
Citation: Bai, D.; Lu, G.; Zhu, Z.; Zhu,

X.; Tao, C.; Fang, J. Using Electrical

Resistivity Tomography to Monitor

the Evolution of Landslides’ Safety

Factors under Rainfall: A Feasibility

Study Based on Numerical

Simulation. Remote Sens. 2022, 14,

3592. https://doi.org/10.3390/

rs14153592

Academic Editors: Jun Hu, Weile Li

and Yi Wang

Received: 29 June 2022

Accepted: 25 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Using Electrical Resistivity Tomography to Monitor the
Evolution of Landslides’ Safety Factors under Rainfall:
A Feasibility Study Based on Numerical Simulation
Dongxin Bai 1,2 , Guangyin Lu 1,2,* , Ziqiang Zhu 1,2, Xudong Zhu 1,2, Chuanyi Tao 1,2 and Ji Fang 1,2

1 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring
Ministry of Education, School of Geosciences and Info-Physics, Central South University,
Changsha 410083, China; baidongxin07@csu.edu.cn (D.B.); zhuziqiang@csu.edu.cn (Z.Z.);
215011068@csu.edu.cn (X.Z.); 215011082@csu.edu.cn (C.T.); fangji_06@csu.edu.cn (J.F.)

2 Hunan Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha 410083, China
* Correspondence: luguangyin@csu.edu.cn

Abstract: Although electrical resistivity tomography (ERT) may gather the internal resistivity in-
formation from a landslide area in a large-scale, low-cost, and non-invasive manner compared to
point-based sensor monitoring technology, the indirect resistivity information obtained cannot di-
rectly evaluate the landslide’s current mechanical status, such as stress, strength, etc. Based on ERT
monitoring data, a framework for quantitatively and directly evaluating the evolution of the factor of
safety (FOS) of landslides during rainfall is proposed. The framework first inverts ERT observation
data using the inexact Gauss–Newton method based on multiple constraints to obtain a more realistic
resistivity distribution, then calculates the saturation distribution using Archie’s equation, and finally
calculates the FOS of landslides using the finite element strength reduction method. Twelve sets of
numerical experiments were designed and carried out based on the synthetic data of a theoretical
model. The experimental results show that the proposed framework is valid and reliable under
various arrays, apparent resistivity noise, and uncertainty in the water-electric correlation curve, with
the Dipole-Dipole array outperforming the others in terms of accuracy, sensitivity, and anti-noise
capability. The proposed framework is significant in improving ERT monitoring and early warning
capabilities for rainfall-induced landslides.

Keywords: electrical resistivity tomography; rainfall-induced landslides; factor of safety; numerical
simulation; geophysical inversion

1. Introduction

With the hilly landforms and abundant rainfall in southern China [1,2], a large number
of landslides occur every year during the rainy season, resulting in numerous fatalities
and significant economic losses [3]. Rainfall infiltration not only causes the weight of
the soil to grow and the driving shear force to increase, but also causes the landslide soil
mechanics to change and the resistant shear force to diminish due to interaction with water
within the landslide body displacement; failure can even occur once the driving shear
force exceeds the resistant shear force [4]. Monitoring the spatial and temporal evolution
of water content inside landslides under rainfall conditions and analyzing their effects
on geotechnical behavior are important for early warning of landslides. The water inside
landslides is currently monitored primarily using point-based sensors such as water level
meters and seepage pressure meters [5–7], which can continuously and accurately obtain
hydrological parameters such as pore water pressure and substrate matrix suction at the
sensor location, but there are two drawbacks: First, geotechnical parameters, particularly
hydrological parameters, are spatially variable [8–10], and point-based sensors often only
reflect information about the sensor’s immediate surroundings, with limited ability to
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sense information further away. Second, such sensors frequently require drilling holes
in the landslide body, which can be difficult and costly to implement. In some cases, the
“destructive” activities can even cause movements or failures of landslides.

Numerous studies have shown that the electrical conductivity of the soil is closely
related to the water content of the soil [11–15]. Rainfall can change the water content of
landslides in both space and time, and because water content and resistivity are correlated,
it will also change the resistivity of landslides. Based on this idea, electrical resistivity
tomography (ERT) with resistivity as the primary parameter was used to characterize and
study the spatiotemporal distribution of water content inside a landslide [16–18]. The ERT
images the distribution of resistivity parameters in the subsurface by injecting current on
the surface or in the boreholes and then collecting the potential distribution. The correlation
between resistivity and water content allows the technique to be used to indirectly reflect
the distribution of subsurface water content [19,20]. In comparison to point-based sensor
monitoring, ERT can acquire internal resistivity information about landslides in a greater
region in a non-invasive manner. The benefits of ERT are the simplicity of field operation
and the low cost of data acquisition.

An increasing number of research works in recent years have achieved many very
valuable and representative results in characterizing and monitoring information such as
internal resistivity and water content associated with resistivity of landslides based on
ERT [21–23]. Geng et al. [24], Liu et al. [25], Hojat et al. [26], and Lyu et al. [27] established
physical models and completed experiments in the laboratory to monitor the geoelectric
field response during rainfall infiltration. The results of these experiments verified the
correlation of electrical parameters such as self-potential and primary field potential with
the spatial and temporal distribution of moisture. Zeng et al. [28], Uhlemann et al. [29],
Boyle et al. [30], Whiteley et al. [19], Denchik et al. [31], and Boyd et al. [32] installed ERT
devices on actual landslides and combined drilling, mapping, and other data to investigate
the internal water transport of landslides under rainfall conditions and its impact on
landslide failure. Manoli et al. [33], Carey et al. [34], and Hojat et al. [26] used numerical
simulation approaches to compute and assess the geoelectric field response characteristics
of the soil during rainfall infiltration. Through indoor experiments, actual case studies, and
numerical simulations, these works demonstrate how ERT approaches can be utilized to
quantify and monitor water transport within landslides, and hence qualitatively investigate
landslide failure processes. However, because ERT data indirectly reflect information
such as water content and stress state within a landslide and cannot intuitively correlate
with landslide geotechnical behavior, it is worthwhile to investigate how to use ERT data
for landslide activity evaluation and early warning. Crawford et al. [35–37] offered a
comprehensive framework for establishing a relationship between ERT data and landslide
shear strength, providing a highly significant investigation of the use of ERT data for
landslide early warning. The factor of safety (FOS) of a landslide is a more straightforward
parameter to evaluate the stability of a landslide than shear strength. It can provide a more
straightforward early warning effect if ERT monitoring data can be used to dynamically
depict the change in FOS of landslides under rainfall conditions.

