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Abstract: Cascade damming can shape land surfaces; however, little is known about the specific
impacts of dam construction on watershed land cover changes. Therefore, we developed a framework
in which remote sensing, transition patterns, and landscape metrics were coupled to measure the
impact of dam construction on watershed land cover changes and landscape patterns in the Longmen–
Su (L–S) Creek, a small headwater watershed in Southeast China. During the transition and post-
impact periods of dam construction, the land cover in the L–S Creek watershed underwent dynamic
changes within the affected area. Changes in land cover were dominated by a surge in water and
buildup and a decrease in woodland and cropland areas; bareland also increased steadily during
construction. Woodlands and croplands were mainly flooded into water areas, although some
were converted to bareland and built-up areas owing to the combined impact of dam construction
and urbanization. By linking land cover changes with landscape patterns, we found that land use
changes in water were significantly associated with landscape fragmentation and heterogeneity in
the impacted zone. Our research demonstrates how damming can change land cover locally and may
provide a basis for sustainable land management within the context of the extensive development of
cascade hydropower dams.

Keywords: cascade dam; small-scale watershed; intensity analysis; land cover change; landscape pattern

1. Introduction

Since the 1970s, China has become a hotspot for dam construction to address rising
energy demands, provide water, and facilitate flood management [1,2]. The construction of
dams can benefit humans, but also has negative impacts [3,4]. It is well documented that
large dams may reduce the connectivity of different sub-basins within a watershed and
cause runoff loss [5–9]. However, the World Wildlife Fund (WWF) has sought to closely
monitor the cumulative effects of China’s small dams on the environments of various
river basins in China. These effects are likely due to the important roles of small- and
medium-sized dams in the local watershed ecosystem health [6,10]. Therefore, it is essential
to explore the direct impact of cascade dam construction on land cover changes [7,11].

Land change measurements can detail coupled human-environmental systems [12,13].
Spatiotemporal patterns of land change can reflect underlying human activities as well
as their interactions with nature over time [14–16]. Land use plays a vital role in the
evolution of the environment and information on it can be obtained through field surveys
and interpretation of remote sensing images. The latter method has become increasingly
common in recent years because of its high efficiency and precision. It has also been applied
to explore the impact of dam construction on land use within impacted areas [17–19]. Using
remote sensing interpretation, studies have found that dam construction significantly
changes land use. Chen et al. (2010) found that the Three Gorges Area (TGA) along the
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Yangtze River has experienced drastic land use and land cover (LU/LC) changes since the
commencement of construction of the Three Gorges Dam in 1994. Rodrigues et al. (2012)
indicated, through many years of land use interpretation, that dams removed the geological
diversity of a watershed [20]. Cho and Qi (2021) revealed the spatial and temporal effects
of dams on LU/LC change at different construction stages in the Lower Mekong River
Basin [21]. Therefore, the construction of large dams significantly and clearly impacts land
use within a basin. Although land use potentially affected by a small dam alone is limited
within a small-scale watershed, cascading dams may have a cumulative effect on land use,
generating more than a simple pooling of individual dam impacts [17,22]. Therefore, there
is a need to examine how damming impacts land cover changes during the pre-impact,
transition, and post-impact periods of cascade dam construction.

A method of extracting water change data, aided by remote sensing, has been devel-
oped in recent years, which is the first step in determining the spatial location of a dam and
the impacted area of dam construction. McFeeters (1996) first proposed the normalized
difference water index (NDWI) model [23]. A modified normalized difference water index
was proposed based on the NDWI of McFeeters (1996), which uses MIR(TM5) instead
of NIR(TM4) to construct a modified NDWI (MNDWI) [24]. The MNDWI can enhance
water features and efficiently suppress and even remove built-up land, vegetation, and soil
noise. In addition to the use of index methods to extract a water body from an image, more
complex and accurate methods have been proposed. Luo et al. (2009) used a step-by-step
iterative algorithm to perform image water extraction [25], and Yang et al. (2010) used a
morphological expansion filter algorithm to improve extraction efficiency, especially for
small watersheds [26]. In addition to high-efficiency and high-precision interpretation
methods, the interpretation of land use in small-scale watersheds has led to an inevitable
demand for images with a high spatial resolution. Through the acquisition of high spa-
tial resolution data, such as SPOT images, relevant research has accordingly improved,
and based on the water spectrum characteristics of high spatial resolution SPOT images,
Du et al. (2001) used decision tree classification methods to extract small watershed water
pixels [27]. Deng et al. (2005) developed a set of automatic extraction algorithms for small
and medium watersheds using SPOT images [28], and Zheng et al. (2008) developed a set
of automatic extraction methods for paddy fields based on SPOT images [29]. Images with
high spatial resolution can help extract the land use of small watersheds more effectively.
Efficient land extraction methods combined with high spatial resolution image patterns are
essential for exploring land cover changes induced by cascading dam construction in small
watersheds [30].

