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Abstract: In complex classification tasks, such as the classification of heterogeneous vegetation
covers, the high similarity between classes can confuse the classification algorithm when assigning
the correct class labels to unlabelled samples. To overcome this problem, this study aimed to develop
a classification method by integrating graph-based semi-supervised learning (SSL) and an expert
system (ES). The proposed method was applied to vegetation cover classification in a wetland in
the Netherlands using Sentinel-2 and RapidEye imagery. Our method consisted of three main steps:
object-based image analysis (OBIA), integration of SSL and an ES (SSLES), and finally, random forest
classification. The generated image objects and the related features were used to construct the graph in
SSL. Then, an independently developed and trained ES was used in the labelling stage of SSL to reduce
the uncertainty of the process, before the final classification. Different spectral band combinations
of Sentinel-2 were then considered to improve the vegetation classification. Our results show that
integrating SSL and an ES can result in significantly higher classification accuracy (83.6%) compared
to a supervised classifier (64.9%), SSL alone (71.8%), and ES alone (69.5%). Moreover, utilisation of all
Sentinel-2 red-edge spectral band combinations yielded the highest classification accuracy (overall
accuracy of 83.6% with SSLES) compared to the inclusion of other band combinations. The results of
this study indicate that the utilisation of an ES in the labelling process of SSL improves the reliability
of the process and provides robust performance for the classification of vegetation cover.

Keywords: semi-supervised learning; expert system; object-based image analysis; Sentinel-2;
vegetation cover; image classification

1. Introduction

Accurate mapping of vegetation cover in an ecosystem can help to initiate its protection
and restoration programmes efficiently [1]. It is, therefore, necessary to acquire accurate and
up-to-date information about the status of the vegetation cover of an ecosystem through
regular monitoring. Traditional field inventory monitoring methods of vegetation cov-
ers are usually expensive and time-consuming [2]. Thus, a viable approach can be the
use of satellite remote sensing data. Satellite data provide advantages such as large area
coverage, ongoing data collection, and cost-effectiveness for monitoring and mapping pur-
poses [3,4]. The advent of remote sensing technologies, with high-resolution multispectral
satellite sensors, has provided new opportunities to monitor vegetation cover at different
spatial and temporal scales. For instance, Sentinel-2 MSI, covering a wide spectral range
(400–2400 nm) including three red-edge bands, may allow more efficient discrimination of
different vegetation types.
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A common approach to extracting information from satellite data, to distinguish differ-
ent vegetation types, is using image classification algorithms [5,6]. Usually, there are three
common challenges involved in image classification that could affect its accuracy: (1) col-
lecting a sufficient number of training samples, (2) creating a balanced training and test set,
and (3) fine-tuning the algorithm parameters to obtain the optimum performance [7–9]. A
relevant solution to these challenges is the introduction of the semi-supervised learning
(SSL) technique [10], which uses relatively few labelled samples and a large number of
unlabelled data to train a model [11].

The existing paradigms of SSL for the classification of remote sensing data can be
divided into four major categories: (1) generative mixture models, such as expectation–
maximisation algorithms [12,13], (2) low-density separation algorithms, such as trans-
ductive support vector machines (TSVMs) [14,15], (3) self-learning methods [16–19], and
(4) graph-based methods [20–23]. Among the SSL methods, graph-based approaches have
recently received significant attention due to their ability to provide a relatively high clas-
sification accuracy while retaining computational simplicity [24–27]. While graph-based
algorithms can improve the classification performance by using the distribution of unla-
belled samples, they have some limitations [9]. One of these limitations occurs in complex
classification tasks, such as identifying different classes in heterogeneous vegetation covers.
In such a case, samples from the same vegetation class may show low similarity (i.e., high
intra-class variability), and two samples from two different vegetation classes show high
similarity (i.e., low inter-class variability). This “similarity” problem can confuse the graph-
based algorithm, and the semi-labelled samples may not have the correct label. In this
case, unlabelled samples can be detrimental to the graph-based algorithm, as they may
degrade the accuracy by misguiding the classifier [11]. One of the common approaches to
tackling the similarity problem is using non-parametric classifiers since they do not make
any underlying assumptions about the distribution of data [7]. However, these classifiers
require a representative amount of training data to estimate the mapping function, and
they are also subject to overfitting. Consequently, in studies such as vegetation cover
classification where there might be an imbalanced distribution of features and training
samples, these classifiers would underperform [28]. To help solve the mentioned problem
of SSL, this study aimed to use expert knowledge within an independently developed
and trained expert system (ES) in the labelling process of a graph-based algorithm. The
contribution of an ES can help the problem by refining the semi-labelled samples. In this
context, expert knowledge is defined as the experience and existing knowledge of the
expert in the specific domains of study, technical practices, and prior information on the
study area [29,30]. The developed ES should have the ability to classify the unlabelled
samples using expert knowledge, independently from SSL. This ability of the ES can help
SSL to assign the most certain class label to the unlabelled samples by filtering out samples
with less certain labels.