In this paper, a framework for using ERT observation data to reflect the change in
FOS of landslides during rainfall was proposed. In the proposed framework, synthetic
data are first obtained by forward modeling of a specific landslide model. Then, the
inexact Gauss–Newton inversion algorithm based on multiple constraints is applied to
the synthetic data to analyze the spatial and temporal distribution of the resistivity. After
that, the distribution of moisture can be obtained with the help of the relationship between
resistivity and water content constructed by the water–electricity correlation curve (WECC).
Finally, the FOS of the landslide can be calculated by using the strength reduction method
(SRM) using COMSOL software. Twelve sets of numerical simulation experiments for a
theoretical model with the proposed framework were completed, and the effects of the
proposed framework on computed FOS under various arrays, apparent resistivity noise,
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and WECC uncertainty were investigated to verify the proposed framework’s performance
and reliability.

2. Methodology

The proposed framework for calculating the FOS of landslides during rainfall using
ERT observation data is shown in Figure 1. In the data preparation section, the synthetic
data from the forward modeling of the theoretical model was chosen as the data source
due to the lack of real measurement data and the need for a controlled and quantitative
evaluation of the reliability of different scenarios. Firstly, a numerical model should be
established and given the basic parameters and rainfall conditions, COMSOL software is
used to calculate the spatial and temporal response of the seepage field, stress field, and
the evolution of the theoretical FOS for this model under the specified rainfall conditions.
The seepage fields are then transformed into resistivity distributions using various WECCs,
and the apparent resistivity responses of various arrays are calculated and saved to be
used as input data for the proposed framework. The proposed framework first calculates
the resistivity distribution for synthetic data using the inexact Gauss–Newton inversion
based on multiple constraints, then calculates the moisture distribution using the fitted
WECC, and finally calculates the predicted FOS in COMSOL using SRM, which is compared
and analyzed with the theoretical FOS calculated in the data preparation section to verify
the feasibility, sensitivity, and anti-noise capability. The inversion is the most significant
aspect of this framework. Multiple constraints, such as the prior model constraint, model
smoothness constraint, and regularization constraint, are needed for the inversion process
to increase the accuracy of the inversion due to the unique properties of landslides under
rainfall conditions. The inversion process utilizes the inexact Gauss–Newton method [38]
to determine the search direction, the Wolfe criterion [38] to determine the iteration step,
and the Jacobian-free Krylov solution technique [39] to avoid the direct calculation of large,
dense Jacobian matrices, all of which improve inversion efficiency.
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2.1. Inexact Gauss–Newton Inversion Algorithm Based on Multiple Constraints

Geophysical inversion is a technique that uses observed data to infer the spatial
distribution of subsurface physical parameters [40,41]. However, because the observed data
are limited, the inverse problem is usually ill-posed, and the inversion results frequently
have issues such as instability and non-uniqueness [40,41]. To minimize the ill-posed
problem, Tikhonov et al. [42] proposed a regularized inversion method to stabilize the
model iteration process by adding a regularized model constraint term to the inversion
objective function. The regularization objective function used in this paper is:

ϕ=ϕd+λϕm=
1
2
‖D(A(m)− dobs)‖2+

λ

2
‖W(m−mapr)‖2 (1)

whereϕ denotes the inversion’s objective function, which is made up of two parts: the data
itemϕd = 1

2‖D(A(m)− dobs)‖2 and the regularized model item λϕm = λ
2 ‖W(m−mapr)‖2.

λ denotes the regularization parameter, D denotes the observed data weight, W denotes
the model weight, A denotes the forward modeling operator, mapr denotes the reference
model given based on a priori information, dobs denotes the observed data, and m denotes
the model vector to be solved. where the regularization parameter λ is set to 0.05 in the
early stage and the following equation is used for adaptive dynamic computation in the
later stage:

λ(k)=
ϕ

(k−1)
d

ϕ
(k−1)
d +ϕ(k−1)

m

·
ϕ

(k−1)
d

ϕ
(k−2)
d

(2)

where k denotes the current number of iterations. When compared to approaches such
as L-Curve [43], this calculation method may utilize the results of previous iterations and
does not require a duplicated forward modeling step, which considerably reduces the
computational burden and time consumption.

The data weight matrix D is calculated using the following equation [38]:

D = diag
(

1
|dobs| · SD(dobs) + ε

)
(3)

where SD(dobs) denotes the observed data’s standard deviation and ε denotes the smallest
possible data value to keep the denominator term from converging to zero, usually 0.0125.

Model weights W can place smooth constraints on the inversion process and ensure
the inversion model’s spatial continuity [39].

W=


− 1

rij
/

ki
∑
j=1

1
rij

i and j are close to each other

1 i = j
0 else

(4)

where rij denotes the distance between the centers of two nearby mesh cells, and Equation (4)
shows that the weight W is higher when the distance rij between two cells is smaller. Using
the model weight W to constrain the inverse model ensures that the inverse results m are
spatially smooth.

The prior model mapr is used to constrain the inversion process to improve its accuracy
even more. The information gained from drilling, exploration, and geoengineering testing
in the study area is used to build the prior model. The prior model constraint can ensure
that the inverted solution does not stray unduly from the true situation.
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To solve the minimum value of Equation (1), we take the derivative of Equation (1)
and set the derivative to 0, and then use the Gauss–Newton method to solve for the model
modification. The calculation formula is as follows:(

JTDTDJ+λWTW
)

H

∆m =−
[
JTDTD(A(m)− dobs)+λWTW(m−mref)

]
g

(5)

where J = ∂dobs/∂m denotes the Jacobian matrix, g denotes the gradient of the objective
function, and H denotes the approximate Hessian matrix of the objective function. The
Jacobian matrix J denotes a super-large dense matrix, and its storage and computation
should be avoided as much as possible in the inversion process. In this paper, the Jacobian-
free Krylov technique is used to avoid the storage and solution of the Jacobian matrix by
calculating the product of the Jacobian matrix and a certain vector x. The specific calculation
procedure is referred to in Li et al. [39].

