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Abstract: Due to the inability of convolutional neural networks to effectively obtain long-range in-

formation, a transformer was recently introduced into the field of pansharpening to obtain global 

dependencies. However, a transformer does not pay enough attention to the information of channel 

dimensions. To solve this problem, a local-global-based high-resolution spatial-spectral representa-

tion network (LG-HSSRN) is proposed to fully fuse local and global spatial-spectral information at 

different scales. In this paper, a multi-scale feature fusion (MSFF) architecture is designed to obtain 

the scale information of remote sensing images. Meanwhile, in order to learn spatial texture infor-

mation and spectral information effectively, a local-global feature extraction (LGFE) module is pro-

posed to capture the local and global dependencies in the source images from a spatial-spectral 

perspective. In addition, a multi-scale contextual aggregation (MSCA) module is proposed to weave 

hierarchical information with high representational power. The results of three satellite datasets 

show that the proposed method exhibits superior performance in terms of both spatial and spectral 

preservation compared to other methods. 

Keywords: pansharpening; transformer; texture; high-resolution; depthwise separable convolution; 

contextual aggregation 

 

1. Introduction 

In recent years, with the development of remote sensing technology, more and more 

sensors have been applied to Earth observation, which provides users with a wealth of 

remote sensing information. Due to technical limitation, information from a single sensor 

cannot fully reflect all the characteristics of the target area. Therefore, a satellite is usually 

fitted with multiple sensors to acquire remote sensing images containing different infor-

mation separately, and at the same time, fusion techniques are used to construct a single 

remote sensing image that fully reflects the features of the ground [1]. Pansharpening is a 

popular remote sensing image fusion technique, which focuses on fusing high spatial res-

olution panchromatic (PAN) image and low-resolution multispectral (LRMS) images to 

generate high spatial resolution multispectral (HRMS) images. The fused results are 

widely used in target detection [2], land cover classification [3], geological exploration, 

and other fields. 

Nowadays, a large number of excellent pansharpening methods have emerged. 

These methods can be broadly classified into four categories based on component replace-

ment (CS), multi-resolution analysis (MRA), variational optimization, and deep learning. 

The main principle of CS-based methods is to project the LRMS images into another 

space by domain transformation and replace all spatial information components using the 

PAN image and then invert them to obtain the final fused images. The common methods 

in this category are principal component analysis [4], partial replacement adaptive CS 

(PRACS) [5], the band-related spatial detail scheme [6], intensity-hue-saturation [7], 
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Gram-Schmidt (GS) [8], etc. These CS-based methods are simple in structure, easy to im-

plement, and can effectively enhance the spatial information of the generated results, but 

they ignore the differences between PAN and MS images, which can easily lead to spectral 

distortion. 

The MRA-based method is as simple and easy to implement as CS-based methods. 

MRA is mainly based on obtaining the corresponding spatial information from the PAN 

image and injecting this information into the low-resolution MS images. Wavelet [9], high-

pass filters (HPF) [10], generalized Laplacian pyramid (GLP) [11], smoothing filter-based 

intensity modulation [12], and nonsubsampled contourlet [13] are among the MRA meth-

ods. These methods are able to obtain spectrally well-preserved results, but at the cost of 

spatial distortion. In view of the limitations of CS and MRA methods, some hybrid meth-

ods have been proposed, such as Revisited AWLP [14], a pansharpening method using 

guided filter [15], etc. These methods are mainly designed to obtain a good spatial en-

hancement while maintaining spectral consistency. However, it is experimentally proven 

that these methods still produce some spectral and spatial distortions. Both the CS and 

MRA types of methods can be classified as conventional. 

Variational optimization-based methods consider pansharpening as a problem to be 

solved optimally, and seek the optimal balance between maintaining spectral consistency 

and improving spatial quality in the fusion process of PAN and MS images by designing 

specific models. Such methods mainly include Bayesian posterior probability [16], sparse 

reconstruction-based fusion methods [17], P+XS [18], variational pansharpening with lo-

cal gradient constraints [19], etc. These methods mainly rely on a large amount of prior 

knowledge to constrain the constructed spectral-spatial solution models, which can suc-

cessfully reconstruct HRMS images with superior spectral and spatial information. How-

ever, a priori information used in the models may be invalid for data in complex scenarios, 

which leads to limitations in the application of variational optimization-based methods. 

