respectively (Table 5). Moreover, this map indicates that the risks
were higher in urban areas (60.6%) than in rural areas (20.1%). Compared with the GLR,
the GWLR risk map predicted a higher probability of cases in some regions (e.g., Wenzhou
in the southern part of Zhejiang Province) and a lower probability in some areas (e.g., the
western part of Hangzhou).
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Table 5. Percentage of foodborne disease risk areas and average prediction probability based on
geographically weighted logistic regression model.

Grade Total Area Urban Area Rural Area

Very low (0–0.2) 55.7% 11.4% 63.2%
Low (0.2–0.4) 20.1% 15.8% 20.8%

Middle (0.4–0.6) 12.3% 17.1% 11.5%
High (0.6–0.8) 6.7% 25.3% 3.6%

Very High (0.8–1.0) 5.2% 30.4% 0.9%

Average Prediction
probability 26.0% 60.6% 20.1%

Furthermore, we divided Zhejiang Province into different areas according to their dis-
tance from the coastline and calculated the average prediction probability for each area. The
calculation results are shown in Figure 6. The changing trend of the prediction probability
is similar to that of the actual average detection rate. The distance from the coastline had
a negative association with the average prediction probability around Zhejiang Province,
except for an area 90–120 km and 180–240 km from the coastline.
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4. Discussion

Based on the vulnerability assessment framework and variable screening method,
Tables 3 and 5 show that regional temperature, total precipitation, road density, construc-
tion area proportions, rural areas, and GDP have a significant effect on the positive detection
of V. parahaemolyticus in the GLR or GWLR models. Positive cases of foodborne diseases
were positively correlated with air temperature, which is consistent with the findings
of Hsiao et al. [49], who reported similar findings in Taiwan [49]. However, these posi-
tive relationships differ from the findings of Shih et al. [50], in that the detection rate of
V. parahaemolyticus was negatively correlated with average daily rainfall [50]. One possible
reason for this disparity is that the very humid plum rain season occurs in June and July in
Zhejiang Province, which brings abundant precipitation, making it easier for bacteria to
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breed. Road density and construction area proportions also had significant positive effects
on foodborne diseases, while the occurrence of rural areas had a negative relationship
with positive cases occurrence. It is consistent with the view proposed by Prinsen [41] that
urbanization can affect the risk of foodborne diseases. Based on these correlations, urban
areas in Zhejiang Province should be more heavily studied than rural areas. Additionally,
there was a positive correlation between GDP and foodborne diseases, suggesting that
the prevention and control of foodborne diseases should not be neglected when pursu-
ing economic development. However, this differed from the findings of Yang et al. [51],
who reported that the incidence of foodborne diseases had a negative correlation with
GDP in Jinan. This discrepancy could be because the attitudes and behavior of foodborne
disease patients in choosing healthcare vary due to different socioeconomic and cultural
backgrounds; for example, rural residents are less likely to visit hospitals when they suffer
from foodborne diseases.

The GLR model ignores geographical variations in the relationships between the
dependent variable and covariates, whereas the GWLR model can detect this spatial vari-
ability [52]. Temperature and total precipitation only showed significant positive effects in
some areas of northwest and southeast Zhejiang. The mostly non-significant relationship
and differences from others may have been a consequence of the spatiotemporal scales of
the meteorological data. A significant and positive relationship between road density and
the presence or absence of positive cases was found in the western and eastern regions,
while an outlier occurred in northern Zhejiang, and there was a negative correlation be-
tween road density and V. parahaemolyticus detection rate. Although the developed road
network can promote food transportation, the supervision of food hygiene quality in these
areas near the main urban area of the provincial capital city is more stringent, and the
daily dietary hygiene habits of residents are healthier. The proportion of construction
area had a positive relationship, predominantly in the northern and southwestern parts of
the study area. Furthermore, the rural areas had a significant negative relationship in the
west and southeast of Zhejiang Province. The significantly positive influence area of GDP
extends in a strip from the northwest to the center of Zhejiang Province. The coefficients
and significance of the proportion of construction areas and GDP varied geographically.
The influence of these factors on foodborne diseases caused by V. parahaemolyticus varied
geographically. Furthermore, our findings verify that GWLR can provide improvements
and additional perspectives over classic non-spatial regression models for eco epidemi-
ological studies on bacterial foodborne diseases [53]. As the relative importance of each
independent variable differed geographically, public health practitioners can identify the
most important influencing factors and develop public health interventions for various
regions more precisely.

GWLR had more advantages in model performance compared to GLR. Owing to
the spatial heterogeneity of the driving mechanism, non-spatial regression models may
perform poorly [54]. A comparison of the model performances between the GLR and
GWLR is shown in Tables 3 and 4. The AICc and deviance values of GWLR were 874.659
and 760.530, respectively, which were lower than those of the GLR model, indicating
that GWLR performed better than the GLR model in quantifying the impact of selected
variables on foodborne diseases. Additionally, the AUC of GWLR was 0.871, which was
much larger than that of the GLR model, suggesting that GWLR had higher prediction
accuracy for the probability of positive foodborne disease cases. The evaluation indices of
the GWLR model were all better than those of the GLR model, similar to the findings of
previous studies [53,55], suggesting that the influence of spatial geographical location on
the results of the dependent variables should be considered when fitting data with spatial
structure. However, this GWLR approach used the annual total value or average value of
covariables to model the relationship between V. parahaemolyticus detection information
and vulnerability environmental factors in different regions, ignoring the seasonal variation
characteristics of foodborne diseases. It is difficult to predict the epidemic trends of
foodborne diseases according to the climate change and other risk factors. Similar to the
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study on the spatial trends in Salmon infection in Spain [56], we paid attention to the
geospatial variation of bacterial pathogen detection, and confirmed the existence of the
spatial difference in the risk of bacterial pathogen infection at the province level or grid
level. Under the constraints of limited resource input and environmental improvement, it
is important to evaluate the spatial risk of V. parahaemolyticus infection in Zhejiang province
to help develop local public health strategies, which is the main contribution of this study.