The inversion efficiency can be improved by solving Equation (5) quickly and ef-
ficiently. The traditional Gauss–Newton method needs to solve the Hessian matrix H.
However, for very large ill-conditioned matrix calculation problems, this method is both
time-consuming and unstable, so this paper uses the inexact Gauss–Newton method to
solve it. This approach uses the Jacobian-free Krylov technique to compute the Jacobian
matrix and a specific vector’s product, and then calculates the g with more accuracy to
make sure the solution direction is accurate. After that, within a finite number of iterations,
we calculate the ∆m using the preconditioned conjugate gradient method [38,39]. Once the
inexact ∆m is obtained, the model can be updated iteratively using the following equation:

mk+1 = mk + α∆m (6)

where α denotes the search step and its specific value needs to satisfy Wolfe’s criterion:

Φ(mk+1) = Φ(mk + α∆m) ≥ Φ(mk) + cα∇ΦT(mk)∆m (7)

where c denotes a very small constant, which is set to 0.0001 in this paper. During the
calculation, the initial value of α is set to 1. If inequality (7) does not hold, we change α
to half of the previous value until inequality (7) holds. The updated new model can be
obtained by using the updated α calculation Equation (6) at this time.

The model is iterated and updated continually using the method described above
until the termination condition is fulfilled, at which point the inverse model m is produced.
To increase the stability of the inversion process and decrease the inversion solution’s
multi-solvability, the entire inversion process makes use of spatial smoothness constraints,
prior model constraints, and adaptive regularization constraints. The Jacobian-free Krylov
technology is used to avoid the storage and solution of the super-large and dense Jacobian
matrix J, and the inexact Gauss–Newton is adopted to solve the equation system, thereby
increasing the calculation speed and reducing the calculation time. The resistivity change
in the landslide at each moment of the rainfall process can be determined by inverting the
geoelectric field response. The moisture distribution is then computed using the resistivity
distribution, and the FOS evolution is estimated using SRM.

2.2. Water–Electricity Correlation Curve (WECC)

The foundation for using ERT monitoring data to reflect the spatial and temporal
evolution of water content within landslides is the correlation between soil resistivity
and water content. The relationship for porous media with nonconductive solid grains is
provided by Archie (Archie, Mamaroneck, NY, USA, 1942):

ρ = aρw ϕ−mS−n (8)
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where ρ denotes the resistivity of the geotechnical body; ϕ denotes the porosity; m denotes
the cementation index; ρw denotes the resistivity of pore water, S denotes the saturation,
and n denotes the saturation index. For the same geotechnical body, its pore structure and
the physical characteristics of pore water do not change during the seepage process, only
taking into account the change in its saturation. The Archie equation can be simplified
as follows [26,34]:

ρ = KS−n (9)

To determine the relationship between saturation and resistivity, the parameters K
and n can be determined by fitting the measured data. The relationship between resistivity
and saturation for landslides under rainy conditions is made simpler by Equation (9). Since
uncertainty must exist in reality, varying levels of noise are added to the synthetic data
individually to investigate how they affect the calculated FOS.

2.3. FOS Calculation via SRM

Once the moisture distribution is obtained by inversion, the stress field of the landslide
can be further calculated by the finite element method (FEM), and then the FOS of the land-
slide can be calculated by SRM. The stress balance equation considering the unsaturated
moisture distribution is as follows:

∂σij

∂Xij
+ f j = 0 (i, j = 1, 2, 3) (10)

where σij denotes the total stress tensor and f j denotes the force applied. According to the
effective stress principle, the total stress is the sum of the effective stress and the stress
generated by water:

σij = σ′ij + δijαeq p (11)

where σ′ij denotes the effective stress tensor, δij denotes the Kronecker symbol, αeq denotes
the equivalent pore water coefficient, and p denotes the pore water pressure. In the
unsaturated scenario, the relationship between saturation and pressure head can be solved
according to the Van Genuchten model [44] given below:

S =

(
1 +

∣∣∣∣αp
ρg

∣∣∣∣n)−m

→ p =
ρg
α
(Sm − 1)−n (12)

In the saturated scenario, the pore water pressure p and the pressure head Hp have
the following relationship.

p = ρgHp (13)

Soil is a relatively complex elastoplastic material, which needs to be judged by the
plastic potential to determine whether yielding occurs. In this paper, the Mohr–Coulomb
(M–C) criterion is used to determine the plastic potential function as:

F =
√

J2

(
cos Θ−

√
1
3

sin Θ sin ϕ

)
− 1

3
I1 sin ϕ− C cos ϕ (14)

With

Θ =
1
3

sin−1

(
−3
√

3
2

J3

J3/2
2

)
(15)

where Θ ∈ [−π/6, π/6] denotes lode angle, I1 denotes the first stress invariant, and J2
and J3 denote the second and third strain invariants, respectively. C denotes cohesion,
and ϕ denotes internal friction. In the SRM method, the two parameters C and ϕ are
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continuously reduced according to Equation (16) until the convergence conditions are not
met; the reduction coefficient at this time is the FOS.

C =
c

FOS
, ϕ = arctan

(
tan ϕu

FOS

)
(16)

2.4. Effectiveness Evaluation Index of the Proposed Method

RSME and MAPE were used to quantitatively evaluate the accuracy of the proposed
model. The calculation formula is as follows:

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (17)

MAPE =
100%

m

m

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (18)

where yi denotes the true value and ŷi denotes the value calculated by the method proposed
in this paper.

3. Numerical Examples and Results
3.1. The Model and Experimental Parameters Setup

According to Figure 2, which depicts a two-dimensional homogeneous highway cut
slope with a height of 10 m, the groundwater level is 6 m on the left side and 7 m on the right
side, with both sides of the boundary fixed horizontal displacement. Rainfall conditions
are imposed on the upper side of the slope body without any displacement constraints.
The bottom of the slope is the undrained boundary, and the displacement is fixed in both
directions. Table 1 lists the values for the model’s basic geotechnical parameters. The
values of the geotechnical parameters were taken concerning the indoor test results of
Carey et al. [34] and Lv [45] in order to reflect the actual scenario as much as possible. In
order to reflect the changes in various parameters with time in some areas inside the slope,
two monitoring points (A and B) are added at the locations shown in Figure 2 inside the
slope. Electrodes are placed in the af, fe, and ed segments in Figure 2, and whether the
current electrodes are used to supply or collect potential differences is controlled according
to the experimental requirements. Three scenarios of multiple arrays, multiple apparent
resistivity noises, and multiple WECC uncertainties must be taken into account in order to
completely confirm the viability of the proposed framework. Table 2 displays details of the
experimental design.