Moreover, the construction of the whole model relies excessively on a priori knowledge, 

and the architecture design is complicated and computationally intensive. 

With the development of deep learning, many advanced deep learning techniques 

applied to the pansharpening field emerged. Benefiting from the powerful feature extrac-

tion capability of deep learning, the fusion performance of pansharpening algorithms has 

been greatly improved. Huang et al. [20] proposed a sparse noise-reducing self-coding 

pansharpening method to obtain the relationship between high-resolution and low-reso-

lution images using deep neural networks, and obtained a relatively good fusion effect. 

Masi et al. [21] were influenced by the SRCNN model [22] in the field of super-resolution 

reconstruction (SR) and applied convolutional neural networks (CNNs) to the field of 

pansharpening (PNN) for the first time, which greatly improved the performance of the 

algorithm compared with traditional methods. Wei et al. [23], on the other hand, incorpo-

rated the idea of residuals into the fusion network and proposed the deep residual gener-

alized sharpness neural network, which effectively alleviates the information loss prob-

lem during feature extraction. Fu et al. [24] developed PanNet, which designed the corre-

sponding network framework for the two specific objectives of spectral preservation and 

spatial enhancement, and obtained better fusion results. Yuan et al. [25] proposed a multi-

scale multi-depth neural network (MSDCNN), using convolutional kernels of different 

sizes to extract multi-scale features and enhance the performance of the pansharpening 

algorithm from the perspective of widening the network. Ma et al. [26] designed a gener-

ative adversarial network (Pan-GAN) containing spectral and spatial dual discriminators, 

which made full use of the unsupervised characteristics of GAN networks and achieved 

more robust results. Liu et al. [27] propose a novel pansharpening architecture that con-

structs a deep-shallow network to extract multi-level spatial information from PAN im-

ages in the high-frequency domain, and uses a spectral injection network to map the spa-

tial information into the various bands of MS images, effectively improving the overall 

fusion quality. Wei et al. [28] then developed a two-stream fusion network based on asym-

metric convolution, following the architecture of Liu et al. [27]. Wang et al. [29] proposed 
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an SSConv that converts spectral information to the spatial domain for upsampling to 

reduce the artifacts associated with normal upsampling, and a novel U-shaped network 

to fuse information from multiple source images. Deng et al. [30] combined the traditional 

CS and MRA methods with CNN and proposed FusionNet, which achieved more robust 

results with a simple architecture. 

Recently, since CNNs cannot effectively acquire global information between images, 

the transformer architecture has been introduced to the field of computer vision in order 

to learn the non-local dependencies of images, and the transformer can effectively acquire 

non-local information through a multi-head global attention mechanism. In the field of 

pansharpening, Zhou et al. [31] first applied the transformer to image fusion and designed 

a pansharpening transformer module that can effectively integrate complementary infor-

mation between different images and accurately acquire long-range spatial information. 

Nithin et al. [32] proposed a transformer-based self-attentive network (Pansformer), 

which utilizes a non-overlapping multi-patch attention mechanism to obtain details of 

non-local information and is able to produce a higher quality HRMS images. Although 

the abovementioned transformer-based models alleviate the shortcomings of CNNs and 

are able to effectively capture long-range dependencies, they ignore the scale effects of 

remote sensing images. Meanwhile, the transformer has high complexity for spatial quad-

ratic computation on high-resolution images and ignores the channel dimensionality ad-

aptation of the images. 

To address the above problems, we propose a local-global based high-resolution spa-

tial-spectral representation network (LG-HSSRN). First, a local-global feature extraction 

(LGFE) module using a multiscale residual block convolution component, texture-trans-

former and Multi-Dconv transformer to obtain global texture information and global con-

text information across channels. Then a multi-scale context aggregation (MSCA) module 

is used to map the corresponding information at different scales to the high-resolution 

level to obtain semantic information at different scales. Finally, a multi-stream feature fu-

sion (MSFF) module is performed on the different information to reconstruct the final 

HRMS images. 

The main contributions of this paper are as follows: 

 The LG-HSSRN that can effectively obtain local and global dependencies is pro-

posed. At the same time, the information at different scales is mapped to the output 

scale layer, which maintains a high-resolution representation and can obtain better 

contextual information. 

