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Abstract: The selection and representation of classification features in remote sensing image play
crucial roles in image classification accuracy. To effectively improve the features classification accuracy,
an improved U-Net remote sensing classification algorithm fusing attention and multiscale features
is proposed in this paper, called spatial attention-atrous spatial pyramid pooling U-Net (SA-UNet).
This framework connects atrous spatial pyramid pooling (ASPP) with the convolutional units of
the encoder of the original U-Net in the form of residuals. The ASPP module expands the receptive
field, integrates multiscale features in the network, and enhances the ability to express shallow
features. Through the fusion residual module, shallow and deep features are deeply fused, and the
characteristics of shallow and deep features are further used. The spatial attention mechanism is used
to combine spatial with semantic information so that the decoder can recover more spatial information.
In this study, the crop distribution in central Guangxi province was analyzed, and experiments were
conducted based on Landsat 8 multispectral remote sensing images. The experimental results showed
that the improved algorithm increases the classification accuracy, with the accuracy increasing from
93.33% to 96.25%, The segmentation accuracy of sugarcane, rice, and other land increased from
96.42%, 63.37%, and 88.43% to 98.01%, 83.21%, and 95.71%, respectively. The agricultural planting
area results obtained by the proposed algorithm can be used as input data for regional ecological
models, which is conducive to the development of accurate and real-time crop growth change models.

Keywords: multiscale features; U-Net; attention; remote sensing image classification

1. Introduction

Remote sensing technology plays an important role in agricultural monitoring, ge-
ological survey, military survey, and target detection [1–4]. As a use of remote sensing
technology, land cover classification is a hot and challenging research topic. Accurate land
cover classification is important for agricultural production and grain yield assessment,
urban planning and construction, and ecological change monitoring [5–7]. Researchers
have proposed multiple classifiers to classify land cover using remote sensing images [8],
and the classification methods based on optical satellite images can be broadly grouped into
spectral-based and spectral–spatial classification methods [9]. The spectrum-based classifi-
cation methods use the spectral values obtained from remote sensing images as features,
and statistical clustering or machine learning classification algorithms, including support
vector machines (SVMs) [10], maximum likelihood [11], and random forest [12], to classify
pixels. The spectral–spatial-based classification methods combine their own spectral values
and construct corresponding auxiliary information from the image neighborhood space as
feature vectors to achieve pixel-by-pixel classification of remote sensing images [13].

Although the above classifiers can accurately classify land cover, they still need to
be improved for precision agriculture classification. Thus, with the development of deep
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learning, classification methods based on deep learning have been widely used for land
cover classification, such as convolutional neural networks (CNNs) [14–19], improved
Transformer [20,21], etc. U-Net [22], as an earlier CNN, was initially applied for segmenting
medical images because U-Net only needs a small batch of data to produce accurate
segmentation results. U-Net has also been applied for land cover classification tasks
by many researchers, who have proposed many improved U-Net network structures to
improve the semantic segmentation performance [23,24]. The U-Net model consists of an
encoder and a decoder. The encoder extracts high-level features through a step-by-step
downsampling operation. The decoder gradually upsamples the high-level features, and
combines the skip connection to restore the feature map to the original size. U-Net loses
large amounts of detailed information during downsampling; therefore, adding ASPP to
U-Net helps to retain this detailed information while increasing the perceptual field [19].
Zhang et al. [14] added an ASPP module to the underlying U-Net, enabling the feature
maps to be extracted with multiscale contextual information and reducing the confusion
between different types of adjacent pixels. To overcome the problem of poor image contour
recovery in the decoder process of U-Net, a conditional random field (CRF) was added to
U-Net for post-processing [17]. CRF processing can reduce mixing between similar ground
object types. The Res-UNet proposed by Cao et al. [15] is an organic combination between
ResNet [25] and U-Net [22], where the residual unit of ResNet replaces the convolutional
layer of U-Net so that shallow features more easily propagate to deep layers, improving
the distinction between features with small differences in spectral signatures.Yan et al.
used U-Net to extract features at different levels, input them into SVM classification, and
performed a majority voting game on the classification results of features at different
levels, fully considering the effects of shallow, mid-level, and deep-level features [16].
Biserka Petrovska et al. [26] used a combination of CNN and SVM with linear and radial
basis function (RBF) kernels (RBF SVM), which extracts features by the fine-tuned CNN
to put into the RBF SVM for classification. Biserka Petrovska et al. [27] used a variety
of mainstream CNNs to extract features from remote sensing images, fused the features
extracted by different CNNs, and put them into SVM for classification. The U-Net +
SVM approach requires the features extracted from U-Net to be input to SVM training,
and SVM training is a time-consuming process. U-Net++, proposed by Chen et al. [28]
uses dense skip connections and subnetwork nesting to improve U-Net, but not all skip
connections are beneficial for segmentation tasks, so some skip connections negatively affect
the results [29]. Remote sensing images contain rich spectral and spatial information, so
selecting feature information favors classification is essential [30]. The attention mechanism
excels in natural language processing (NLP) and computer vision tasks. The attention
mechanism can highlight features with strong representation ability and suppress irrelevant
features [31–33]. Therefore, the attention mechanism has been introduced into remote
sensing image classification by many researchers. The attention mechanisms commonly
used in remote sensing images include the channel attention, spatial attention, and self-
attention mechanisms [34]. Channel attention focuses on what is input, whereas spatial
attention focuses on the location of the information, and spatial attention is complementary
to channel attention. Channel attention uses global average pooling and global max
pooling to obtain the relationship between feature channels to generate channel attention
maps, and spatial attention uses average pooling and max pooling along the channel
axis to obtain spatial feature attention maps [32]. Zhu et al. [35] enhanced the bands
with strong characterization ability and suppressed irrelevant bands by introducing a
spectral attention module that assigns different weights to the bands, improving the
spatial attention mechanism that allows the network to assign neighboring pixel weights,
and finally combining it with the residual unit to achieve high accuracy on the Indian
Pines, University of Pavia, Kennedy (http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes accessed on 1 January 2021). Different from directly
embedding the attention module in the residual unit, Attention-UNet [18] reduces the
redundant features transmitted by the skip connections by adding attention gates to the