3.2. Simulation Results of the Seepage Field Caused by Rainfall

The rainfall condition in the experimental design shown in Table 2 is a continuous
50 mm of rain per day for 4 days, which is consistent with most rainfall-triggered landslide
failure cases [45,46]. The foundation of the FOS calculation framework proposed in this
paper is to assess the distribution of water content of landslides at various moments during
rainfall using inversion. It is necessary to gather the theoretical spatial and temporal
distribution of water content by forward modeling in order to more accurately compare
the impact of inversion in following experiments.
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Figure 2. Slope geometry and boundary conditions setup for the used model (unit: m).

Table 1. Geotechnical parameters of experimental model.

Parameters Symbols Units Values (Natural/Saturated)

Young’s modulus E MPa 26.0 MPa
Poisson ratio ν - 0.29

Unit weight of soil γ kN/m3 18.82/19.11
Saturated volumetric moisture content θs - 0.271
Residual volumetric moisture content θr - 0.042

Cohesion c kPa 34.2/18.7
Internal frictional angle ϕ ◦ 21.7/16.0

Saturated permeability coefficient Ks m/h 0.08

Fitting parameters of VG model α m−1 0.352
n - 1.917

Figure 3a depicts the saturation distribution obtained under the aforementioned
rainfall conditions. It should be noted that each cross section represents the saturation
distribution at a separate time. In order to more clearly show the change in saturation
distribution inside the landslide during the rainfall process, the saturation distribution
at the initial moment is taken as the benchmark, and the saturation distribution at other
moments is subtracted from it to obtain the change in saturation distribution at different
moments, as shown in Figure 3b. According to Figure 3a,b, the slope body’s surface zone
first experiences a rise in water content with the continuous infiltration of rainfall, and the
zone with the increased water content then gradually extends to the lower zone. The matrix
suction begins to decrease after the surface zone’s water content rises. The infiltration
capacity of soil also decreases significantly, and the speed of water transport downward
becomes slower and slower until it eventually tends to stabilize.
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Table 2. Details of experimental design.

Experiment
Number

Rainfall Intensity
(mm/d)

Rainfall Duration
(days) Arrays Resistivity

Response Noise
WECC

Uncertainty

1 50 4 Pole-Pole 0% 0%
2 50 4 Pole-Dipole 0% 0%
3 50 4 Wenner 0% 0%
4 50 4 Dipole-Dipole 0% 0%
5 50 4 Pole-Pole 3% 0%
6 50 4 Pole-Dipole 3% 0%
7 50 4 Wenner 3% 0%
8 50 4 Dipole-Dipole 3% 0%
9 50 4 Wenner 0% 3%

10 50 4 Dipole-Dipole 0% 3%
11 50 4 Wenner 3% 3%
12 50 4 Dipole-Dipole 3% 3%
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3.3. The Effect of the Arrays

Different arrays must first be selected when using ERT. There are four types of arrays
that are frequently used: Pole-Pole, Pole-Dipole, Wenner, and Dipole-Dipole [34,47]. Each
type of array has unique properties. In experiments 1, 2, 3, and 4, the noise of the apparent
resistivity responses and the uncertainty of WECC are adjusted to zero, and only the
influence of the array is taken into account in order to compare and validate the detection
effect of various arrays under rainfall conditions. The apparent resistivity responses
obtained from forward modeling of various arrays during rainfall are shown in Figure 4,
where subplots (a)–(d) show the apparent resistivity distributions from four arrays, Pole-
Pole, Pole-Dipole, Wenner, and Dipole-Dipole, respectively, at different moments, and
subplots (e) and (f) show the evolution of the apparent resistivity with saturation at two
monitoring points, A and B, respectively.
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rainfall. As time goes on, the apparent resistivity drops less and tends to plateau, 

Figure 4. Apparent resistivity response of various arrays during rainfall: (a) Pole-Pole array;
(b) Pole-Dipole array; (c) Wenner array; (d) Dipole-Dipole array. (e) The evolution of apparent
resistivity and saturation at point A with time. (f) The evolution of apparent resistivity and saturation
at point B with time.

Figure 4 shows that the apparent resistivity response recorded by each of the four
arrays drops to varying degrees in response to the rise in saturation in the early stages of
rainfall. As time goes on, the apparent resistivity drops less and tends to plateau, indicating
the slowing down of the rate of change in water content in the landslide in the later period
of rainfall. According to the apparent resistivity, which decreases in the order of Dipole-
Dipole, Wenner, Pole-Pole, and Pole-Dipole, the Dipole-Dipole array is the most sensitive
to saturation, followed by the Wenner array, and the Pole-Dipole array is the least sensitive.
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The inexact Gauss–Newton inversion based on multiple constraints is applied to the
apparent resistivity response data obtained using these four arrays, and then the saturation
distribution can be calculated using WECC. The variation in the saturation distribution
of different arrays at different moments by inversion with respect to the initial saturation
distribution is shown in Figure 5. Finally, the saturation results of the inversion are imported
into COMSOL to calculate the FOS at different moments, as shown in Table 3.
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Figure 5. The spatial and temporal evolution of moisture obtained by inversion of various arrays
without noise: (a) Pole-Pole array; (b) Pole-Dipole array; (c) Wenner array; (d) Dipole-Dipole array.

Table 3. The FOS obtained by the proposed framework in the noiseless scenario of multiple arrays.

Theoretical Values Pole-Pole Pole-Dipole Wenner Dipole-Dipole

Time
(day)

0 1.519 1.500 1.270 1.516 1.500
1 1.494 1.490 1.390 1.485 1.499
2 1.480 1.475 1.400 1.474 1.488
3 1.463 1.455 1.060 1.443 1.468
4 1.444 1.425 1.340 1.424 1.456

RMSE - 0.013 0.224 0.014 0.011
MAPE - 0.720 12.681 0.778 0.664

As shown by comparing the results of Figure 5 with Figure 3b, the inversion results
of the four arrays can accurately reflect the water infiltration process in the ERT detection
area, but the individual arrays have different features. Because the potential near the
point source is singular, the saturation of the inversions of the four arrays increases there
much more than it does elsewhere. The Pole-Pole array’s inversions reveal artifacts in the
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deeper regions, and these artifacts worsen as the infiltration process progresses. Combining
the two indicators of RMSE and MAPE and the FOS calculated by the four arrays in
Table 3, it can be found that the accuracy of the FOS calculated by the inversion of the
three arrays is Dipole-Dipole, Pole-Pole, Wenner, and Pole-Dipole in descending order. The
Pole-Dipole array, which has the lowest sensitivity, has a very large difference between
calculated and theoretical values, whereas the Dipole-Dipole, Pole-Pole, and Wenner arrays
have very small differences. This shows that the Dipole-Dipole, Pole-Pole, and Wenner
arrays can theoretically be used to track the evolution of the FOS of landslides under
rainfall conditions.