Motivated by the above insights, in this study, a novel classification approach was
proposed for the classification of satellite images by integrating graph-based SSL and an ES
(SSLES). The main idea of the proposed approach was to construct a graph in SSL, based
on image features, and use an ES in the labelling process of SSL to assign the most probable
class labels to the selected unlabelled samples and then perform the classification using a
standard supervised classifier. The study specifically aimed to address two objectives, as
follows: (1) to investigate the performance of SSLES for vegetation cover classification and
(2) to investigate the potential of Sentinel-2 spectral data for vegetation cover classification.

2. Study Area and Materials
2.1. Study Area

The study area was Schiermonnikoog Island in the Netherlands, located between
53◦27′20′′N–53◦30′40′′N latitude and 06◦06′35′′E–06◦20′56′′E longitude, with an area of
199.1 km2 (Figure 1). The vegetation cover on the south and south-east shore of the island
has adapted to the regular inundation of seawater and has formed a salt marsh [31].
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In this study, vegetation species of the island were categorised into 10 functional
groups for classification based on the reference vegetation map [32], namely: high matted
grass, low matted grass, agriculture, forest, green beach, tussock grass, high shrub, herbs,
low salix shrub, low hippopahe shrub. The natural vegetation cover has a large spatial and
temporal variability, due to the dynamic influences of the tide, wind, and grazing [33,34].
This area was chosen to test the proposed classification methodology as it is representative
of a diverse and mixed vegetation cover.

2.2. Materials
2.2.1. Sentinel-2 Data

The main satellite imagery used in this study was the standard Sentinel-2 Level-1C
product, which is in UTM/WGS84 projection, and its per-pixel radiometric measurements
are provided in top of atmosphere (TOA) reflectance [35]. The Sentinel-2 image of the
study area was acquired on 17 July 2016 belonging to the relative orbit of R008 and was
downloaded from ESA Sentinel-2 Pre-operation Hub (https://scihub.copernicus.eu/, ac-
cessed on 30 July 2016). The image was chosen from July to obtain a cloud-free image with
vigorously growing vegetation. The atmospheric correction of the image was performed
using Sen2Cor software [35], and the top of canopy (TOC) reflectance was calculated
for further analysis.

Sentinel-2 offers a multispectral sensor in 13 bands from 443 to 2190 nm with three
different geometric resolutions as follows:

• 10 m resolution bands: blue (490 nm), green (560 nm), red (665 nm), and near-
infrared (842 nm).

• 20 m resolution bands: four red-edge/NIR bands with central wavelength at 705 nm,
740 nm, 783 nm, and 865 nm, respectively, and shortwave infrared-1 and -2 (1610 nm
and 2190 nm).

• 60 m resolution bands: coastal (443 nm), water vapour (1375 nm), and cirrus (1376).

In this study, all the Sentinel-2 bands were resampled to 5-meter resolution for pro-
cessing so that they had the same resolution as the RapidEye image.

To achieve a higher classification accuracy and assess the capability of Sentinel-2
data in classifying the vegetation types, its spectral bands were combined into different
groups for subsequent assessment to find the most informative band combination for
vegetation classification accuracy. Based on previous studies, the most important regions
of the spectrum to study vegetation cover are the red-edge, shortwave, and red–infrared
regions [4,36–40]. Consequently, six groups of band combinations were considered to
classify vegetation cover, as follows:

• Group 1: All spectral bands;
• Group 2: Red and infrared bands;
• Group 3: All shortwave infrared bands;
• Group 4: All red-edge bands;
• Group 5: Red, infrared, and red-edge bands;
• Group 6: Red-edge and shortwave infrared bands.

https://scihub.copernicus.eu/
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2.2.2. RapidEye Data

In this study, a RapidEye image was also acquired for Schiermonnikoog Island on
18 July 2015. The pre-processed data were obtained at level 3A, which means radiometric
and geometric corrections, as well as geo-referencing, were applied. The image covers
25 km × 25 km with the orthorectified pixel size of 5 m × 5 m. Due to clear weather
conditions during the image acquisition, no further atmospheric correction was applied.
Both Sentinel-2 and RapidEye images were chosen from a similar time of year to ensure
that in both, the vegetation cover is as alike as possible. In this study, the RapidEye image
was used for segmentation only, and the features were extracted from Sentinel-2 data.