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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U-Net skip connections, and highlights the salient features in specific local regions. High-
resolution remote sensing images have certain features. Self-attention was originally used
for NLP tasks. Due to the excellent performance of Transformer [34], Alexey et al. [36]
proposed Vision Transformer (ViT) using the encoder part of Transformer. Although ViT
performs well on large datasets such as imageNet, its memory consumption is large, so
ViT has high hardware requirements. To improve efficiency, Chen et al. [37] proposed
TransUNet, which uses the image blocks from the feature map of CNN for the input
sequence of ViT, and then combines it with U-Net. The decoder upsamples the output
features of ViT and then combines it with the CNN feature map of the same size to recover
the spatial information, which effectively improves the semantic information of the image.
Because the Swin Transformer [38], having powerful global modeling capability, has shown
superior performance on several large visual datasets, some researchers have combined
the Swin Transformer with U-Net to achieve semantic segmentation [20,21,39]. The Swin
Transformer used by ST-UNet [20] was paralleled with CNN to improve the accuracy of
small-scale target segmentation by combining the global features of the Swin Transformer
with the local features of CNN through an aggregation module.

The algorithms described above, having different improved optimization approaches
for different classification tasks, provided the reference ideas for the study described in
this paper. To further improve the classification accuracy of remote sensing images, the
deepening of the network was experimentally found to lead to the reduction in spatial
resolution and the divergence in spatial information. Therefore, in this paper, an improved
U-Net remote sensing classification algorithm that integrates attention and multiscale
features is proposed. First, the algorithm uses dilated convolutions of different scales to
expand the receptive field so that the network effectively integrates multiscale features and
enhances shallow features. Second, through the fusion residual module, the shallow and
deep features are deeply fused, and the characteristics of shallow and deep features are
effectively used. Third, to integrate more spatial information into the upsampling feature
maps, a spatial attention module (SAM) is used to fuse the feature maps obtained from
skip connections with the upsampling feature maps to enhance the combination of spatial
and semantic information.

In this paper, U-Net is combined with ASPP and SAM to improve and optimize it for
land cover classification from Landsat 8 remote sensing images. The main contributions
include (1) exploring the effect of different hierarchical features of U-Net on the ground
cover classification of 30 m resolution Landsat 8 images; (2) introducing the ASPP module
to perform residual connections with the original U-Net, which not only increases the
fusion of multiscale features but also enhanced the expression of shallow information;
(3) introducing SAM to obtain the spatial weight matrix for the feature maps with richer
spatial information, so that the spatial weight matrix acts on the corresponding semantic
feature maps to obtain the feature maps combining spatial and semantic information; and
(4) conducting dynamic change analysis of land use in the study area, focusing on the
dynamic change in the crop planting area.

The rest of the paper is structured as follows: Section 2 introduces the experimental
data, the data processing methods, and the effects of different level features on Landsat 8
image ground cover classification. The proposed improved U-Net model is also described.
Section 3 outlines the experimental results in detail. Section 4 provides a discussion based
on the experimental results, and conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Study Area Overview

Guangxi Province is located in South China; Guangxi has a subtropical monsoon
climate with a tropical monsoon season and warm climate, abundant rainfall and sunshine.
Guangxi has some of the most abundant precipitation in China, so the province is suitable
for fruit and crop cultivation, including citrus, mango, banana, lychee, sugarcane, rice, and
so on. The landscape is generally composed of six categories: mountains, hills, terraces,
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plains, rocky hills, and water surface. The area selected for this study is located in the
central part of Guangxi Zhuang Autonomous Region, mainly including Xingbin District,
Heshan District and Xincheng County of Laibin City, Liujiang District of Liuzhou City, and
Shanglin County of Nanning City. The study area is located 108°19′9′′E–109°47′26′′E and
23°3′29′′N–24°23′54′′N (Figure 1). Its unique climatic and geographical factors make sugar-
cane and rice the main crops in Guangxi, where sugarcane and rice have two seasons per
year. Sugarcane and spring sowing are from January to March and harvest occurs from
May to August; autumn sowing is from August to September and harvest is in December.
The first rice season ranges from sowing in April to harvesting in July, and the second
season is July to October. The area under sugarcane accounts for about 60% of the total
sugarcane cultivation area in China. The sugarcane planting area in the study area is mostly
continuous, exceeding 64% of the total agricultural land. As such, accurately and effectively
determining the planting area of sugarcane is important for local agricultural development,
accurate management, and yield estimation.

Figure 1. Schematic diagram of the study area.

2.2. Field Sampling and Remote Sensing Image Preprocessing

To determine the distribution of the actual types of ground objects in the study area,
field sampling was performed during the period when crops were growing in October,
and samples of different ground object types were obtained through field data collection
and field observation. During the process of collecting sugarcane and rice samples in the
field, contiguous planting areas of more than 900 m2 were preferentially selected, and the
obtained data were used for accumulating prior knowledge and accuracy verification.

In this study, a multispectral image covering the study area taken by the Landsat 8
satellite on 2 October 2019, with a resolution of 30 m, containing 11 bands, was used as
the data source. Landsat 8 carries the Operational Land Imager and Thermal Infrared
Sensor. The Operational Land Imager includes nine bands with a spatial resolution of
30 m, including a 15 m panchromatic band, where the imaging width is 185 × 185 km. The
Thermal Infrared Sensor includes two separate thermal infrared bands with a resolution
of 100 m. To obtain more effective image information, the images were preprocessed with
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ENVI software for geolocation, radiometric calibration, atmospheric correction, mosaicking,
and cropping. After that, the sample library data were obtained by a combination of indoor
supervised classification and field validation, which involved 22,868,430 samples. The
dataset was divided as shown in Figure 2; dataset I was used for all experiments and
dataset II was used to further verify the validity of SA-UNet. As shown in Figure 3, 60%
of the samples were used for training, 20% for validation, and 20% for testing. To ensure
each slice did not contain background, a small range of intersection areas was included
in the training, validation, and test sets, which did not affect the results. To increase the
diversity of training samples, a sliding window method was used to crop the images into
256 × 256 blocks, with the window sliding 32 pixels each time to ensure 224 overlapping
pixels between blocks of images with close boundaries. The training set was cropped to
3060, 256 × 256 samples, the validation set was cropped to 72, 256 × 256 samples, and the
test set was cropped to 72, 256 × 256 samples.

Figure 2. Dataset partitioning: (a) dataset I and (b) dataset II.