3.4. The Effect of the Apparent Resistivity Response Noise

Affected by the environment and the precision of the acquisition equipment, the
apparent resistivity response of the field acquisition must contain noise, which requires
the array used for the acquisition to have a certain degree of anti-noise capability. In
Experiments 5, 6, 7, and 8, we applied a 3% Gaussian noise to the synthetic data obtained
from forward modeling using different arrays in Experiments 1, 2, 3, and 4. The apparent
resistivity responses obtained with various arrays in the presence of noise are shown in
Figure 6, where subplots (a)–(d) show the apparent resistivity distributions from four arrays,
Pole-Pole, Pole-Dipole, Wenner, and Dipole-Dipole, respectively, at different moments, and
subplots (e) and (f) show the evolution of the apparent resistivity with saturation at two
monitoring points, A and B, respectively. It can be seen from Figure 6e,f that the apparent
resistivity response of various arrays in the presence of noise essentially has the same
characteristics as in the absence of noise. It remains that Dipole-Dipole has the strongest
sensitivity to water content, followed by Wenner, and Pole-Pole and Pole-Dipole have the
weakest. The decrease in apparent resistivity response of the Pole-Pole and Pole-Dipole
arrays is likely to be masked by noise in the presence of noise, which is particularly severe
at monitoring site B (see Figure 6f). This also reflects the fact that as detection depth grows,
lower resolution results, as the detection performance of both arrays becomes progressively
less noise-resistant.

The acquired noise-containing apparent resistivity response data are calculated using
the inexact Gauss–Newton algorithm for inversion based on multiple constraints and
WECC for water-electric conversion to obtain the spatiotemporal evolution of the observed
saturation of these four arrays, as shown in Figure 7a–d. From Figure 7a–d, it can be found
that the spatiotemporal response pattern of saturation of the four arrays with noise is
basically the same as that without noise, but the artifacts of the Wenner array also appear
in the inner region, and the Pole-Pole and Pole-Dipole arrays show more serious artifacts
at the foot of the slope (at point f in Figure 2), which may have a greater impact on the
stability of the landslide.

Table 4 displays the FOS calculated in the noise-containing environment using various
arrays. It can be shown that noise has some effect on the calculations of all four arrays,
with the Pole-Pole and Pole-Dipole arrays experiencing the worst impact. As a result, it is
already difficult to depict the changing trend of FOS during rainfall infiltration. The Wenner
and Dipole-dipole arrays can still indicate the change in FOS during rainfall infiltration,
although they are also somewhat influenced by the noise-containing environment. This
indicates that these two arrays have some noise resistance, with the Dipole-Dipole array
having the best anti-noise capability.
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Figure 6. Apparent resistivity response with 3% Gaussian noise of various arrays during rainfall:
(a) Pole-Pole array; (b) Pole-Dipole array; (c) Wenner array; (d) Dipole-Dipole array. (e) The evolution
of apparent resistivity and saturation at point A with time. (f) The evolution of apparent resistivity
and saturation at point B with time.
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Figure 7. The spatial and temporal evolution of saturation obtained by inversion under the condition
of 3% Gaussian noise of various arrays: (a) Pole-Pole array; (b) Pole-Dipole array; (c) Wenner array;
(d) Dipole-Dipole array.

Table 4. The FOS obtained by the proposed framework in the 3% Gaussian noise scenario of multiple
arrays.

Theoretical Values Pole-Pole Pole-Dipole Wenner Dipole-Dipole

Time
(day)

0 1.519 1.535 1.420 1.494 1.493
1 1.494 1.395 1.120 1.456 1.480
2 1.480 1.055 1.220 1.410 1.507
3 1.463 1.415 1.273 1.405 1.484
4 1.444 1.360 1.330 1.380 1.451

RMSE - 0.200 0.230 0.053 0.021
MAPE - 9.084 13.976 3.440 1.296

3.5. The Effect of WECC Uncertainty

Although Archie’s formula can effectively fit the relationship between resistivity
and water content, this smooth-fitting model ignores the relationship’s uncertainty, so
it is still necessary to verify the impact of this uncertainty on the calculated FOS. When
comparing the results of Experiments 1 through 8, it can be seen that the Wenner array and
Dipole-Dipole array perform substantially better than the Pole-Pole array and Pole-Dipole
array. For this reason, only the Wenner array and Dipole-Dipole array were utilized in
Experiments 9 and 10. The resistivity calculated using Archie’s formula was added with 3%
Gaussian noise to simulate WECC uncertainty during the data preparation phase of these
two experiments after obtaining the saturation distribution at various times via COMSOL
calculations. Finally, forward modeling was carried out to determine the apparent resistivity
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responses, which are depicted in Figure 8a–d, where Subplots (a) and (b) show the apparent
resistivity values of the Wenner array and Dipole-Dipole array at different moments,
respectively, and subplots (c) and (d) show the apparent resistivity changes at the two
monitoring points A and B, respectively.
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Figure 8. Apparent resistivity response of WECC for Wenner and Dipole-Dipole arrays with 3%
uncertainty. (a) Wenner array, (b) Dipole-Dipole array. (c) Apparent resistivity and saturation at point
A with time. (d) Apparent resistivity and saturation at point B with time.

From Figure 8a–d, it can be found that the apparent resistivity responses obtained
from both arrays after increasing the uncertainty of WECC by 3% still decreased with the
increase in saturation, and the decrease in the apparent resistivity response of the Dipole-
Dipole array was significantly larger than that of the Wenner array, which is consistent with
the results of experiments 3, 4, 7, and 8, indicating that the Dipole-Dipole array is more
sensitive to saturation than the Wenner array.