2.2.3. Reference Data and Sampling

The reference data used in this study included field observations of dominant vegeta-
tion species for 30 vegetation plots (30 m × 30 m) collected in July 2015 and a vegetation
map belonging to 2010 [32]. This map was obtained from experts’ visual interpretation of
aerial photographs (1:10,000) combined with extensive field inventory, and it included the
same vegetation classes as this study.

To select the training and test samples, stratified random sampling was implemented,
where each vegetation class was considered a stratum [41]. The resulting training sample
size became 650 for the 10 vegetation classes, and the samples were extracted from the
vegetation plots. Table 1 reports the number of samples per stratum. In addition, 434 more
samples were identified as an independent test set (2/3 of the number of the training
samples). A sample in the context of this study is referred to as an image object (as the
result of image segmentation), representing a vegetation patch on the ground.

Table 1. The vegetation classes in Schiermonnikoog Island and the number of their collected samples.

Class Name Number of Training Samples Number of Test Samples

High matted grass 160 107
Low matted grass 142 95

Agriculture 71 47
Forest 58 39

Green beach 58 39
Tussock grass 45 30

High shrub 45 30
Herbs 35 23

Low salix shrub 25 17
Low hippopahe shrub 11 7

Sum 650 434

2.2.4. Knowledge Sources

In this study, three main sources of knowledge were identified to be used as input to
build the ES knowledge base. These sources were different and separate from the reference
maps used for the sampling process:

• A reference vegetation map of the study area, generated in 2010 [32]. As this map
was generated with experts’ visual interpretation of aerial photographs and extensive
fieldwork, it contained some level of experts’ knowledge.

• Ancillary data, including field records of dominant vegetation types for 30 vegetation
plots, NDVI data from the Sentinel-2 image, and a digital elevation model (DEM)
of the island (produced from laser altimetry by the Dutch ministry of public works,
Rijkswaterstaat) to generate height, slope, aspect, etc.

• Published resources about vegetation cover in Schiermonnikoog and its ecology [31,42–44].

3. Methods

The architecture of the proposed classification approach contained three parts: object-
based image analysis (OBIA), semi-supervised learning and expert system (SSLES), and
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classification. Using OBIA, the satellite image was segmented to generate image objects
and features. Using SSLES, the number of training samples was increased by labelling a set
of most informative unlabelled samples. In the final step, classification was performed on
the datasets using a standard supervised classifier.

3.1. Object-Based Image Analysis (OBIA)

The segmentation method of the mean shift was used to generate image objects [45].
This algorithm requires two parameters to be tuned to obtain an optimal segmentation result:

• Spatial radius hs (spatial distance between classes);
• Range radius hr (the spectral difference between classes).

The segmentation was performed using a 5 m × 5 m RapidEye image, due to its finer
spatial resolution compared to Sentinel-2. This could result in a higher spatial accuracy of
image objects [46]. For a quantitative evaluation of the segmentation results, the method
proposed by [47,48] was used which measures both topological and geometric similarity
between the segmented and the reference objects. The method relies on the ratio of the
intersected area of the segments and the reference objects, and depending on the size of
overlap for each segment and object, over- and under-segmentation indices are calculated.

Using the segmented map and the reference vegetation map, labelled and unlabelled ob-
jects were generated. For this, the segmented map was overlaid with the reference samples’
layer (obtained from the sampling process that contained training and test samples). Any im-
age object that contained the centroid of a reference sample and had more than 50% overlap
with it was treated as a labelled object. The rest were considered unlabelled objects.