Figure 3. Class-label instances for study area dataset I. Note: The y-axis is logarithmic to account for
the disparity in the number of labels.

2.3. Analysis of the Influence of Different Level Features on the Land Cover Classification of
Landsat 8 Images

U-Net (Figure 4) fuses features from different levels through skip connections so
that the features of the encoder and decoder complement each other and recover more
detailed information from the image [40]. U-Net++ [28] and U-Net3+ [41] use dense skip
connections to achieve a full-scale U-Net. However, for Landsat 8 remote sensing images,
denser skip connections do not necessarily lead to higher-accuracy classification results
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of ground objects: some skip connections may even have a negative impact. Therefore,
the data from the study area were used to deeply analyze the impact of U-Net on the
classification results of Landsat 8 images using different feature levels. The results are
shown in Figure 5. (1) The U-Net without skip connections performed the worst, and the
overall accuracy is 18.62% lower than the original U-Net. The decoder of ‘U-Net-None’ is
not combined with the information of the encoder, only upsampling the feature map to
restore the input size, and the information is significantly lost. (2) The different levels of
features provided different contributions to the classification results: the accuracy of U-Net
was 93.33%, the accuracy of U-Net-L1 was 93.08%, and the accuracy of U-Net-w/o L1
was 89.69%. Compared with L2, L3, and L4, L1 contributed the most to U-Net. Therefore,
shallow features play an important role in the classification results. (3) U-Net-w/o L1
was 3.39% less accurate than U-Net-L1: only the first-level skip connections positively
affected U-Net. When removing the second-, third-, and fourth-level skip connections alone,
the accuracy did not drop, but instead increased, especially when the fourth-level skip
connections were moved. The reason for this finding may be that the high-level features
were not suitable for feature fusion. Therefore, features at different levels provided different
contributions to the results. So, the expressive power of features with large contributions
should be enhanced, and that of features with negative effects should be reduced. These
results demonstrate the importance of enhancing shallow feature representation as well as
improving semantic information.

Figure 4. U-Net structure.
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Figure 5. Analysis of different levels of U-Net fusion features. All, original U-Net; None, no
skip connection; L1, only the first-level skip connection was included; w/oL1, only first-level skip
connection was removed.

2.4. SA-UNet

In response to the problems identified in Section 2.3, the SA-UNet network structure
was designed. The overall structure of SA-UNet is shown in Figure 6. SA-UNet includes
two parts, an encoder and a decoder, which are combined through a y skip connection. The
overall structure includes five residual modules, five ASPP modules, and four SAMs. Each
convolutional layer of the backbone network is accompanied by a batch normalization
layer and a ReLU layer. In the ASPP module, the null convolution is accompanied by a
ReLU layer with a pooling size of 2 × 2, a convolutional kernel size of 2 × 2, and a step
size of 2 × 2 for the transposition convolution.

2.4.1. ASPP

The ASPP module is shown in Figure 7, having a total of five branches in parallel.
The 1st branch is a 1 × 1 ordinary convolutional layer; the 2nd, 3rd, and 4th branches use
3 × 3 dilated convolutions with dilation coefficients of 6, 12, and 18, respectively. The 5th
branch adopts global average pooling, outputs (batchsize, in_channel, 1, 1), then changes
the number of channels through 1 × 1 convolution, and finally uses bilinear interpolation
to restore the feature map to the input size. The features obtained from the five branches
are superimposed in dimension. There are five times as many output channels as input
channels. The number of channels is changed by a 1 × 1 convolution to obtain the final
output. The ASPP module uses an inflated convolution that adds voids to the normal
convolution to expand the perceptual field, which alleviates the problem of decreases
in spatial resolution due to the maximum pooling layer [42]. Therefore, through the
receptive field and integrating multiscale features, the expressive ability of shallow features
is enhanced. In addition, by fusing the residual structure and combining the ASPP module
with the backbone network, the shallow and deep features are deeply fused, and the
characteristics of the shallow and deep features are more effectively used.
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Figure 6. SA-UNet structure.

Figure 7. ASPP module.

2.4.2. SAM

The spatial attention mechanism focuses on where the information is located in the
current task. In remote sensing images, the types of ground objects are diverse and their
distributions are complex, and the use of SAM to aggregate semantic information and
spatial information is a way to improve the distinction of ground objects. SAM draws on the
idea of CBAM [31], where SAM first uses the feature map of spatial information path (XSP)
to obtain the spatial feature weight map WS, and then multiplies the semantic information
path feature map (XSE) by the corresponding spatial location to obtain representative
features, and then sums them with XSE at the corresponding spatial location to obtain X

′
SE.

To learn the spatial weights, first obtain two channel information feature descriptors,
XS

SPavg
∈ R1×H×W and XS

SPmax
∈ R1×H×W , by using average pooling and max pooling on
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the channel axis of the feature map. Then XS
SPavg

and XS
SPmax

are concatenated, and a 7 × 7
convolution is used to generate the spatial attention map. Finally, the spatial attention map
is scaled to 0∼1 using the sigmoid function to obtain the spatial feature weight map WS.
The spatial attention is calculated as follows:

X′SE = σ
(

f 7×7([AvgPool(XSP); MaxPool(XSP)])
)
× XSE + XSE

= σ
(

f 7×7
([

XS
SPavg

, XS
SPmax

]))
× XSE + XSE

= WS × XSE + XSE

(1)

where (XSE) and (XSP) represent the semantic and spatial information path feature maps,
respectively; σ represents the sigmoid function; f 7×7 represents the convolutional operation
with a convolution size of 7× 7; AvgPool represents the average pooling of each pixel
along the channel axis; and MaxPool represents the max pooling of each pixel along the
channel axis.

2.4.3. Loss Function

Due to the superior performance of the cross-entropy loss function, for multiclassi-
fication tasks, the cross-entropy loss function is usually chosen as the loss function. The
cross-entropy loss function compares the predicted class with the target class for each pixel,
and is expressed as follows:

L = − 1
N ∑

i

M

∑
c=1

yic log(pic) (2)

where M represents the number of classes; yic is the sign function (0 or 1): when the true
class of sample i is equal to c, yic takes a value of 1, and otherwise, it takes 0. pic is the
predicted probability that the observed sample i belongs to class c.