Intensity analysis, which has been applied worldwide [31–34], is a quantitative frame-
work that reveals signals of change at three levels of detail: interval, category, and tran-
sition [35]. Huang et al. (2012) and Zhou et al. (2014) applied intensity analysis to the
temporal and spatial dynamic change patterns and change processes in the Jiulong River
Basin, and the results revealed information that linked patterns to processes of LU/LC
changes common in many other urbanizing areas in China [36,37]. Xie et al. (2020) used
enhanced intensity analysis to characterize land use changes [16]. They proposed a cross-
connected table of land conversion patterns named a “Transition pattern” which was used
to identify the intensity of land cover change and area change quickly and visually at three
time intervals in Nanchang City.

Landscape pattern indices can be used to document the ecological consequences of
dam construction [38,39]. Researchers have shown that spatiotemporal changes in land
use and landscapes are associated with both natural and anthropogenic factors [40–42].
However, few attempts have been made to link the magnitude and intensity of land use
changes with landscape pattern dynamics. The Jiulong River watershed (JRW), situated
in southeast China, covers an area of approximately 14,700 km2 and supplies water to
approximately ten million residents [43]. Hundreds of small- and medium-sized dams exist
in the basin. Existing studies have shown that hydropower development has a significant
impact on streamflow regimes and negatively affects ecosystem services in the JRW [44–46].
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The objectives of this study were to (1) measure the changes in land cover and land-
scape patterns during different dam construction stages, and (2) link land cover change
with landscape pattern dynamics induced by damming. Given the scale of space and
time in this study, we assumed that the entire study area, including inside and outside the
impacted areas, shares the same driving force, including damming. This analysis can detail
the relationship between dam construction and land cover change, thereby potentially
providing information on sustainable land management.

2. Materials and Methods
2.1. Study Area

The Longmen–Su (L–S) Creek represents the headwaters of the JRW, which is a combi-
nation of the Longmen Creek and Suxi Creek watersheds, with a drainage area of 132 km2

(Zhang et al., 2020) (Figure 1). The four cascaded small dams considered in this study were
constructed in 2002; the basic information for these four dams is presented in Table 1. To
measure the impact of damming on land cover and landscape patterns, we defined impact
and non-impact areas in this study. The impacted area is defined as a 1.5 km buffer zone
below 500 m elevation surrounding the dam reservoir zone, and the non-impacted area is
classified as other areas in the L–S Creek.
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Table 1. Small dam information in the L–S Creek watershed [4].

Name Capacity (103 m3) Drainage Area (km2) Type Construction Year

Hejiabi (HB) 195.5 0.8 Flood Dam 2003
Xikengkou (XK) 82 0.4 Hydropower Dam 2003
Longmenxi (LX) 27.4 0.2 Hydropower Dam 2003
Zhaolong (ZL) 82 0.5 Hydropower Dam 2003

2.2. Data Collection and Processing

The remote sensing image interpretation data included a 2.5 m resolution SPOT
panchromatic image from 2004 and four phases of Landsat TM images from 2001, 2002,
2003, and 2004. Cloud cover was less than 1%. SPOT images were retrieved from the
National Remote News World (http://www.ev-image.com/, accessed on 31 August 2017)
and Landsat TM images were acquired from the Geospatial Data Cloud (http://www.
gscloud.cn/, accessed on 31 August 2017). The image information used for land use
classification is presented in Table S1.