Sentinel-2 data were resampled to 5 m resolution to match the spatial resolution of
RapidEye data and then be able to extract the features using the segmentation results.
For mapping vegetation, three categories of features were considered, which have been
recognised as important in previous studies [37,49–53], as follows: (a) a set of spectral
features consisting of the mean, standard deviation, median, and minimum and maximum
values of pixels within an image object, (b) a set of textural features including GLCM
(grey-level co-occurrence matrix) and GLDV (grey-level difference vector), and (c) a set of
geometrical features representing the area and perimeter of the image objects.

The final results of OBIA are image objects with a corresponding informative set
of image features.

3.2. Semi-Supervised Learning

The graph-based semi-supervised learning (SSL) method was used to increase the
training samples, before classification. This method aims to construct a graph G = (V, E)
connecting similar samples. V consists of N = L + U samples, where L and U are the
numbers of labelled and unlabelled samples, respectively. Edges E are represented typically
by a symmetric similarity weight matrix W∈RN×N [26]. The k-nearest neighbour (KNN)
approach was used to construct the weight matrix, denoted as WW:

WW
i,j


exp−

‖xi−xj‖
2

2σ2 i f xj ∈ NBW
K (xi)

0 Otherwise
i, j ∈ {1, 2, . . . , l + u}

(1)

where σ is the Gaussian kernel bandwidth, ‖xi − xj‖ is the similarity measure between
two samples, and NBW

K (xi) is a set of K nearest neighbours of sample xi. In this study, the
similarity measure between two samples was based on image features obtained from OBIA.

To construct the graph and assign the class labels to the unlabelled samples, the energy
function proposed by [54] was used to be optimised, defined as follows:

min
f

∑i∈{1,2,...,l}( fi − yi)
2 + 1

2 ∑i,j∈{1,2,...,l+u}WW
i,j
(

fi − f j
)2

= ( fl − yl)
T( fl − yl) +

1
2 f T∆ f

(2)
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where f = (fL, fU)T is composed of fL and fU which are the predicted class labels of the
labelled and unlabelled samples. yi is the vector class label of the sample i. ∆ is a graph
Laplacian matrix obtained by ∆ = D − W, and D is the diagonal degree matrix given
by Dii = ∑jWij.

The label propagation technique was employed at the end to propagate the information
through the graph to the unlabelled samples [11,55]. For this purpose, the weight of the
edges in the graph was computed, according to Equation (2), and then the probability
matrix was estimated as P = D−1WW . The edge with the highest probability is the
determiner of the label for the unlabelled sample.

3.3. Expert System

The expert system (ES) approach used in this study was described in detail by [56].
The ES, here, was developed to answer the question of “What vegetation type is probable
to occur in a given image object?” in reference to the samples that obtained labels with SSL.

Bayes’ theory was used in the ES to compute the probability of the rule that the
hypothesis (Ha) occurs in an image object given a piece of evidence (Eb), i.e.,

P(Ha|Eb) =
P(Eb|Ha)P(Ha)

P(Eb)
(3)

where P(Eb|Ha) is the a priori conditional probability that there is a piece of evidence
Eb (e.g., a mean slope of less than 0.1◦) given a hypothesis Ha (e.g., “high shrub” class)
that class Ci occurs in a specific image object. P(Ha) is the probability for the hypothesis
(Ha) that class Ci occurs in an object. P(Eb) is the probability that an object has an item of
evidence {Eb}. The following steps were taken to compute the probability rules:

• Generate a histogram population of each feature layer in the knowledge base;
• Divide each histogram into 10 quantiles, representing the frequency of the occurrence

of each class at each percentile of the feature layer;
• Normalize the frequency values by fitting a normal distribution.

3.4. SSLES Algorithm

Algorithm 1 demonstrates the inputs, output, and steps of SSLES. In this algorithm,
which is fully implemented in MATLAB_R2015b, the inputs are image objects with the
respective set of features. Further, steps 1–4 are related to SSL which generates a graph
based on image features and propagates the class labels to the potential unlabelled samples.
In step 5, the developed ES performs an independent class label prediction on the semi-
labelled samples of the SSL in step 4. Finally, if both the ES and the SSL agree on the same
class label, the labelled sample is added to the training set; otherwise, it is returned to the
unlabelled set. The flowchart of the algorithm is presented in Figure 2.