2.5. Evaluation Metrics

To evaluate the semantic segmentation of remote sensing images, four evaluation
metrics based on the confusion matrix were used: Accuracy, which is the ratio of the
number of correct predictions to the number of all predictions; Precision, which is the
ratio of correct predictions to positive classes to all predictions to positive classes; mean
intersection over union (mIoU), which averages the intersection over union (IoU) of each
class, so as to more accurately reflect the overall prediction performance of the model
compared to IoU; and the Kappa coefficient, which is an indicator of the consistency of two
variables. The formulas for these quantitative assessment metrics are as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(3)

Precision =
TP

TP + FP
(4)

mIoU =
1
n

n

∑
i=1

aii

∑n
j=1 aij + ∑n

j=1 aji − aii
(5)

Kappa =
po − pe

1− pe
(6)

where TP is the positive category that is classified accurately, FP is the negative category
that is misclassified as positive, TN is the negative category that is classified accurately, FN
is the positive category that is misclassified as negative, po is the overall precision, and pe
is the number of the misclassified samples divided by the total number of samples.



Remote Sens. 2022, 14, 3591 10 of 24

2.6. Experimental Environment

In the experiments, ENVI software was used to obtain sample points from the outdoor
sampling and the learned prior knowledge to label the regions of interest. A supervised
classification method was used to obtain the label maps needed for the experiments. In
the training phase, the cross-entropy loss function was selected, the batchsize was set
to 8, the maximum epoch was 20, and Adam was selected as the optimizer. The Adam
optimizer uses a gradient descent algorithm, which has an adaptive learning rate, and
the momentum gradient descent algorithm, which can alleviate the effects of the gradient
oscillation problem. The initial learning rate was 0.01, and the learning rate decayed to
0.1 times the original rate every five iterations. All experimental code was implemented by
Python 3.9 in pytorch 1.10.2, and the model was trained in win10+i5-8500CPU+NVIDIA
GeForce RTX 3060 12 G GPU.

3. Results

The details of the sample pool in the study area are shown in Tables 1 and 2, where 60%
was used for training, 20% for validation, and 20% for testing. The following experiments
were conducted using the sample pool data in Tables 1 and 2. Due to space limitations,
construction land, other land, and bare land are abbreviated as CL, OL, and BL, respectively.
The test set true-color images and labeled maps are shown in Figure 8.

Figure 8. Test set images: (a) dataset I true-color, (b) dataset I ground-truth maps, (c) dataset II
true-color and (d) dataset II ground-truth maps.

Table 1. Numbers of samples in the dataset I.

No. Color Land-Cover Type Training Validation Testing
1 Sugarcane 2,224,896 1,141,127 1,726,588
2 Rice 307,796 181,592 240,645
3 Water 211,183 119,809 144,938
4 Construction land 532,798 224,151 602,269
5 Forest 9,403,694 2,739,398 1,603,155
6 Other land 1,277,371 269,027 294,578
7 Bare land 184,217 43,488 106,419

Total 14,141,955 4,718,592 4,718,592
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Table 2. Numbers of samples in the dataset II.

No. Color Land-Cover Type Training Validation Testing
1 Sugarcane 2,895,814 686,552 1,383,568
2 Rice 491,990 30,557 194,226
3 Water 297,993 43,889 122,769
4 Construction land 656,553 67,065 572,594
5 Forest 8,077,398 3,577,358 1,998,644
6 Other land 1,359,918 153,518 226,533
7 Bare land 204,590 28,581 89,186

Total 13,984,256 4,587,520 4,587,520

In order to select a suitable learning rate, the proposed model was experimented in
this paper with learning rates set to 0.1, 0.01 and 0.001, respectively, and the experimental
results are shown in Table 3, where the values of Acc, mIoU, and Kappa were maximal for
the learning rate = 0.01.

Table 3. Learning rate selection.

LR
Precision (%) Evaluation Metrics

Sugarcane Rice Water CL Forest OL BL Acc (%) mIoU (%) Kappa (%)

0.1 96.60 70.51 95.11 98.00 98.66 92.96 78.56 95.47 86.37 93.72
0.01 98.01 83.21 97.46 97.02 96.54 95.71 88.45 96.25 89.33 94.84

0.001 97.33 81.62 96.26 96.61 96.36 94.93 88.22 95.72 87.73 94.11

3.1. Ablation Study

To evaluate the proposed network structure and the performance of two important
modules, ablation experiments were performed on the dataset I in the study area using
U-Net as the base network.

(1) Effect of ASPP: The results are shown in Table 4. The ASPP module was introduced
into U-Net in the form of residuals to segment the test set images. The overall accuracy
increased by 2.92%, the mIoU increased by 7.35%, and the Kappa coefficient increased by
4.06%. In particular, the recognition accuracy of rice (+17.03%), other land (+5.57%), and
bare land (+6.53%) considerably improved. The recognition accuracy rates of sugarcane
(+1.63%), water (+3.48%), construction land (+1.6%), and forest (+1.89%) also improved.
This verified the effectiveness of integrating the ASPP module into U-Net in the form
of residuals. As shown in the first row in Figure 9, the bridges in the construction land
were segmented after U-Net was added to ASPP, whereas U-Net was not implemented.
The second row in Figure 9 shows that the U-Net+ASPP segmentation of rice was more
accurate than that of U-Net, and sugarcane, rice, and forest were more easily and accurately
segmented. The results showed that combining ASPP with residual units enables the
network to focus not only on global information, but also on detailed information.

(2) Effect of SAM: The results are shown in Table 4 for the combination of SAM with U-Net
for the test set images. The accuracy increased by 2.2%, the mIoU increased by 4.68%, and the
Kappa coefficient improved by 3.07%. SAM combined spatial with semantic information and
increased the network recognition rate of different category differences for sugarcane (+0.77%),
rice (+14.75%), water (+2.75%), construction land (+0.75%), forest (+1.8%), other land (+5.15%),
and bare land (+2.13%). The detection accuracies of sugarcane and rice decreased by 1.4% and
10.16%, respectively. The mixing matrix showed that the number of misclassified samples within
the groups of sugarcane, rice, and forest decreased, and the number of misclassified samples
between the groups decreased. Comparing the data in Table 4 shows that SAM had the most
obvious effect on forest recognition accuracy. With the addition of SAM, the network more
easily distinguished between categories with large between-group differences, but less easily
distinguished between categories with small within-group differences. The first row of Figure 9
shows that the inclusion of SAM facilitated distinguishing construction land from water; the
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second row of Figure 9 shows that SAM was more effective than U-Net for the segmentation of
concentrated rice planting areas, but did not improve the recognition of areas where rice planting
distribution was scattered, compared with U-Net. The results showed that SAM enhanced the
intergroup differences and improved the segmentation between features with large differences.