After image preprocessing, including radiometric and atmospheric correction, we
fused SPOT panchromatic images and Landsat TM images from 2004 to obtain multispectral
and high-resolution data within the study area. Furthermore, the MNDWI index was
used to extract the water body information. The water body image and the remaining
image were extracted using a mask, and the remaining image land use change data were
obtained through unsupervised classification and combined with visual interpretation.
A complete land use classification result was obtained by mosaicking the two parts of
the interpreted images. We assigned every cluster to one of five land categories and
then compared the 2004 classification with the high-resolution image (8 m) from 2004,
available on Google Earth. We collected 1250 purely random reference samples to assess
accuracy and generated a confusion matrix, both in 2004 (Table S2); the accuracy between
reference points and validation points in 2004 was 90.0%. There are five types of land use:
water, woodlands, bareland, croplands, and built-up areas. Table S3 shows the land use
classification system used in this study. Subsequently, we used the 2004 map to classify
each preceding year in sequence. The process consisted of overlaying the map of 2004 on
the 2003 image so that we could use visual interpretation to group pixels with the same
characteristics. We repeated this procedure for 2002 and 2001 to produce a sequence of land
cover maps for 2001, 2002, 2003, and 2004. The classification accuracy test used the overall
accuracy and kappa coefficient to determine the classification accuracy. The interpretation
accuracy of the interpretation results in the four years was higher than 90%, and the kappa
coefficient was higher than 0.85. Having obtained high-precision watershed land use data,
we delineated the spatial scope of the impact of the dam on the surrounding valley area
below 1500 m above sea level based on the overall shape of the river and other factors
(Figure 1). After obtaining the land use data, we conducted an enhanced intensity analysis
and obtained landscape metrics to reveal the intensity changes and landscape patterns
during the pre-impact, transition, and post-impact periods throughout the cascade dam
construction. Finally, we explored and understood the relationship between changes in
land use and landscape patterns and detailed implications for sustainability and planning.
A methodological roadmap is shown in Figure 2.

http://www.ev-image.com/
http://www.gscloud.cn/
http://www.gscloud.cn/
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2.3. Enhanced Intensity Analysis

Intensity analysis is a hierarchical framework that compares uniform intensity to the
observed intensities of temporal changes among categories [47,48]. Aldwaik and Pontius
Jr. (2012) created an intensity analysis to dissect the transition matrices at three levels of
detail: time interval, category, and transition. Supplementary Text S1 and Table S4 provide
equations and notations for the three levels of detail [49].

An improved version of the intensity analysis method has been used to characterize
land cover changes, mainly referring to the transition level. A cross-connected table of land
conversion patterns named the “Transition pattern” was also used, as it can quickly and
visually identify the intensity and area of land cover changes (Figure 3) [16].
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2.4. Landscape Pattern Index

Landscape patterns in the impacted and non-impacted zones of the L–S Creek wa-
tershed were analyzed using two level-landscape and class-through landscape metrics,
including Edge Density (ED), Area Mean (AREA_MN), Contagion Index (CONTAG), Shan-
non’s Diversity Index (SHDI), Landscape Shape Index (LSI), Largest Patch Index (LPI),
and Interspersion Juxtaposition Index (IJI), for the years 2001–2004. Table S5 defines the
mathematical symbols used in the equations and the descriptions of landscape metrics.