Algorithm 1: SSLES

Inputs:

• A set of labelled objects OL
• A set of unlabelled objects OU
• Extracted features fi for each object

Outputs:

• New labelled samples to be added to the original training set
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Steps:
For every oi ∈ OL, i = 1:L

1. Measure the similarity of all labelled and unlabelled samples in the image feature space
2. Sort the similarity values and choose the first K unlabelled samples with the highest

similarity values
3. Construct the graph with the KNN method, then calculate the matrix P
4. Predict the class label of the unlabelled samples using the label propagation framework
5. Predict the class label of the unlabelled samples using the developed ES
6. If both approaches have predicted the same class label for a sample,

then add the object to the training set,
otherwise, let it remain with the unlabelled object set
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3.5. Classification and Evaluation

The final step is classification, where a standard supervised classifier is implemented.
This step is performed using the random forest (RF) classifier [57,58]. This classifier has
two parameters that needed to be set:

• The number of classification trees, i.e., the number of bootstrap iterations (ntree);
• The number of input variables used at each node (mtry).

Several studies have demonstrated that the default value for mtry can provide satis-
factory results [59–61]. Therefore, this parameter is set to the default value, i.e., the square
root of the total number of input features.

In this study, the RF classifier was used in three different scenarios. In the first scenario,
the training set generated from SSLES was used to train the classifier; in the second scenario,
the training set generated from SSL was used to train the classifier; and in the third scenario,
the classifier was trained with the original training set.

For the validation of the classification results, the accuracy assessment based on the
error matrix was conducted [62]. The evaluation was performed using the same test
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samples extracted from the reference data, and the results were evaluated in terms of
overall accuracy (OA) and Cohen’s kappa coefficient. To assess the statistical significance
of the difference between the obtained accuracies, McNemar’s test was used with a 95%
confidence level and 1 degree of freedom.

4. Results
4.1. Object-Based Image Analysis

To start the image segmentation process, the parameters were tuned and evaluated.
hs and hr were iterated in the potential range of [1:10]. Using sensitivity analysis, hs = 5
and hr = 7 were chosen as the optimum values. As the result of image segmentation, a
total number of 5230 image objects were delineated with a mean size of 30 pixels. Figure 3
illustrates the final segmented objects on the false colour composite Sentinel-2 image of
the study area.
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Next, the image objects were divided into three data sets: training, test (labelled), and
unlabelled objects. The numbers of generated datasets are listed in Table 2.

Table 2. The number of image objects for three different subsets of image objects.

Training Objects Test Objects Unlabelled Objects Total Number of Objects

650 434 4146 5230

4.2. Semi-Supervised Learning

To depict the idea of label propagation, a graph is shown in Figure 4 representing a
set of labelled and unlabelled samples. The labels are propagated from the labelled to the
unlabelled samples based on the probabilities of the arrows. In this example, although
two “Herbs” samples are connected to the unlabelled sample in the centre, it is labelled
as “Forest” since the probability value of the “Forest” sample is higher than “High Shrub”
and two “Herbs”.
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The final output of SSL is semi-labelled samples that might have incorrect labels.
Following the generation of semi-labelled samples, an ES was used to classify the semi-
labelled samples again, in parallel to SSL. Samples that obtained the same class label as
SSL were merged with the original training set to generate a new extended training set;
otherwise, they were moved back to the unlabelled pool.

4.3. Expert System a Priori Probabilities

The reference vegetation map was used to estimate the a priori probabilities for the
vegetation classes and the initial conditional probabilities for all the feature layers (Table 3).

Table 3. A priori probability estimation of the vegetation classes. The probability of occurrence of
each vegetation type in the study area is presented. HMG: High Matted Grass, LMG: Low Matted
Grass, Ag: Agriculture, Fr: Forest, GB: Green Beach, TG: Tussock, HS: High Shrub, Hr: Herbs, LSS:
Low Salix Scrub, and LHS: Low Hippopahe Shrub.

Class Name HMG LMG Ag Fr GB TG HS Hr LSS LHS

Probability 0.28 0.24 0.1 0.08 0.08 0.06 0.06 0.05 0.03 0.01

The ancillary data were used to extract training samples, and then their feature values
were statistically analysed, i.e., using the methodology explained in Section 3.3, to define
the probability of occurrence of a vegetation type within an image object. The result is
six sets of rules for each feature layer that contains the probability values of occurrence of
evidence (i.e., a set of features) given a hypothesis (i.e., specific vegetation type). These
rules belong to the mean and standard deviation values of the feature layers (Figure 5).
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Figure 5 illustrates how rules were derived for the mean values of the ancillary
data. These probability rules were applied to each input sample in order to compute the
probability values. The black bars indicate the probability of that sample belonging to
each class. Based on three derived facts from the published resources, three more rules
were generated. The derived facts were (1) the dependency of some classes, e.g., herbs, on
water availability (streams), (2) the presence/absence of some classes around the residential
areas, e.g., green beach, and (3) a forestry programme adjacent to the village [63]. Using the
method described before, the distances of the vegetation classes from the water streams and
the residential area were analysed and then divided into three quantiles, and the probability
of occurrence of vegetation classes at each distance quantile was computed (Table 4).