(3) Effect of ASPP+SAM: Table 4 shows that ASPP, SAM, and U-Net set not only
reduced the misclassification within the group, but also reduced the misclassification
between groups. Sugarcane (+1.59%), rice (+19.84%), water (+3.45%), construction land
(+1.59%), other land (+7.28%), and bare land (+6.68%) recognition accuracies increased,
showing the most impact on rice and other land recognition. As shown in the third row,
the contour of the other land segmented by U-Net+ASPP+SAM was more accurate, as was
the extraction of small-area rice. Therefore, SA-UNet can focus on information at different
scales to increase the accuracy of the classification results of ground objects. Although the
accuracy of UNet+ASPP+SAM is the same as that of UNet+ASPP, the corresponding mIoU
and Kappa coefficients are a bit higher for the former.

Figure 9. Comparison of segmentation results before and after using ASPP and SAM in U-Net framework.

Table 4. Ablation experiment of the proposed modules on the dataset I.

Model Name

Modules Precision (%) Evaluation Metrics

ASPP SAM Sugarcane Rice Water CL Forest OL BL Acc
(%)

mIoU
(%)

Kappa
(%)

U-Net 96.42 63.37 94.01 95.43 95.33 88.43 81.77 93.33 81.80 90.77
U-Net+ASPP X 98.05 80.4 97.49 97.03 97.22 94 88.3 96.25 89.15 94.83
U-Net+SAM X 97.19 78.12 96.76 96.18 97.13 93.58 83.9 95.53 86.48 93.84

U-Net+ASPP+SAM X X 98.01 83.21 97.46 97.02 96.54 95.71 88.45 96.25 89.33 94.84

3.2. Comparison of Multiple Methods

To evaluate the performance of SA-UNet in feature coverage classification, compar-
ative experiments and analyses were conducted with U-Net [22], U-Net++ [28], SAR-
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UNet [42], Res-UNet++ [24], Attention-UNet [18], UCTransNet [29], and Swin-UNet [39].
U-Net++ provides an improvement in full-scale feature fusion based on U-Net, SAR-UNet,
and Res-UNet++. In Attention-UNet, an attention mechanism is added on the basis of
U-Net. UCTransNet is a channel-wise cross-fusion transformer that functions on the basis
of joining U-Net. Swin-UNet is a U-shaped network composed of pure Swin-transformer.
The proposed algorithm SA-UNet incorporates ASPP into U-Net in the form of residuals,
and combines semantic and spatial information through a spatial attention mechanism in
the decoder process. None of the above methods were pretrained.

The segmentation results of the different algorithms on the test set from the dataset I are
shown in Table 5. For three evaluation metrics (Acc, mIoU and Kappa), the proposed SA-UNet
outperformed the other algorithms in the three metrics of Acc (96.25%), mIoU (89.33%) and
Kappa (94.84%). The segmentation accuracy of SA-UNet for rice (83.21%), water (97.46%), con-
struction land (97.02%), other land (95.71%) and bare land (88.45%) is also the highest compared
with the other algorithms mentioned above. U-Net++ used a full-scale fusion approach, but
the generalization ability of UNet++ became worse compared to U-Net. SAR-UNet achieved
the highest segmentation accuracy for sugarcane, at 98.74%, but its segmentation results for
rice (−7.13%), construction land (−5.67%) and other land (−8.79%) were inferior to those of
U-Net. Res-UNet++ only slightly improved the accuracy of the segmentation of sugarcane
(+1.27%), water (+0.58%) and forest (0.14%) compared with U-Net, although Res-UNet++ had
slightly higher Acc and Kappa than U-Net, but a lower mIoU value.Attention-UNet has similar
performance compared to U-Net. UCTransNet slightly improves the segmentation of Water
(0.43%), and Construction land (0.48%), Other land (1.95%) and bare land (0.77%) compared to
UNet, but unsatisfactory results for the rice. Swin-UNet received a lower Acc (−0.09%), mIoU
(−4.7%), and Kappa (−1.24%) than U-Net. SA-UNet performed the best overall, producing the
improvement in sugarcane (+1.59%), rice (+19.84%),water (+3.45%), forest (+1.21%), other land
(+7.28%), and bare land (+6.68%) segmentation, indicating that SA-UNet provides advantages
in the land cover classification of Landsat 8 remote sensing images. Table 6 shows the segmen-
tation results of different methods for the test set of dataset II. Acc (96.62), mIoU (89.20) and
Kappa (95.16) of SA-UNet are still the highest compared with other methods.

Table 5. Comparison of segmentation results of test sets in dataset I by different methods.

Model

Precision (%) Evaluation Metrics
Time
(min)Sugarcane Rice Water CL Forest OL BL Acc

(%)
mIoU

(%)
Kappa

(%)

U-Net [22] 96.42 63.37 94.01 95.43 95.33 88.43 81.77 93.33 81.80 90.77 47
U-Net++ [28] 90.68 13.44 93.97 89.76 88.49 44.19 15.09 91.37 50.14 73.80 154

SAR-UNet [42] 98.74 56.24 94.63 89.18 95.58 79.64 83.11 92.17 64.37 88.77 81
Res-UNet++ [24] 97.69 70.32 95.28 93.82 95.47 81.30 78.26 93.51 81.27 91.00 86

Attention-UNet [18] 97.15 67.89 96.84 94.36 96.33 76.35 79.90 93.33 81.11 90.73 66
UCTransNet [29] 94.68 59.79 96.24 95.91 94.23 90.38 82.54 92.41 80.01 89.53 77
Swin-UNet [39] 95.73 54.72 94.44 91.58 96.55 85.78 78.67 92.34 77.10 89.38 33

SA-UNet 98.01 83.21 97.46 97.02 96.54 95.71 88.45 96.25 89.33 94.84 126

Table 6. Comparison of segmentation results of test sets in the dataset II by different methods.