3. Results
3.1. Overall Land Cover Changes

Figure 4 and Table S6 show the land use interpretation results for watershed land use
from 2001–2004. Figure 5 presents maps of the five land categories at the four time points.
During 2001–2004, 19.4% and 21.8% of the water area transitioned to woodland and built-up
areas, respectively. Before and during the dam construction period (2001–2003), the built-
up areas mostly transitioned to water. The gain in the woodland area mainly came from
croplands, with a small part coming from bareland. The area of bareland in the watershed
was relatively small; thus, the change in other land types to bareland was also relatively
minor. In the three intervals, the 36% gain in cropland area mainly came from woodland;
the rate of change from 24.3% of woodland area and 33.7% of cropland area to built-up
area occupied the largest proportion of all land cover changes. In terms of the changing
area affected by dams (Figure 5), water, bareland, and built-up areas increased from
2001–2004, while the woodland and cropland areas continued to decline. The cropland area
showed the largest decrease, with transitions to water, woodland, and built-up areas. In the
impacted area, the land cover change was mainly caused by the substantial increase in water
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(0.24 km2) and built-up areas (4.26 km2) and the decrease in woodlands (1.92 km2) and
croplands (2.74 km2). A 0.17 km2 area of bareland steadily increased during construction.
Comparing the changes in water bodies in the impacted areas during the two time periods,
the water area increased, and the water capacity accumulated substantially in the upstream
dams. It is noteworthy that the area of the water body increased by 0.18 ha (HB), 2.3 ha
(XK), 0.27 ha (LX), and 3.2 ha (ZL) during the transition period. In the post-impact period,
the water area increased by 6.55 ha (HB), 8.10 ha (XK), 6.35 ha (LX), and 9.79 ha (ZL).
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3.2. Change Analysis

Figures 6 and S1 present maps of intensity changes during the three periods and
LU/LC at the four time points in the impacted area of the L–S Creek watershed. The
intensity of the land cover change during dam construction was greater than that of the
other two intervals during 2002–2003.
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Figure 6. Intensity changes during three time intervals in L–S Creek watershed.

Figure 7 shows the annual intensity of loss and gain as a percentage of the size of each
category during the dam construction period. The annual differences were 4.95%, 9.53%,
and 7.75% for the L–S Creek area during the three time intervals, respectively, which are
identical to the annual differences in Figure 6. Figure 7 shows that the gains and losses of
cropland and woodland were active, whereas the woodland gains and losses were dormant
for all time intervals. The intensity of built-up gains increased during 2001–2003 owing
to urbanization and dam construction. The intensities of water gains and losses increased
during 2002–2003; however, the gain intensity of water was much higher than the loss
intensity, indicating that dam construction can increase water accumulation in a river. Land
cover changes within the range of cascade dam construction from 2002–2003 and 2003–2004
were visible, thus indicating that the dam construction period had a greater impact on the
land use of small watersheds from the start to the end (Figure 7).

Figure 8 demonstrates the “transition pattern” during the three periods affected by
dam construction in the L–S Creek watershed, thereby revealing the intensity and area
changes at the transition level of intensity analysis. The increase in built-up areas mainly
came at the expense of croplands, woodlands, and water. The conversion of croplands to
built-up areas was the largest during 2002–2003 (during dam construction), although the
gain in built-up areas was at the cost of croplands during all three time intervals. However,
in 2001–2003, the gain in built-up areas did not come at the expense of woodlands, rather,
in 2002–2004, this gain came from water. The increase in croplands was mainly derived
from woodlands and the intensity change and area of croplands were the largest during
2002–2003. The area of bareland affected by dam construction was relatively small, and
there were few changes. The increase in woodland area mainly came from croplands, with
the highest area change and transition intensity occurring during 2002–2003. The increase
in water was mainly at the expense of croplands, particularly during 2001–2003 (before and
during dam construction). At the transition level, 0.7%, 4.5%, and 21.7% of woodlands were
converted to croplands, water, and built-up areas, respectively. A proportion of croplands
(8.1 %) was mainly converted to built-up areas, although 1.3% of croplands were converted
to water. The increase in built-up land was the result of urbanization and the requirement
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for dam construction. Croplands are flooded or converted into built-up areas; however,
these croplands have also been reclaimed and their area has increased. Owing to the dual
effects of urbanization and dam construction, woodland loss was the most intensive.
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3.3. Landscape Analysis

Landscape patterns in the impacted and non-impacted zones of the L–S Creek wa-
tershed were analyzed using two level-landscape and class-through landscape metrics,
including ED, LSI, LPI, CONTAG, and SHDI, for 2001–2004. At the landscape level (Table 2),
the landscape pattern changes in both zones showed the following characteristics. First, the
overall ED was generally higher in impacted areas than in non-impacted areas because the
construction-impacted area comprises four divided areas. In 2003, owing to the construc-
tion period of the dam, various types of patches underwent extraordinary transformation
and integration; therefore, the ED value was low. The increase in the ED metric suggests
that human disturbance resulted in a more fragmented landscape. Second, the decline in
SHDI metrics in the impacted area suggests that the landscape has become less diverse.
The landscape metric differences of ED, LSI, LPI, CONTAG, and SHDI between the two
zones can be described as follows. First, the landscape patterns in the impacted zone were
more fragmented and diverse with less connectivity. Second, the change rate of each metric
was more intensive in the impacted zone.
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Table 2. Landscape pattern change in the L–S Creek watershed.