Table 4. Expert rules are based on the distance of the vegetation classes to streams and residential
areas. Values describe the probability of occurrence of vegetation class at each distance quantile.

Vegetation
Classes

Distance to Streams Distance to the Residential Area

Quantile 1 Quantile 2 Quantile 3 Quantile 1 Quantile 2 Quantile 3

Ag 0.11 0.31 0.58 0.90 0.10 0.00
Fr 0.06 0.22 0.72 0.41 0.34 0.25
HMG 0.40 0.45 0.15 0.00 0.15 0.85
LMG 0.22 0.31 0.47 0.23 0.46 0.31
TG 0.09 0.21 0.70 0.27 0.55 0.18
HS 0.19 0.25 0.56 0.13 0.45 0.42
LHS 0.00 0.29 0.71 0.00 0.04 0.96
LSS 0.29 0.10 0.61 0.24 0.76 0.00
GB 0.00 0.51 0.49 0.00 0.01 0.99
Hr 0.61 0.38 0.01 0.01 0.00 0.99

According to the extracted probability rules in Table 4, each sample’s feature values
were examined and depending on the percentile that it lay in, a probability value was
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assigned. Eventually, by an iteration through the nine rule sets, samples gained nine sets of
probabilities for each class. Then, these probabilities were merged into a final combined
probability, and the class with the highest probability value was the class of that sample.

4.4. SSLES Results

After running SSLES, 1513 new samples were labelled. As part of the process, these
newly labelled samples were combined with the original training set to generate the
new training set. The table below (Table 5) summarizes the number of training samples
for each class.

Table 5. The number of original training samples, newly labelled samples, and new training samples.

Class Name Number of Original
Training Samples

Number of Newly
Labelled Samples

Number of New
Training Samples

HMG 160 494 654
LMG 142 290 432
Ag 71 167 238
Fr 58 121 179
GB 58 106 164
TG 45 99 144
HS 45 89 134
Hr 35 67 102
LSS 25 48 73
LHS 11 32 43
Sum 650 1513 2163

Unlike most SSL implementations that exploit the labelled samples iteratively until
all the samples have a label, in this study, graph-based SSL was followed by a basic
supervised classifier. As shown by [64], this implementation has the advantage of reducing
the computational complexity of the algorithm and can classify more new samples as well.

4.5. Classification Results and Evaluation
4.5.1. Parameter Tuning

To evaluate the performance of SSLES, three classification scenarios were conducted
with SSL only, ES only, and RF methods for comparison. Before conducting the experiments,
three parameters needed to be tuned to obtain the optimum results. For this, the values of
the parameters were changed in a potential range, and the values yielding the highest OA
were selected as the final parameters’ values. The parameters were the k-nearest neighbour
and kernel bandwidth belonging to the SSL and ntree belonging to the RF classifier, which
were tuned in the range of k = {1, 2, . . . , 20}, σ = {0.1, 0.2, . . . , 2}, ntree = {10, 20, . . . , 800},
respectively, based on previous studies. The values of parameters for graph construction
were set as k = 16 and σ = 0.2, and regarding the RF classifier, the parameter was set to
ntree = 80 which led to the highest OA.

4.5.2. Classification Evaluation

After tuning the parameters, the experiments were carried out. Table 6 reports the
obtained classification scores for the six groups of band combinations using four methods.
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Table 6. Classification results for the six groups of band combinations of Sentinel-2 data, in terms of
OA and kappa coefficient. Group 1: (All spectral bands), Group 2: (Red and infrared bands), Group 3:
(All shortwave infrared bands), Group 4: (All red-edge bands), Group 5: (Red, infrared, and red-edge
bands), Group 6: (Red-edge and shortwave infrared bands).