The inexact Gauss–Newton method based on multiple constraints is utilized for the
inversion of the apparent resistivity response in Figure 8, and the Archie formula is then
used to determine the saturation’s spatial and temporal distribution. Figure 9 displays the
results. Finally, the FOS was calculated by SRM using COMSOL software, and the results
are shown in Table 5. According to Figure 9a,b and Table 5, the saturation distributions
calculated for both arrays with the 3% increase in uncertainty in WECC are essentially the
same as the distributions when no noise is added, and the FOS values calculated for both
are also less different from the theoretical FOS. The FOS calculated with the Dipole-Dipole
array is closer to the theoretical FOS than the Wenner array based on the two indicators
of RMSE and MAPE, showing that the FOS calculated with the Dipole-Dipole array is
more applicable.
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Figure 9. The spatial and temporal evolution of saturation obtained by inversion with 3% uncertainty
in WECC: (a) Wenner array; (b) Dipole-Dipole array.

Table 5. The FOS obtained by the proposed framework in the 3% WECC uncertainty noise scenario
of multiple arrays.

Theoretical Values Wenner Dipole-Dipole

Time
(day)

0 1.519 1.505 1.495
1 1.494 1.475 1.490
2 1.480 1.460 1.485
3 1.463 1.430 1.465
4 1.444 1.405 1.455

RMSE - 0.026 0.012
MAPE - 1.677 0.627

3.6. The Effects of Multiple Conditions

The effects of the apparent resistivity response noise and the uncertainty of the WECC
were taken into account in Experiments 11 and 12, and the synthesized data are shown in
Figure 10a–d, where subplots (a) and (b) show the apparent resistivity values of the Wenner
array and Dipole-Dipole array at different moments, respectively, and subplots (c) and (d)
show the apparent resistivity changes at the two monitoring points A and B, respectively.
It can be found that the characteristics of the apparent resistivity response are basically
consistent with those observed in multiple previous experiments. The spatiotemporal
distribution of saturation and the FOS calculated using the proposed framework are shown
in Figure 11a,b and Table 6, respectively. It can be found that although the FOS in the
complex environment where the two scenarios work together is less accurate than the
previous experimental results, it can also reflect the decreasing trend in the FOS of the
landslide during the rainfall process, and the Dipole-Dipole array is still more adequate
than the Wenner array.
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Figure 10. Apparent resistivity response of WECC for Wenner and Dipole-Dipole arrays with the
combination of multiple conditions: (a) Wenner array; (b) Dipole-Dipole array. (c) Apparent resistivity
and saturation at point A with time. (d) Apparent resistivity and saturation at point B with time.
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Table 6. The FOS obtained by the proposed framework under the combination of multiple conditions.

Theoretical Values Wenner Dipole-Dipole

Time
(day)

0 1.519 1.510 1.505
1 1.494 1.485 1.490
2 1.480 1.450 1.465
3 1.463 1.420 1.445
4 1.444 1.390 1.395

RMSE - 0.034 0.025
MAPE - 1.957 1.342

4. Discussion

With the application of ERT, information on the spatial and temporal distribution
of water content inside a landslide can be gathered in a non-invasive manner and on
a broad scale. At the same time, the coverage of the ERT is larger than point-based
sensor monitoring. However, as ERT measured resistivity values cannot be directly related
to physical and mechanical material properties, they cannot be used to determine the
landslide’s current stability state. In this paper, we attempted to use the technical route of
inversion of ERT observation data→conversion of resistivity to water content data using
WECC→FEM-based SRM to quantitatively calculate the evolution of FOS of landslides
under rainfall conditions, and we performed several experiments with synthetic data to
validate the performance and reliability of the proposed framework.

The experiments presented in this study show that, under theoretical conditions, the
apparent resistivity responses obtained by utilizing the four ERT arrays show a quick and
then steady reduction with continuous rainfall infiltration. The inexact Gauss–Newton
algorithm based on multiple constraints was adopted for inversion in the proposed frame-
work, and the spatiotemporal response of the inverted saturation may generally mirror the
spatiotemporal evolution of true saturation. The FOS determined by the proposed frame-
work could adequately reflect the evolution of the overall safety status of the landslide
during rainfall, proving the performance and dependability of the proposed framework.
However, the results of the conducted experiments show that the proposed framework has
some influence on the accuracy and reliability of computation outcomes in complicated
situations such as multiple arrays, apparent resistivity noise, and WECC uncertainty.

According to the results of Experiments 1–4, the apparent resistivity responses ob-
tained from all four arrays showed a decreasing trend with continuous rainfall infiltration,
and the decreasing magnitudes were, in descending order, Dipole-Dipole, Wenner, Pole-
Pole, and Pole-Dipole. This means that the Dipole-Dipole array is the most sensitive to the
change in saturation, followed by the Wenner array, then the Pole-Pole array, while the
Pole-Dipole array was the least sensitive. This feature was also reflected in the subsequent
experiments. This characteristic results from the fact that the resolution of each array
varies, with the Dipole-Dipole array having the highest resolution among these four arrays.
According to the computed results of saturation evolution and FOS derived by inversion,
the Dipole-Dipole array has the best applicability, the Wenner and Pole-Pole arrays have
the second-best applicability, and the Pole-Dipole array has the poorest applicability.

According to Experiments 5–8, the Dipole-Dipole array has the best anti-noise ca-
pability against apparent resistivity noise, while the Pole-Dipole array has the poorest.
Combined with the analysis of the apparent resistivity response of the different arrays,
the Dipole-Dipole array had the largest apparent resistivity decrease and the strongest
sensitivity, and the presence of noise had little effect on this decreasing trend, whereas the
Pole-Dipole array had the smallest decrease and the weakest sensitivity, and the presence
of noise could easily drown out the apparent resistivity decrease.

Experiments 9 and 10 showed that when the Gaussian noise of WECC was increased by
3%, the FOS calculated by the proposed framework remained close to the theoretical value.
Additionally, since the Dipole-Dipole array was most sensitive to saturation, the calculated
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FOS was also the closest to the theoretical value. These two experiments demonstrate the
effectiveness of the proposed framework in considering the WECC uncertainty.

When the apparent resistivity response noise and the uncertainty of WECC were
considered in Experiments 11 and 12, the FOS calculated by the method proposed in this
paper remained relatively close to the theoretical value, indicating that it is theoretically
feasible to use the ERT technique to calculate the landslide FOS and then carry out the
landslide safety evaluation using the method proposed in this paper. All experimental
results demonstrate that the Dipole-Dipole array exceeded other arrays in terms of accuracy,
sensitivity, and noise resistance, whereas the Pole-Dipole array was less effective in all
instances and is not recommended.