 Considering the complementary characteristics of the information contained in PAN 

and MS images, the LGFE module is designed, which can effectively obtain local and 

non-local information from images. Among others, we designed a texture-trans-

former to extract long-range texture details and cross-feature spatial dependencies 

from a spatial perspective. A Multi-Dconv transformer module is designed to learn 

contextual image information across channels using a self-attentive mechanism and 

is able to aggregate local and non-local pixel interactions. 

 The MSCA module is proposed to map all low-level features and mid-level feature 

information to the high level. The final feature fusion is completed with a high-reso-

lution feature representation while fully obtaining the hierarchical information. 

The remainder of this paper is organized as follows. Section 2 describes the details of 

the proposed LG-HSSRN. The experimental results and analysis of different datasets are 

given in Section 3 for validating the effectiveness of the LG-HSSRN algorithm. The overall 

experimental discussion is given in Section 4. Conclusions are given in Section 5. 

2. Proposed Method 

The overall framework of the proposed method is shown in Figure 1 and consists of 

three main modules: the LGFE module, MSCA module and MSFF module. The LGFE 

module is composed of two components: a global feature extraction module consisting of 
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a texture-transformer for learning global texture information and a Multi-Dconv trans-

former for acquiring the spatial information from each image band across channels, and a 

local feature extraction module consisting of multi-scale residual blocks. 

First, the input PAN and MS images with three different scales of image pairs are 

obtained by upsampling and downsampling operations. Then, the three different scale 

image pairs are input to the LGFE module of the corresponding layers, and each layer has 

three outputs with different information, including long-range texture information, cross-

channel global context information, and local multi-scale information. Moreover, we map 

the different feature maps of three different scales to the high-resolution level through the 

MSCA module with corresponding kinds of outputs to obtain three different feature maps 

containing multi-scale contextual information. Finally, the three different types of high-

resolution feature information are fused by the MSFF module to reconstruct the final 

HRMS images. 

LGFE module

LGFE module

MSCA module 

MSΦ 4

MSΦ 2

MS

PANδ 2

PANδ 4

PAN

HRMS

Multi-scale residual 
block

Multi-Dconv 
transformer

Texture-
transformer

TT

MDT

MSRB

Global branch

Local branch

TT MDT MSRB

T

C

L

Fusion

MSFF module

LGFE module

 

Figure 1. The overall framework diagram of the LG-HSSRN. The arrows in different colors indi-

cate the data flow of different types of features. 

2.1. LGFE Module 

2.1.1. Global Feature Exaction Module 

Due to the similarity of texture information between PAN and MS images, extracting 

the corresponding spatial information from the PAN image alone or combining the two 

input processes cannot fully utilize the spatial information in the PAN image, and it is 

easy to cause spatial and spectral distortion. Therefore, we design a texture-transformer 

module for learning global spatial texture information based on the different information 

characteristics of PAN and MS images. In addition, we design the Multi-Dconv trans-

former module for acquiring global information from the channel dimension, which is 

used to acquire the contextual information of each band of the image across channels. 

(1) Texture-transformer Module 

Since the texture-transformer is mainly used to learn similar texture information 

from the two images [33] to be used to better obtain global spatial information, we use 

different inputs as shown in Figure 2. Specifically, we first segment the PAN and MS im-

ages into non-overlapping patches of the same size, and encode their positions to form the 

corresponding images patches sequence  1, , np p  with  1, , nMS MS . The image 

patches are used as the texture features to be input, meanwhile, the features are extracted 

using 3 3  convolution and projected into the three components necessary for the 
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corresponding transformer, namely: Q  (query), K  (key), and V (value), respectively. 

The mathematical expressions are as follows: 

 1( , , )nQ Conv MS MS   (1)

 1( , , )nK Conv p p   (2)

 1( , , )nV Conv p p   (3)

where ()Conv   denotes the 3 3  convolution operation. Subsequently, we use Q  and 

K  for estimating the similarity to generate the association matrix, and multiply the ob-

tained association matrix with the PAN image features, i.e., V, to obtain the final weighted 

feature map. In addition, we also introduce a jump connection to prevent information loss. 