Dataset SSLES RF SSL Only ES Only

OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

Group 1 81.1 0.67 64.6 0.52 70.9 0.60 68.1 0.55
Group 2 73.5 0.57 58.9 0.44 62.3 0.48 60.9 0.46
Group 3 74.6 0.59 60.1 0.47 63.8 0.49 63.1 0.48
Group 4 83.6 0.70 64.9 0.56 71.8 0.61 69.5 0.57
Group 5 67.8 0.49 47.2 0.33 55.3 0.40 53.8 0.38
Group 6 79.9 0.67 64.3 0.55 58.2 0.59 68.7 0.57

As it can be observed in Table 6, SSLES produces relatively higher accuracy for all of
the six datasets when compared to SSL alone, ES alone, and RF. The highest accuracy was
achieved using only the red-edge bands. Figure 6 illustrates the final classified map of the
study area with Group 4 of band combination, using the SSLES for classification.
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Figure 6. Classified map of the study area using the Group 4 of band combinations, red-edge spectral
bands (as this group achieved the highest accuracy) of Sentinel-2 data, and the SSLES method.

Classification with Groups 1 and 6 also yielded noticeably high OA, compared to
Group 4. Examining the results of these three groups with McNemar’s test revealed
that there are no statistically significant differences between the obtained accuracies from
Groups 1, 4, and 6. The figure below (Figure 7) shows an example of an area (i.e., east of
the island) where the four classification methods provided different results.



Remote Sens. 2022, 14, 3605 13 of 18
Remote Sens. 2022, 14, 3605 13 of 18 
 

 

 
Figure 7. Example of classification result using (a) SSLES, (b) SSL only, (c) ES only, and (d) RF. 

The confusion matrix of SSL is shown in Figure 8 to report the producers’ accuracies 
of vegetation classes. Results are presented as a 2D plot where colours represent the accu-
racy of each class. 

 
Figure 8. Producer’s accuracy obtained with SSLES. The colours illustrate the accuracy, where white 
colour represents 100% accuracy, and black represents 0% accuracy. 

In Figure 8, the highest accuracy classifications have a light/white colour in the main 
diagonal and dark/black colour in the other cells, which means no misclassification. 

5. Discussion 
The obtained results in Table 6 show that SSLES can yield higher classification accu-
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Figure 7. Example of classification result using (a) SSLES, (b) SSL only, (c) ES only, and (d) RF.

The confusion matrix of SSL is shown in Figure 8 to report the producers’ accuracies of
vegetation classes. Results are presented as a 2D plot where colours represent the accuracy
of each class.
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Figure 8. Producer’s accuracy obtained with SSLES. The colours illustrate the accuracy, where white
colour represents 100% accuracy, and black represents 0% accuracy.

In Figure 8, the highest accuracy classifications have a light/white colour in the main
diagonal and dark/black colour in the other cells, which means no misclassification.
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5. Discussion

The obtained results in Table 6 show that SSLES can yield higher classification accuracy
than SSL. Furthermore, using the red-edge bands provided the highest accuracy, which
confirmed the findings of [3] where the importance of the Sentinel-2 red-edge bands
for vegetation classification was highlighted. As is shown in Figure 8, a considerable
number of “Herbs” are classified as “High matted grass”, and the classifier has confused
the “Low matted grass” and “High matted grass” with other classes. This can probably
be justified by (i) the high diversity of these two classes in the study area and (ii) the
low diversity of training samples belonging to these classes. To gain better insight into
SSLES’s performance and the advantage of using an ES integrated with SSL, the confusion
matrix obtained from SSLES was subtracted from the one from the SSL, and the results
are presented in a new matrix. In the resulting matrix, if the value of a cell increased, it
is labelled “positive change”; if the value decreased, it is labelled as “negative change”;
otherwise, the cell was given a “no change” label (Figure 9).
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Figure 9. A detailed comparison of two classification methods, the matrix is the result of subtracting
the confusion matrix of the SSLES from the SSL. The white colour represents an increase in the cell’s
value, black indicates a decrease, and if the value was unchanged, it was coloured cyan.

Comparing the obtained matrices reveals that the classification accuracies of all vegeta-
tion classes improved, except for five off-diagonal cells. In an ideal situation, it is expected
that all the positive changes happen in the main diagonal elements and not in the off-
diagonal elements, which means a decrease in misclassification. This result implies that the
contribution of the ES to the labelling process of SSL has the advantages of removing the
less reliable semi-labelled samples and increasing the overall quality of training samples
obtained by SSL.