ED LSI LPI CONTAG SHDI
Outside Inside Outside Inside Outside Inside Outside Inside Outside Inside

2001 61.23 119.35 31.13 18.24 54.94 20.04 70.25 59.31 0.76 1.10
2002 63.31 103.42 32.10 16.27 54.51 22.57 71.07 48.17 0.74 1.11
2003 55.59 92.23 28.52 14.88 52.40 23.35 70.43 62.22 0.77 0.94
2004 65.42 122.66 33.08 18.65 47.60 21.40 71.56 62.22 0.81 0.99

Outside and inside represent non-impacted and impacted areas, respectively.

During dam construction, the increase in built-up areas mainly occurred at the expense
of croplands and woodlands. Therefore, the landscape pattern changes related to the land
use classes of woodlands and croplands in the L–S Creek during 2001–2004 were further
analyzed at the class level (Table 3), and the fragmentation of woodlands and croplands
was explored using the ED metric. The similarity between the impacted and non-impacted
zones was that the landscape of croplands became more fragmented owing to an increase
in the ED value. The differences between the two zones were as follows. First, the LSI value
of each category in the non-impacted zone was generally higher than that in the impacted
zone. The LSI of bareland changed significantly before and after the dam’s construction.
Second, AREA_MN in the non-dammed area was dominated by woodlands, peaked in
2003, and dropped sharply in 2004. Built-up areas dominated AREA_MN in the dam area,
and its area increased sharply from 2002–2003. Third, from the perspective of connectivity,
the non-impacted zone was dominated by natural landscapes and the connectivity of each
category was generally high. The IJI of the water body before and after the impacted zone
in the dam-building area dropped significantly, especially during the dam-building period
in 2003, when it reached its lowest value.

Table 3. Landscape pattern changes of various land use types in the L–S Creek watershed.

ED LSI LPI AREA_MN IJI

LID TYPE Outside Inside Outside Inside Outside Inside Outside Inside Outside Inside

2001

Water 2.39 16.35 25.17 18.96 0.08 0.36 2.00 3.46 64.95 52.28
Woodland 30.02 43.10 18.64 12.55 54.94 11.62 173.02 16.85 61.18 55.61
Bareland 0.82 0.37 9.58 2.14 0.02 0.02 1.39 0.54 10.88 36.03
Cropland 43.64 84.86 60.63 24.90 1.74 3.22 5.68 2.88 50.12 43.01
Builtup 45.59 94.03 57.68 19.06 7.14 20.04 8.59 14.00 55.18 53.50

2002

Water 2.76 19.25 21.73 14.83 0.11 0.88 2.55 4.09 74.08 76.77
Woodland 32.36 40.96 19.73 12.11 54.51 8.87 114.02 17.19 52.66 69.87
Bareland 0.02 - 1.39 - 0.01 - 1.82 - 66.56 -
Cropland 50.42 76.86 77.58 24.82 0.46 3.21 2.97 3.06 53.68 78.45
Builtup 41.05 69.77 50.42 14.14 6.25 22.57 10.54 22.90 51.74 81.84

2003

Water 2.64 17.22 23.45 18.53 0.08 0.46 2.22 2.33 51.87 31.29
Woodland 27.72 35.31 17.64 11.44 52.40 9.04 218.02 22.47 58.55 55.30
Bareland 1.19 - 9.82 - 0.15 - 3.35 - 76.23 -
Cropland 40.89 59.09 78.35 27.18 0.13 0.27 1.62 1.07 52.93 51.31
Builtup 38.74 72.86 39.57 13.24 7.95 23.35 21.51 54.27 61.74 71.86