According to the predicted risk maps of foodborne diseases caused by V. parahaemolyticus
(Figure 5), the prediction probability in urban areas (60.6%) was higher than that in the
rural areas (20.1%). One reason for this phenomenon is that the percentage of seafood
intake is lower in rural residents than in urban residents [57]. Outbreaks of foodborne
diseases caused by V. parahaemolyticus are associated with dietary habits of seafood con-
sumption. V. parahaemolyticus foodborne disease risks differed between urban and rural
areas, which have also been reported by other researchers; for example, using simple linear
regression and locally weighted regression, Ford et al. found significantly higher rates of
V. parahaemolyticus serotype typhimurium in urban areas than rural areas [58]. Therefore,
relevant departments should pay more attention to urban areas than to rural areas. Stricter
food regulations, such as the step-by-step seafood safety regulations in Japan, from the
production to the consumption stages, are recommended [59]. Considering factors such as
medical distance and cost, there are also patients in rural areas who do not visit the hospital
after falling ill. Therefore, the monitoring, prevention, and control of foodborne diseases
requires efforts from both urban and rural departments.

However, not all urban areas have high prediction probabilities and not all rural areas
have low prediction probabilities; for example, the prediction probability of the coastal
areas that belonged to rural areas in the northeast and southeast of Zhejiang Province
was also high, whereas the prediction probability of some grids belonging to urban areas
in the middle of Zhejiang Province was low. Additionally, Figure 6 shows that, as the
distance from the coast increased, the prediction probability decreased overall, except
for some regions, which was consistent with a study conducted in the littoral domain,
where V. parahaemolyticus caused outbreaks of most foodborne diseases [6]. One possible
reason for the high prediction probability in inland areas is that V. parahaemolyticus is
occasionally detected in other foods. Remarkably, V. parahaemolyticus contamination has
been found at a high rate in aquatic products as well as in ready-to-eat (RTE) foods, such
as cooked meat, roasted poultry, and cold vegetable dishes in sauce, which are popular
in China [60]. Jinhua, 90–180 km from the coastline, is famous for its traditional pickled
food, Jinhua ham; Quzhou, 210–270 km from the coastline, is famous for its special stewed
meat. Therefore, relevant departments should not ignore other foods while addressing
seafood contamination.

5. Conclusions

In this study, we proposed a foodborne disease vulnerability assessment framework,
and foodborne disease vulnerability environments were comprehensively described using
various types of geographic data. This study combined the GWLR model with foodborne
diseases for the first time to analyze the spatial epidemiological risk of foodborne diseases
caused by V. parahaemolyticus.

We found that temperature, total precipitation, road density, the proportion of con-
struction area, and GDP are important environmental indicators that affect foodborne
diseases. Additionally, the GWLR model had better model fitness and higher prediction
accuracy than the GLR model. Compared with the GLR model, the GWLR model can
consider the spatial heterogeneity of selected independent variables and their relative geo-
graphical importance. The significant relationship between foodborne diseases and these
covariates was mostly positive throughout Zhejiang Province, except that road density also
had a negative relationship in the northern part of the study area. Furthermore, our model
can effectively predict the foodborne disease risks, and our predicted risk map showed
that urban areas had a higher overall probability of positive cases. Although foodborne
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diseases caused by V. parahaemolyticus are related to the distance from the coastline, the
supervision of food and residential dietary hygiene habits also contributed to an increased
risk of foodborne diseases. Generally, this study provides guidance and geographical
support for relevant government departments to prevent and control foodborne diseases in
Zhejiang Province.

The limitations and future perspectives should be addressed to better understand
these findings. First, urban and rural divisions in this study were based on administrative
divisions, and a mixed area may still exist. Determining how to divide urban and rural
areas more effectively would be instrumental for future work. Second, the spatiotemporal
resolutions of meteorological and socio-economic data limit the spatial scale and neglects
seasonal changes in the results. Except for meteorological data, other vulnerability envi-
ronmental assessment data show the annual average distribution of factors in each region,
which are cross-sectional data. Future studies should include higher spatial resolution and
dynamically changing time-series data, and then carry out spatiotemporal risk prediction
research. Third, the proposed foodborne disease vulnerability assessment framework must
be further improved. Based on the perspective of exposure, sensitivity, and adaptability,
related information such as age structure, food consumption structure, and fiscal med-
ical hygienic expenditure to the index framework should be included in future studies,
aiming to describe the vulnerability of the Zhejiang Province environments from a more
comprehensive perspective.
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