Model

Precision (%) Evaluation Metrics
Time
(min)Sugarcane Rice Water CL Forest OL BL Acc

(%)
mIoU

(%)
Kappa

(%)

U-Net [22] 94.98 68.73 93.91 96.26 96.26 85.03 80.28 93.78 81.47 91.07 47
U-Net++ [26] 91.95 2.66 82.53 86.25 92.18 59.69 5.61 84.04 51.28 76.52 154

SAR-UNet [40] 96.08 77.73 95.33 94.18 96.31 90.35 82.73 94.60 83.56 92.27 81
Res-UNet++ [25] 96.42 63.34 92.48 95.84 90.59 91.15 83.84 91.80 79.33 88.32 86

Attention-UNet [18] 96.64 68.84 92.09 92.72 96.63 86.03 84.65 94.09 81.59 91.51 66
UCTransNet [27] 93.45 71.89 94.56 96.68 96.79 89.06 84.28 94.03 82.12 91.45 77
Swin-UNet [37] 94.96 62.94 93.25 92.56 96.83 85.19 77.95 93.26 77.94 90.31 33

SA-UNet 98.16 82.52 96.68 97.26 97.45 93.86 87.62 96.62 89.20 95.16 126
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Figure 10 shows the segmentation results of the remote sensing images from the test
set in the study area by different methods. Generally, the image segmentation results of
each algorithm were almost the same. The proportions of construction land, forest, and
sugarcane in the test set were relatively large; the planting of sugarcane and rice was more
concentrated; and the proportions of other land types were smaller. The segmentation
result graph of the test set is shown in Figure 11, and the effectiveness of SA-UNet can be
reflected by combining Table 6 with Figure 11 (for the following experiments, except for
Figure 11 and Table 6, all of experiments are with dataset I).

Figure 10. Semantic segmentation results on the test set in the dataset I produced by: (a) U-Net,
(b) U-Net++, (c) SAR-UNet, (d) Res-UNet++, (e) Attention-UNet, (f) UCTransNet, (g) Swin-UNet,
and (h) SA-UNet.

Figure 11. Semantic segmentation results on the test set in the dataset II produced by (a) U-Net,
(b) U-Net++, (c) SAR-UNet, (d) Res-UNet++, (e) Attention-UNet, (f) UCTransNet, (g) Swin-UNet,
and (h) SA-UNet.
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Comparing Figure 10 with Figure 12 shows that the differences between the algorithms
are mainly reflected in the local area. From local observations, rice distribution was more
scattered in this image, indicated by the yellow and red boxes; for this scattered rice
distribution, only the proposed algorithm produced results most similar to the ground
truth. The other algorithms all produced visible errors. SAR-UNet poorly segmented rice
and mixed rice with forest. As seen from the colored baskets, some networks experienced
some difficulty in identifying bridges over rivers: U-Net, UNet++, and UCTransNet failed
to segment the bridges from the water. SAR-UNet, Res-UNet++, Attention-UNet, and Swin-
UNet were also unsatisfactory, and only SA-UNet showed some minor differences from
ground truth. As seen from the black box, U-Net, U-Net++, SAR-UNet, and UCTransNet
were unable to distinguish sugarcane from forest in detail, easily misclassifying sugarcane
as forest. Swin-UNet and SA-UNet were more accurately able to distinguish sugarcane
and forest.

Figure 12. Results of local semantic segmentation on the test set from the dataset I by: (a) U-Net,
(b) U-Net++, (c) SAR-UNet, (d) Res-UNet++, (e) Attention-UNet, (f) UCTransNet, (g) Swin-UNet,
and (h) SA-UNet.

3.3. Land Use Change in Study Area

In this study, four issues of Landsat 8 series remote sensing images dated 13 October
2015, 28 October 2017, 2 October 2019 and 13 October 2021 were downloaded from the
USGS website (https://earthexplorer.usgs.gov/ accessed on 1 January 2021) to classify
the land cover of the study area. Higher-resolution imagery, field collection data, and a
priori knowledge were used for supervised classification to obtain the 2015, 2017, 2019, and
2021 sample base data for the study area. The method of Table 5 and the dataset I were
used to analyze the four phases of images. Finally, the proposed algorithm was used to
classify and evaluate the four phases of images in turn for land cover classification. The
results of the multiple methods segmentation of the test sets for 2015, 2017, 2019 and 2021
are shown in Figures 10 and 13–15, respectively. As shown by the evaluation metrics in
Tables 5 and 7–9, the Acc, mIoU, and Kappa values of the four-phase images met the needs
of the study.

The spatial distributions of land use and land use changes are shown in Figure 16.
From the spatial analysis of land use distribution, the study area was mostly covered by
forest, the planting areas of sugarcane and rice were relatively concentrated, sugarcane

https://earthexplorer.usgs.gov/
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was the most widely planted among crops, the main rivers ran through the whole study
area, large cities were mainly distributed on both sides of the main rivers, and lakes and
reservoirs were randomly distributed throughout the whole study area. From the analysis
of land use changes, the conversions of sugarcane plantation areas into other land, forest
plantation areas into other land, and bare land into other land were more common.

The land use and land use change rate for the seven-year period are shown in Table 10.
Combining the results in Table 10 with those of Figure 16, the proportion of forested land
cover area in the study area was found to be the largest among the four images, followed
by sugarcane and construction land. From the analysis of land use change, the areas of
two major crops, sugarcane and rice, changed the most every year. The area of bare land
increased each year because, first, distinguishing bare land from freshly planted fruit trees
and crops in Landsat 8 remote sensing images is difficult and, second, human activities. In
2019–2021, the water area changed by −60.2%, indicating that a drought occurred during
the period, causing the reservoir as well as some tributaries to dry up. The overall change in
construction land was small, with basically no change in large cities and sporadic changes
in villages, various factories, and concrete floors. In 2019–2021, other arable land (−79.99%)
and sugarcane (−28.16%) mainly transformed into forest (+19.74%), increasing the forest
area to that observed in 2015, proving that green ecological awareness is increasing.

Table 7. Comparison of segmentation results of test sets in the 2015 dataset I by different methods.