This paper used synthetic data for forward modeling. On the one hand, we needed
to compare the calculation results of the proposed framework in different scenarios, and
on the other hand, we currently lack the conditions to carry out actual landslide tests. In
the future, ERT equipment that can be used for long-term, automatic monitoring can be
deployed on actual landslide sites, and the sampling frequency and array can be designed
according to specific needs so as to obtain ERT measurement data in near real time. The
time series data from ERT monitoring can use the proposed framework to evaluate the
FOS evolution of landslides and combine it with point-based monitoring data for analysis
and judgment, thereby improving the accuracy and reliability of early warnings. At the
same time, in practical application, it also will be necessary to solve problems such as the
complexity of the internal structure of the landslide, the spatial variability of geotechnical
parameters, and temperature interference. These challenges require continued research
work in the future.

The framework proposed in this paper established the relationship between ERT
observation data and landslide FOS, and it can use indirect ERT observation data to
evaluate the evolution of a landslide’s safety status during the rainfall process. However, it
should be mentioned that the computational complexity of the framework suggested in this
research is extremely formidable, which is why two-dimensional experimental examples
were adopted rather than three-dimensional experimental cases. The inversion process
consumes a significant amount of computing time, and further research is required to
increase computing speed and decrease computing time.

5. Conclusions

In this paper, a framework for calculating the FOS of landslides during rainfall using
apparent resistivity response data from ERT monitoring was proposed. However, ERT
data cannot be used directly for stability evaluation in landslide monitoring. The proposed
framework first utilizes the inexact Gauss–Newton method inversion based on multiple
constraints to acquire the resistivity distribution, then WECC to obtain the spatial and
temporal distribution of saturation, and finally FEM-based SRM to calculate FOS. To
evaluate the accuracy and reliability of the proposed framework, 12 sets of experiments
were developed and carried out using synthetic data from the theoretical numerical model,
then discussed and analyzed, yielding the following conclusions.

The numerical simulation results show that ERT monitoring data can reflect the spatial
and temporal evolution of water content inside the landslide during rainfall, which can
then be integrated with the values for physical and mechanical material properties in order
to perform a quantitative safety evaluation of the landslide.

The quantitative computational approach described in this paper for calculating the
FOS evolution of landslides by analyzing the apparent resistivity response of landslides
during rainfall is reasonable and feasible.

The Dipole-Dipole array outperformed other ERT arrays (Wenner, Pole-Pole and Pole-
Dipole) in terms of accuracy, sensitivity, and noise immunity. The Pole-Dipole array was
least successful in all respects and is not recommended.

The noise of apparent resistivity response and the uncertainty of WECC had effects on
the proposed framework’s calculation results. In practice, it is important not only to denoise
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the observation data but also to perform repeated calculations for the uncertainty of the
relationship between the resistivity and the saturation, in order to increase the reliability of
the calculation results.

Due to the need to validate the performance and reliability of the proposed method
as well as the limitations of experimental conditions, in this study, synthetic data from the
theoretical model were used. Subsequent studies are needed to obtain actual observation data
from actual landslides to put the proposed theoretical framework into practical use. In the
future, the work on actual landslides will still need to solve the problems of complex internal
structure, spatial variation of geotechnical parameters, temperature interference, etc.
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22. Drahor, M.G.; Göktürkler, G.; Berge, M.A.; Kurtulmuş, T. Application of electrical resistivity tomography technique for investiga-
tion of landslides: A case from Turkey. Environ. Geol. 2006, 50, 147–155. [CrossRef]

23. Podolszki, L.; Kosović, I.; Novosel, T.; Kurečić, T. Multi-Level Sensing Technologies in Landslide Research—Hrvatska Kostajnica
Case Study, Croatia. Sensors 2022, 22, 177. [CrossRef]

24. Geng, J.; Sun, Q.; Zhang, Y.; Yan, C.; Zhang, W. Electric-field response based experimental investigation of unsaturated soil slope
seepage. J. Appl. Geophys. 2017, 138, 154–160. [CrossRef]

25. Liu, Y.; Lü, C.; Sun, Q. Geoelectric Field Response to Seepage in Sand and Clay Formations. J. Hydrol. Eng. 2019, 24, 04019037.
[CrossRef]

26. Hojat, A.; Arosio, D.; Ivanov, V.I.; Longoni, L.; Papini, M.; Scaioni, M.; Tresoldi, G.; Zanzi, L. Geoelectrical characterization and
monitoring of slopes on a rainfall-triggered landslide simulator. J. Appl. Geophys. 2019, 170, 103844. [CrossRef]

27. Lyu, C.; Sun, Q.; Zhang, W. Real-Time Geoelectric Monitoring of Seepage into Sand and Clay Layer. Ground Water Monit. Remediat.
2019, 39, 80–88. [CrossRef]

28. Zeng, R.Q.; Meng, X.M.; Zhang, F.Y.; Wang, S.Y.; Cui, Z.J.; Zhang, M.S.; Zhang, Y.; Chen, G. Characterizing hydrological processes
on loess slopes using electrical resistivity tomography–A case study of the Heifangtai Terrace, Northwest China. J. Hydrol. 2016,
541, 742–753. [CrossRef]

29. Uhlemann, S.; Chambers, J.; Wilkinson, P.; Maurer, H.; Merritt, A.; Meldrum, P.; Kuras, O.; Gunn, D.; Smith, A.; Dijkstra, T.
Four-Dimensional Imaging of Moisture Dynamics during Landslide Reactivation: Imaging of Landslide Moisture Dynamics. J.
Geophys. Res. Earth Surf. 2016, 122, 398–418. [CrossRef]

30. Boyle, A.; Wilkinson, P.B.; Chambers, J.E.; Meldrum, P.I.; Uhlemann, S.; Adler, A. Jointly reconstructing ground motion and
resistivity for ERT-based slope stability monitoring. Geophys. J. Int. 2017, 212, 1167–1182. [CrossRef]

31. Denchik, N.; Gautier, S.; Dupuy, M.; Batiot-Guilhe, C.; Lopez, M.; Léonardi, V.; Geeraert, M.; Henry, G.; Neyens, D.; Coudray, P.;
et al. In-situ geophysical and hydro-geochemical monitoring to infer landslide dynamics (Pégairolles-de-l’Escalette landslide,
France). Eng. Geol. 2019, 254, 102–112. [CrossRef]