The performance of SSLES can be discussed by considering two perspectives. The first
lies in constructing the graph in SSL, which is based on image features rather than spatial
neighbourhood and spectral similarity. This could help to obtain a better estimation of the
underlying class label of the potential unlabelled image objects. The second perspective is
related to the role of the ES in increasing the certainty of labelling in SSL. The ES handled
this through the use of probability rules that aimed to link environmental parameters and
the location of vegetation types, where it is most likely that a vegetation type may occur.

To have a benchmark to evaluate and compare the performance of SSLES, it is assumed
that the number of reference training samples is representative and sufficient to train a
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standard supervised classifier. Since SSLES increased the number of samples in the training
set, there could be the risk of overfitting the classifier due to the high number of training
samples. Therefore, to test the robustness of SSLES regarding the number of initial training
samples, a new test was conducted using the Group 4 dataset. For this, only 50% of the
original reference training samples were used for SSLES, and the result was evaluated
by the same test set that had been used previously. This resulted in an OA of 80% and
compared to the case of using all the training samples, no statistically significant difference
was observed. The classification accuracies could have been negatively affected by various
factors. These include the uncertainties associated with the samples obtained from OBIA.
In OBIA, if segmentation has low quality, it may not be able to separate two different classes
properly in the image; hence, the extracted features for an image object will be the mix of
features of two different classes [65,66]. To avoid this problem in the current study, the
segmentation results were compared to the reference sample polygons. Nevertheless, in
the case of having uncertainty in the reference vegetation map, some level of uncertainty
may be found in the segmentation. The segmentation was performed using a RapidEye
5 m image while the features were extracted from the Sentinel-2 image. Although there
was a one-year gap between the two images, they were acquired at the same time of year.
In such a relatively short time period, no changes are expected in the vegetation structure
of the study area except for the agriculture class. This was further confirmed by the high-
resolution satellite imagery of GoogleEarth. The limitations of SSLES can be discussed
considering the restrictions of SSL and the ES. In terms of the ES, assigning the quantitative
values for the a priori probabilities has some uncertainties since it is based on the reference
vegetation map mainly. Using the knowledge and experience of specialised experts such as
ecologists could result in a stronger knowledge base, but due to time constraints, it was not
possible. However, the assumption of this study was to use any available source of (prior)
knowledge and expertise. The sources of knowledge could be either in the form of a human
expert or other resources such as scientific research and published works. Regarding SSL
limitations, the KNN method was used for graph construction. A recent study by [67]
showed that the KNN may result in irregular graph construction where each node is
connected to more than K neighbours. In this case, the algorithm may end up assigning the
incorrect class label to the connected nodes. This problem might be more pronounced in
the present study because of the high similarity between the vegetation classes.

6. Conclusions

In this study, a developed approach for semi-supervised classification of satellite
images was proposed and applied for vegetation cover classification. The algorithm
constructs a graph based on image features from OBIA. It uses Euclidean distance to
compute the similarity between samples, where KNNs are selected for labelling. Using an
ES to supervise the labelling process of the graph-based SSL algorithm was the key point
in this study.

The capability of OBIA, SSL, and the ES for classification, particularly in the field of
remote sensing, has already been investigated in the literature. The novel contribution
of this study was the integration of these three into a single algorithm. Results prove the
effectiveness of the proposed algorithm for the challenging problem of vegetation cover
classification where some vegetation classes show similar characteristics. The capability of
Sentinel-2 spectral data in vegetation classification was assessed, and the results prove that
the red-edge band’s combination could yield the highest overall accuracy for vegetation
cover classification.

In a future study, linking the vegetation classification levels to the concept of Anderson
levels for land cover mapping could be considered to adjust the vegetation classes where
the highest level has the highest accuracy [68]. From an algorithm perspective, the potential
applicability of the SSLES method on different land covers and biomes using different
remote sensing data could be analysed. Concerning SSL, different strategies need to be
investigated for selecting the unlabelled samples in a more informative and reliable way.
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Using alternative approaches for graph construction instead of KNN, as well as using a
different similarity measurement method such as JM distance, should be of high priority.
Finally, the possibility of applying the presented method for the classification of large-scale
or big data in remote sensing may be investigated.
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