2004

Water 2.85 16.41 19.77 14.20 0.15 0.66 3.01 5.68 52.30 46.33
Woodland 38.40 54.93 23.78 16.22 47.60 4.42 83.61 6.56 48.26 48.54
Bareland 2.95 4.73 21.81 7.18 0.01 0.10 0.71 0.86 60.50 61.66
Cropland 30.45 60.58 67.72 26.99 0.09 0.35 1.16 0.94 36.73 26.38
Builtup 55.73 108.68 50.91 19.00 8.03 21.40 20.43 39.44 55.87 62.89

Outside and inside represent non-impacted and impacted areas, respectively.

3.4. Relationship between the Intensity of Land Use Changes and Landscape Pattern Dynamics
Induced by Damming

Based on the observations of the four dam construction areas, the overall change
intensity and area of land use, the change rate of landscape pattern metrics at three time
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intervals, and the relationship between the changing intensity of land use and landscape
pattern change are shown in Figure 9. The results show that the water land use area change
rate is strongly negatively correlated with LPI (−0.55 *), IJI (−0.57 *), and ED (−0.55 *),
and the water land use intensity change rate is strongly negatively correlated with LPI
(−0.58 *) and ED (−0.63 *), thereby implying that a faster gain in water is associated with a
more fragmented water landscape. The woodland intensity change rate of land use was
strongly positively correlated with AREA_MN (0.57 *) in the impacted zone, whereas it
was associated with greater heterogeneity of the overall landscape pattern.
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4. Discussion
4.1. Effectiveness of the Proposed Framework in a Small Headwater Watershed

It is well documented that LU/LC changes can be caused by cascade dam construc-
tion [17,50,51]. However, specific impacts on land cover change during different periods of
dam construction have seldom been reported. Our framework offers insights into how to
measure damming impacts on land cover and landscape patterns in small watersheds. Our
proposed framework is a collection of tools that can help scientists consider whether dam
construction can explain rapid changes in land use and landscape patterns. Specifically,
Figure 8 shows the “transition pattern” during the three construction periods, which can
be used to reveal the results quickly and to visually identify the intensity and area of
land cover change. Xie et al. (2020) found similar results of land change by “transition
pattern” caused by rapid urbanization in Nanchang, China. Tables 2 and 3 show the
different changes in landscape and class between impacted and non-impacted areas in this
study [16]. Tang et al. (2020) showed that the change rate of each metric is more intensive
in the estuary zone [52]. This finding is consistent with the results of the present study.

Although it was found that China’s land consolidation project and afforestation pro-
grams could convert some land from built to cropland and from cropland to woodland [53],
we admit that data errors might account for some of the apparent anomalous transitions,
that is, from built-up areas to croplands or from croplands to forests in a short time, as
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shown in Figure S1. We have seen this same transition in other datasets, specifically Glo-
beLand30 [48]. It may be difficult for classifiers of remotely sensed images to differentiate
between built and cropland, cropland, and woodland, especially when the two categories
exist close to each other as they frequently do in Asia.

4.2. Linking Land Cover Change with Landscape Pattern Dynamics Induced by Damming

Intensity analysis is a viable method for linking patterns to land change proce-
sses [35,37,54,55]. In this case, the land cover change pattern reflects the impact of dam
construction on the land cover in the region. At the transition level, the largest transitions to
built-up areas are derived from croplands and woodlands, whereas water gains are mostly
from croplands (Figure 8). As croplands have been flooded or converted into built-up areas,
reclamation has also increased. Owing to urbanization and dam construction, the loss of
woodlands and increase in water areas are remarkable, and these results are similar to
those of other observations [6,11]. In terms of the changing area during the post-impact
period, the upstream water area increased significantly, whereas the downstream water
area decreased. These changes may have led to soil loss and increased river sediment
and nutrient levels [20]. According to the analysis of the intensity of land cover change in
this study, the intensity change of bareland is not very active, which is likely caused by
woodland spread during dam construction [51].