32. Boyd, J.; Chambers, J.; Wilkinson, P.; Peppa, M.; Watlet, A.; Kirkham, M.; Jones, L.; Swift, R.; Meldrum, P.; Uhlemann, S.; et al. A
linked geomorphological and geophysical modelling methodology applied to an active landslide. Landslides 2021, 18, 2689–2704.
[CrossRef]

33. Manoli, G.; Rossi, M.; Pasetto, D.; Deiana, R.; Ferraris, S.; Cassiani, G.; Putti, M. An iterative particle filter approach for coupled
hydro-geophysical inversion of a controlled infiltration experiment. J. Comput. Phys. 2015, 283, 37–51. [CrossRef]

34. Carey, A.M.; Paige, G.B.; Carr, B.J.; Dogan, M. Forward modeling to investigate inversion artifacts resulting from time-lapse
electrical resistivity tomography during rainfall simulations. J. Appl. Geophys. 2017, 145, 39–49. [CrossRef]

35. Crawford, M.M.; Bryson, L.S. Assessment of active landslides using field electrical measurements. Eng. Geol. 2018, 233, 146–159.
[CrossRef]

36. Crawford, M.M.; Bryson, L.S.; Woolery, E.W.; Wang, Z. Using 2-D electrical resistivity imaging for joint geophysical and
geotechnical characterization of shallow landslides. J. Appl. Geophys. 2018, 157, 37–46. [CrossRef]

37. Crawford, M.M.; Bryson, L.S.; Woolery, E.W.; Wang, Z. Long-term landslide monitoring using soil-water relationships and
electrical data to estimate suction stress. Eng. Geol. 2019, 251, 146–157. [CrossRef]

38. Pidlisecky, A.; Haber, E.; Knight, R. RESINVM3D: A 3D resistivity inversion package. Geophysics 2007, 72, H1–H10. [CrossRef]
39. Li, C.-W.; Xiong, B.; Qiang, J.-K.; Lü, Y.-Z. Multiple linear system techniques for 3D finite element method modeling of direct

current resistivity. J. Cent. South Univ. 2012, 19, 424–432. [CrossRef]
40. Liu, W.; Wang, H.; Xi, Z.; Zhang, R.; Huang, X. Physics-Driven Deep Learning Inversion with Application to Magnetotelluric.

Remote Sens. 2022, 14, 3218. [CrossRef]
41. Vu, M.T.; Jardani, A. Convolutional neural networks with SegNet architecture applied to three-dimensional tomography of

subsurface electrical resistivity: CNN-3D-ERT. Geophys. J. Int. 2021, 225, 1319–1331. [CrossRef]
42. Tikhonov, A.N.; Goncharsky, A.; Stepanov, V.V.; Yagola, A.G. Numerical Methods for the Solution of Ill-Posed Problems; Springer

Science & Business Media: Berlin/Heidelberg, Germany, 1995; ISBN 978-0-7923-3583-2.

http://doi.org/10.1016/j.advwatres.2022.104156
http://doi.org/10.1007/s12665-019-8430-x
http://doi.org/10.1016/j.jappgeo.2006.01.001
http://doi.org/10.5194/hess-17-595-2013
http://doi.org/10.1029/2018RG000603
http://doi.org/10.3390/app12031425
http://doi.org/10.1016/j.earscirev.2014.04.002
http://doi.org/10.1007/s00254-006-0194-4
http://doi.org/10.3390/s22010177
http://doi.org/10.1016/j.jappgeo.2017.01.023
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001845
http://doi.org/10.1016/j.jappgeo.2019.103844
http://doi.org/10.1111/gwmr.12352
http://doi.org/10.1016/j.jhydrol.2016.07.033
http://doi.org/10.1002/2016JF003983
http://doi.org/10.1093/gji/ggx453
http://doi.org/10.1016/j.enggeo.2019.04.009
http://doi.org/10.1007/s10346-021-01666-w
http://doi.org/10.1016/j.jcp.2014.11.035
http://doi.org/10.1016/j.jappgeo.2017.08.002
http://doi.org/10.1016/j.enggeo.2017.11.012
http://doi.org/10.1016/j.jappgeo.2018.06.009
http://doi.org/10.1016/j.enggeo.2019.02.015
http://doi.org/10.1190/1.2402499
http://doi.org/10.1007/s11771-012-1021-6
http://doi.org/10.3390/rs14133218
http://doi.org/10.1093/gji/ggab024


Remote Sens. 2022, 14, 3592 22 of 22

43. Engl, H.W.; Grever, W. Using the L–curve for determining optimal regularization parameters. Numer. Math. 1994, 69, 25–31.
[CrossRef]

44. Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J.
1980, 44, 892–898. [CrossRef]

45. Lv, Y. Study on Stability of Unsaturated Soil Slope under Rainfall Condition Based on Xingye District. Master’s Thesis, Guilin
University of Technology, Guilin, China, 2020.

46. Qian, W.; Li, J.; Shan, X. Application of synoptic-scale anomalous winds predicted by medium-range weather forecast models on
the regional heavy rainfall in China in 2010. Sci. China Earth Sci. 2013, 56, 1059–1070. [CrossRef]

47. Zakaria, M.T.; Muztaza, N.M.; Zabidi, H.; Salleh, A.N.; Mahmud, N.; Rosli, F.N. Integrated analysis of geophysical approaches for
slope failure characterisation. Environ. Earth Sci. 2022, 81, 299. [CrossRef]

http://doi.org/10.1007/s002110050078
http://doi.org/10.2136/sssaj1980.03615995004400050002x
http://doi.org/10.1007/s11430-013-4586-5
http://doi.org/10.1007/s12665-022-10410-z

	Introduction 
	Methodology 
	Inexact Gauss–Newton Inversion Algorithm Based on Multiple Constraints 
	Water–Electricity Correlation Curve (WECC) 
	FOS Calculation via SRM 
	Effectiveness Evaluation Index of the Proposed Method 

	Numerical Examples and Results 
	The Model and Experimental Parameters Setup 
	Simulation Results of the Seepage Field Caused by Rainfall 
	The Effect of the Arrays 
	The Effect of the Apparent Resistivity Response Noise 
	The Effect of WECC Uncertainty 
	The Effects of Multiple Conditions 

	Discussion 
	Conclusions 
	References