Model
Precision (%) Evaluation Metrics

Sugarcane Rice Water CL Forest OL BL Acc (%) mIoU (%) Kappa (%)

U-Net [22] 96.07 67.24 96.18 95.98 98.45 77.73 59.83 95.57 80.48 93.27
U-Net++ [28] 83.45 29.26 83.87 83.14 95.34 41.76 1.89 85.46 51.77 77.72

SAR-UNet [42] 97.34 73.57 97.71 97.25 97.10 83.35 77.50 96.05 83.83 94.04
Res-UNet++ [24] 95.58 67.66 96.52 95.58 98.48 77.33 78.57 95.47 80.50 93.13

Attention-UNet [18] 97.41 68.16 96.17 97.17 96.42 80.33 70.30 95.44 81.07 93.10
UCTransNet [29] 96.85 68.79 97.19 98.16 96.34 77.94 74.87 95.29 81.54 92.89
Swin-UNet [39] 95.73 54.72 94.44 91.58 96.55 85.78 78.67 92.34 77.10 89.38

SA-UNet 97.18 83.95 98.52 97.81 98.08 87.84 88.19 96.99 87.75 95.45

Table 8. Comparison of segmentation results of test sets in the 2017 dataset I by different methods.

Model
Precision (%) Evaluation Metrics

Sugarcane Rice Water CL Forest OL BL Acc (%) mIoU (%) Kappa (%)

U-Net [22] 95.01 52.50 92.68 95.89 97.31 85.99 82.24 93.56 79.72 90.71
U-Net++ [28] 65.46 42.42 88.22 86.64 96.38 86.74 10.31 78.41 54.30 71.02

SAR-UNet [42] 95.97 78.73 93.96 92.98 93.38 88.78 62.78 92.98 78.63 90.29
Res-UNet++ [24] 94.28 80.94 95.21 93.91 96.48 79.37 50.13 92.82 76.30 90.08

Attention-UNet [18] 92.97 80.81 93.70 91.95 98.33 72.69 48.25 92.06 75.64 88.99
UCTransNet [29] 91.75 77.62 94.63 95.18 98.56 82.84 61.30 92.67 77.92 89.89
Swin-UNet [39] 89.54 52.93 91.05 86.62 94.44 74.72 20.25 87.03 63.24 82.01

SA-UNet 96.85 86.83 96.30 97.41 97.18 88.95 62.78 95.67 84.15 94.03

Table 9. Comparison of segmentation results of test sets in the 2021 dataset I by different methods.

Model
Precision (%) Evaluation Metrics

Sugarcane Rice Water CL Forest OL BL Acc (%) mIoU (%) Kappa (%)

U-Net [22] 93.26 58.57 94.25 95.91 98.05 55.32 92.24 95.58 78.69 93.07
U-Net++ [28] 77.19 0.00 83.43 82.61 96.43 0.00 10.58 83.09 42.56 72.45

SAR-UNet [42] 92.20 68.43 98.47 96.27 99.24 60.44 90.58 95.93 81.22 93.59
Res-UNet++ [24] 94.97 49.57 94.97 96.84 96.83 44.23 88.63 95.35 75.20 92.73

Attention-UNet [18] 92.03 60.27 94.56 95.33 98.34 51.71 90.62 95.19 78.04 92.43
UCTransNet [29] 91.70 49.31 94.72 92.72 98.59 44.91 90.67 94.87 75.73 91.90
Swin-UNet [39] 93.14 48.94 94.67 93.34 97.37 34.60 81.58 94.24 71.17 90.97

SA-UNet 96.59 78.70 98.33 98.21 98.19 72.96 95.88 97.39 84.66 95.92
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Figure 13. Semantic segmentation results on the test set in the 2021 dataset I produced by (a) U-Net,
(b) U-Net++, (c) SAR-UNet, (d) Res-UNet++, (e) Attention-UNet, (f) UCTransNet, (g) Swin-UNet,
and (h) SA-UNet.

Figure 14. Semantic segmentation results on the test set in the 2017 dataset I produced by: (a) U-Net,
(b) U-Net++, (c) SAR-UNet, (d) Res-UNet++, (e) Attention-UNet, (f) UCTransNet, (g) Swin-UNet,
and (h) SA-UNet.
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Figure 15. Semantic segmentation results on the test set in the 2021 dataset I produced by: (a) U-Net,
(b) U-Net++, (c) SAR-UNet, (d) Res-UNet++, (e) Attention-UNet, (f) UCTransNet, (g) Swin-UNet,
and (h) SA-UNet.

Figure 16. Spatial and temporal distribution of land use in 2015 (a), 2017 (b), 2019 (c), and 2021 (d);
land use change in 2015–2017 (e), 2017–2019 (f), 2019–2021 (g), and 2015–2021 (h).
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Table 10. Land use type changes in the study area for different periods from 2015 to 2021.

Class
Area (km2) Area Change Rate (%)

2015 2017 2019 2021 2015–2017 2017–2019 2019–2021 2015–2021

Sugarcane 3725.88 2780.16 4491.00 3504.14 −25.38 61.54 −28.16 −5.95
rice 596.19 1384.95 633.17 295.30 132.30 −54.28 −131.98 −50.47

Water 437.60 462.46 414.61 260.50 5.68 −10.35 −60.20 −40.47
CL 1084.58 1202.57 1158.43 1022.78 10.88 −3.67 −11.71 −5.70

Forest 14,154.26 12,240.89 12,022.62 14,395.69 −13.52 −1.78 19.74 1.71
OL 498.38 2405.03 1581.94 316.55 382.57 −34.22 −79.99 −36.48
BL 84.70 105.52 279.82 786.62 24.59 165.17 181.12 828.77