Finally, all the generated patch feature maps are stitched together again by encoding po-

sition to obtain the final texture feature map as follows: 

max( )
T
i i

i

k

Q K
S soft

d
  (4)

+i i i iTexturemap S V V   (5)

 1( , , )nTexturemap Concat Texturemap Texturemap   (6)

where iS  is the weight matrix of the image patches corresponding to encoding position

i , kd  is the score normalization used in the transformer for gradient stabilization, and 

maxsoft  is the corresponding nonlinear activation function, which is used to normalize 

the feature weights. iTexturemap  corresponds to the texture feature of the image patches 

with encoding position i . Concat  is the stitching together of the generated texture fea-

ture image patches according to the encoding position. Texturemap  is the final output 

texture feature map. 

MS

PAN

PAN

3×3

3×3

3×3

k

Q

V

×

×

Softmax

+

Patch

Patch

Patch
Transpose

 

Figure 2. The specific construction of texture-transformer module. 

In a word, we obtain the image patches of different parts by spatially fragmenting 

the overall image, and perform a similarity calculation and self-feature enhancement of 

these image patches to obtain the attention-enhanced maps of different parts. Finally, the 

attentional enhancement maps of different locations are stitched together to obtain the 

global attentional enhancement map. 
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(2) Multi-Dconv Transformer Module 

Since the transformer mostly concentrates on the spatial dimension to learn long-

range dependencies, it does not consider learning contextual relationships from the chan-

nel dimension. Meanwhile, the image binning operation is able to obtain local contextual 

relations cumulatively [34], but it is computationally intensive for high-resolution images 

and does not achieve true global contextual aggregation. Therefore, we embed deep sep-

arable convolution into the self-attentive mechanism and use the Multi-Dconv trans-

former module to alleviate these problems by obtaining the corresponding spatial context 

information from the channel dimension. 

As shown in Figure 3, in order to fully acquire the features of the PAN and MS im-

ages, we choose to jointly input both into the module. First, we use point convolution of 

1 1  to obtain contextual information between different channels at the pixel level, and 

subsequently use 3 3  depth convolution to obtain spatial context along the channel di-

rection. Subsequently, we map the contextual information learned from the depth-sepa-

rable convolution to Q , K  and V  as follows: 

( , )X Concat MP  (7)

P dQ WWX  (8)

P dK WWX  (9)

P dV WWX  (10)

where M  and P  correspond to the input MS and PAN images, respectively, X  rep-

resents the union of the two images, and PW  and dW  represent the 1 1  point con-

volution and 3 3  depth convolution operations, respectively. Finally, the operations of 

Equations (4) and (5) are repeated to obtain the final cross-channel contextual information 

as follows: 

max( )
T

k

Q K
Channelattentionmap V soft

d
   (11)

It is worth noting that we do not perform a segmentation patch operation on the in-

put, but use the features obtained from the image of each channel as the head in a multi-

headed self-attentive mechanism, which enables a good interaction of local and non-local 

pixels and is sufficient to obtain the rich information in the spectral images. This is ex-

plained in detail by using point and depth convolution for spatial and channel infor-

mation extraction of local information, and inputting the acquired information into the 

self-attentive mechanism to obtain the long-range dependencies of the image, thus ena-

bling the interaction between local and non-local pixels. 

3×3
DConv

3×3
DConv

3×3
DConv

k

Q

V

×

×

Softmax

+
MS

PAN

concat
Transpose

1×1

1×1

1×1

 

Figure 3. The specific construction of the Multi-Dconv transformer module. 
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The common multi-head attention mechanism is used to obtain a non-local attention 

map by point multiply in the spatial dimension. whose computational complexity in-

creases with the spatial resolution of the image (computational complexity is the square 

of the spatial resolution). Our Multi-Dconv transformer module is used to generate the 

input non-local attention map across channel dimensions, and its computational complex-

ity is linear and much smaller than the spatial quadratic computational complexity of the 

multi-head attention mechanism. This overcomes the high spatial computational com-

plexity associated with the normal multi-head attention mechanism while capturing the 

long-range dependencies across channel dimensions. 