Our intensity analysis for land cover change revealed that the transition from cropland
to water area was intensive in the L–S Creek watershed. Figure 9 shows that greater water
loss is associated with increased fragmentation in the impact zone. This is consistent
with previous studies that argue that the degree of hydrologic alteration is significantly
correlated with landscape metric changes, especially for forested and water areas in and
surrounding the Lancang River in Yunnan Province, China [4,56]. Furthermore, Figure 9
also shows that a faster gain in cropland is associated with a more heterogeneous landscape
in the impacted zone. Su et al. (2014) argued that increases in fragmentation and isolation
were identified for all vegetated landscape types disturbed by anthropogenic activities
in the Tiaoxi watershed of Zhejiang Province, China, which is similar to our results for
the impacted area [57]. In addition, the degree of land use change intensity was strongly
correlated with the degree of landscape fragmentation and heterogeneity in the impacted
zone, which is consistent with the results in the state of Selangor on the west coast of
peninsular Malaysia [58].

4.3. Implications for Land Management

Environmental impacts stemming from dam construction extend to the entire river
basin, including changes from altered sediment and water flows as well as losses of
aquatic fauna and losses or disturbances of vast areas of forests, floodplains, and other
ecosystems [21,59–61]. Our research has used efficient methods to reveal land cover changes
in small watersheds before and after dam construction and analyzed the transition pattern
between land use types through intensity analysis, thereby providing ideas for monitoring
land cover changes caused by dam construction. Land cover change during the dam
construction period was visible in the impacted area, and there were notable reductions in
croplands and woodlands. Encroachment into croplands by dam construction affects the
interests of residents, farmers, and local agricultural activities which underscores the need
to compensate farmers for their economic losses and maintain regional food production
by other means [62,63]. A substantial portion of the gain in built-up areas was derived
from woodlands, which increased the risk of soil erosion in this small watershed. A change
in the subsurface properties also leads to a change in the surface water storage capacity,
with a decrease in infiltration during heavy rainfall and an increase in surface runoff.
This increases the water level of the rivers after damming and increases the area of water
bodies but also aggravates the problem of non-point source pollution [21,60]. In other
words, during and following dam construction, land use on both sides of the riverbank
requires monitoring to avoid excessive woodland loss, which reduces soil erosion in small
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watersheds. If the dam construction time is too concentrated, the land use area will change
enormously, making the small watershed ecosystem vulnerable to external disturbances
and damage within the impacted area [59]. Therefore, concentrated dam construction
activities over a short period should be avoided as much as possible.

Mega construction projects have a great capacity to change landscapes and socio-
ecological systems, which are potentially damaging in developing regions [9]. The impact of
damming activities on the overall landscape pattern of a small watershed can be illustrated
macroscopically [64]. Damming affects the fragmentation, heterogeneity, and connectivity
of land use within the impacted area, which places specific requirements on the scale
and structure of dam construction [52]. Foremost, dam construction should minimize the
impact of human activities on nature by not destroying natural patches and ensuring the
connectivity of land types. Conversely, an appropriate amount of damming can regulate
the hydrological conditions of a small watershed, increase the heterogeneity of land use
within the impacted area, and promote overall landscape diversity. More in-depth studies
are required to investigate how to coordinate the scale and location of dam construction
sites to achieve the best landscape pattern optimization.

5. Conclusions

We developed a framework to reveal changes in LU/LC and landscapes induced by
dam construction in a small watershed. Land use in the L–S Creek watershed changed
vigorously during the transition and post-impact periods of dam construction. The intensity
of land cover change within the damming construction was the highest among the three
periods, indicating that dam construction caused the land cover change. This change was
mainly caused by the substantial increase in water and built-up areas and a decrease in
woodlands and croplands. The amount of bBareland steadily increased during construction.
Driven by damming, 21.7% of woodlands and 8.1% of croplands were converted to built-up
areas, and 0.7% of woodlands and 1.3% of croplands were flooded or transformed into
water bodies. By linking land cover change with landscape patterns, land use change in
water was significantly associated with landscape fragmentation and heterogeneity in the
impacted area. Therefore, monitoring of land cover change should be strengthened during
and after dam construction to prevent soil erosion and non-point source pollution.
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2001–2004; Figure S1: Land use/land cover in the impacted area.
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