3.4. Crop Land Use Change

The classification results of remote sensing images in 2015, 2017, 2019 and 2021 show
that the proposed algorithm increases the classification accuracy of sugarcane, rice, and
other land. Therefore, the proposed algorithm was used to monitor the dynamic changes
in crops over a seven-year period. The crop acreage in the four periods in the study
area was analyzed and compared, and the classification results and the dynamic changes
in crops are shown in Figure 17. The statistics of the results of monitoring the area for
regional changes in crop cultivation are shown in Table 10, which show that the area under
sugarcane cultivation was 3725.88 km2 in 2015, 2780.16 km2 in 2017, 4491 km2 in 2019, and
3504.14 km2 in 2021. The area planted with sugarcane decreased by 25.38% in 2015–2017,
increased by 61.54% in 2017–2019, decreased by 28.16% in 2019–2021, and decreased by
5.95% in 2015–2021. The area under sugarcane cultivation mainly transformed into forest,
rice, and other land. Rice cultivation area was 596.19 km2 in 2015, 1384.95 km2 in 2017,
633.17 km2 in 2019, and 295.3 km2 in 2021, increasing 132.3% in 2015–2017, decreasing
54.28% in 2017–2019, decreasing 60.2% in 2019–2021, and decreasing 50.49% in 2015–2021.
A general trend of decreasing rice growing area was observed; usually, rice fields were
converted to sugarcane along with other land. Because the number of farmers cultivating
the land is gradually decreasing, the land is being leased to contractors who convert the rice
fields to grow fruit, sugarcane, or other crops. The area under other crops was 491.38 km2

in 2015, 2405.03 km2 in 2017, 1581.84 km2 in 2019, and 316.55 km2 in 2021. The area
under other crops increased by 382.57% in 2015–2017, decreased by 34.22% in 2017–2019,
decreased by 79.99% in 2019–2021, and decreased by 36.48% in 2015–2021. The area for
other crops gradually transformed into sugarcane and forest land.
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Figure 17. Distribution of crop areas in 2015 (a), 2017 (b), 2019 (c), and 2021 (d); dynamics of sugarcane
in 2015–2017 (e1), 2017–2019 (e2), 2019–2021 (e3), and 2015–2021 (e4); dynamics of rice in 2015–2017
(f1), 2017–2019 (f2), 2019–2021 (f3), and 2015–2021 (f4); dynamics of other land in 2015–2017 (g1),
2017–2019 (g2), 2019–2021 (g3), and 2015–2021 (g4).

4. Discussion

In Landsat 8 remote sensing image feature classification, U-Net is more accurate than
U-Net++. Section 2.3 shows that not all skip connections are beneficial to the classification
result, so the strategy of full-scale fusion adopted by U-Net++ has a negative effect on the
overall feature coverage classification accuracy. However, full-scale fusion has a better effect
on improving intergroup differences, so when the differences in feature types are small,
ablation experiments must be conducted on skip connections to select the most appropriate
scale features for fusion. When the differences in feature type are large, full-scale fusion is
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beneficial for increasing intergroup differences. The channel attention mechanism increases
the SAR-UNet attention to sugarcane, which leads to a sugarcane segmentation accuracy of
98.74%. Although SAR-UNet includes ASPP modules in the transition layer of the network
to increase semantic information, Section 2.3 shows that increasing the expressiveness of
shallow features is more beneficial in the classification of Landsat 8 remote sensing images.
Res-UNet++ has a similar structure to SAR-UNet, except that Res-UNet++ has a spatial
attention mechanism in the decoder part to enable focus on the key regions of the feature
maps. Unlike the spatial attention mechanism module used in this study, Res-UNet++
combines two feature maps of different sizes to generate spatial attention weights and
obtain new semantic information. This is consistent with the idea of Attention-UNet, but
Attention-UNet reduces the redundant features of hopping connection transmission and
highlights the salient features of specific local regions. The analysis of the results shows that
Res-UNet++ is slightly more accurate than Attention-UNet. The structures of SAR-UNet,
Res-UNet++, and Attention-UNet and the results show that adding channel attention to
the encoder and then adding spatial attention to the decoder little impacts the classification
results. UCTransNet uses the CTrans module instead of traditional skip connections.
CTrans uses transformer to cross-fertilize multiscale information on the features of the
four different levels of U-Net, which reduces the negative effects produced by some skip
connections. CTrans works best for the segmentation of two types of features with the
most obvious characteristics, namely forest and construction land, and may produce
accurate results if used for road segmentation. Swin-UNet improves Swin-Transformer
by using a U-shaped structure to achieve semantic segmentation. Because the continuous
attentional layer structure of Swin-Transformer can substantially improve the expression of
the model, the segmentation results for forest of Swin-UNet were better than those of the
other comparison methods. In the 30 m high-resolution remote sensing image land cover
classification task, the shallow features strongly influenced the experimental results, but
as the network deepened, the spatial resolution was reduced and spatial information was
dispersed. Therefore, the proposed SA-UNet uses different scales of cavity convolution
to expand the perceptual field, and enables the multiscale fusion of features to increase
the ability to express shallow features. In addition, SA-UNet fuses shallow with deep
features by fusing residual modules to effectively use the characteristics of both shallow
and deep features. To integrate more spatial information into the upsampling feature map,
the feature map obtained by jump connection is fused with the upsampling feature map
using the spatial attention module to enhance the combination of spatial and semantic
information. Compared with UNet, SA-UNet improved the classification accuracy of all
ground objects. As rice is a major food crop, accurately extracting rice growing areas from
remote sensing images is important, but the rice segmentation accuracy of the proposed
method is still insufficient and needs further improvement.

5. Conclusions

In this study, the main focus was improving the ability to express shallow features
in remote sensing images, enhancing the effective combination of spatial and semantic
information, to obtain global contextual information and improve the segmentation effect
of ground objects. In this study, U-Net and an ASPP module were fused by means of
residuals. This fusion not only expands the perceptual field through the convolution
of cavities of different sizes, promotes the fusion of multiscale features, and enhances
the expression ability of shallow features, but also enables the deep fusion of shallow
and semantic features, which mitigates the effects of the problem where local complex
feature types interfere with each other. In addition, a spatial attention module was used to
fuse the feature maps obtained from jump connections with the upsampled feature maps,
which alleviates the problem caused by the inadequate use of spatial information in the
upsampling process. The results showed that the proposed SA-UNet produced relatively
more accurate feature classification results from Landsat 8 remote sensing images in the
study area compared with U-Net, U-Net++, SAR-UNet, Res-UNet++, Attention-UNet,



Remote Sens. 2022, 14, 3591 22 of 24

UCTransNet, and Swin-UNet with an accuracy rate of 96.25%. For future work, the features
of jump connections should be further optimized so that the model can enhance both inter
and intragroup differences.
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Abbreviations

ASPP Atrous spatial pyramid pooling
SVM Support vector machine
CNN Convolutional neural network
NLP Natural language processing
ViT Vision Transformer
SAM Spatial attention module
CRF Conditional random fields
mIoU Mean intersection over union
CL Construction land
OL Other land
BL Bare land
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