2.1.2. Local Feature Exaction Module 

For the local feature extraction branch, as shown in Figure 4, we simply use a multi-

scale residual block (MSRB) composed of convolutions of different sizes to extract the 

multi-scale features of the input image and superimpose them to improve the representa-

tional power of local features, while using jump connections to complement them with 

information and mitigate information loss during convolution. 

3×3

5×5

7×7

+

MS

PAN

concat MSRB +

MSRB

 

Figure 4. The construction of local feature extraction branch. 

2.2. MSCA Module 

Since pansharpening as the task of transforming low resolution to high resolution, 

the final output is a high-resolution MS images. Remote sensing images also have scale 

effects, i.e., different scales contain different feature information. Therefore, for the fusion 

process of multi-scale multi-features, we focus on maintaining the high-resolution feature 

representation. Inspired by HRNet [35], we design the MSCA module to aggregate the 

same type of features at different scales. 

The overall construction of the MSCA is shown in Figure 5a, where we aggregate 

different scales of the same type of features to the highest resolution level by the up-sam-

pling operation, use 1 1  convolution to mix the semantic and feature details of the dif-

ferent scales, and finally obtain three different types of high variability feature maps con-

taining rich contextual information. In this case, the high-resolution mapping of a single 

kind of information is shown in Figure 5b, where three different scales of the same kind 

of features are mapped to the highest resolution size by 1X,2X,4X  upsampling opera-

tions for a superposition operation, followed by information aggregation using convolu-

tion.The specific operation flow of MSCA is shown in the following: 

1x 2x 4x

1x 2x 4x

1x 2x 4x

( )

( )

( )

T Conv T T T

C Conv C C C

L Conv L L L

  


  
   

 (12)
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where T , C , and L  represent the final aggregated texture features, cross-channel 

context information, and local features, respectively. Conv represents the 1 1  convolu-

tion operation, and the subscripts 1X,2X,4X  are used to label the features with different 

resolutions. 

T1x

T2x

T4x

C1x

C2x

L1x

L2x
L

C

T
4X Upsampling

2X Upsampling

(a) (b)

+ 1×1

Feature1x

Feature2x

Feature4x

C4x

L4x

 

Figure 5. The architecture and details of the MSCA Module. (a) The overall architecture diagram of 

the MSCA module, (b) The flow chart of homogeneous feature aggregation. 

2.3. MSFF Module 

We designed the MSFF module for final feature fusion and image reconstruction, 

with an architecture as shown in Figure 6. We first fuse the global texture information 

with the cross-channel global context information and use a convolutional block for global 

information integration. Next, the global information is fused with the local information. 

Finally, a convolution block is used again for the final information integration to output 

the final reconstructed images. 

9
×

9

5
×

5

5
×

5

concat +

Conv block

+ Conv block

3
×

3
3
×

3

T

C

L
 

Figure 6. The architecture of MSFF module. 

2.4. Loss Function 

The root mean square error is used as a loss function that constrains the whole net-

work, optimizing the network by minimizing the error between the ground truth (GT) 

images and the fusion result. The loss function equation is as follows: 

 
2

1

1
,

N

i i i F
i

Loss GT F M P
N 

   (13)
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where iGT  is the i -th training sample in the ground truth images, iM  represents the 

i -th training sample in the low-resolution MS images, iP  represents the i -th training 

sample in the PAN image, and N  is the number of training samples randomly selected 

from the training set in one iteration. Loss  is the loss function minimized during the 

training process. 

3. Experiments and Results 

In this section, we introduce the experimental dataset, comparison method, and ex-

perimental setup. We show the performance of the method proposed in this paper and 

other methods in different datasets. Finally, we validate the performance of each module 

in the proposed model. 

3.1. Experimental Data 

In this experiment, PAN and MS images captured by three satellites, GaoFen-2, 

WorldView-2 and QuickBird, were used to form three different datasets. The MS images 

from these satellites all contain four bands: red, green, blue, and NIR. In addition, we 

selected the red, green, blue, and NIR bands from the MS images of the WorldView-2 

satellite to form a new 4-band MS images. Table 1 shows the spatial resolution of these 

satellite datasets. 

Table 1. The spatial resolution of each satellite image. 

Satellite Band Resolution (m) 

GaoFen-2 MS 4 

 PAN 1 

WorldView-2 MS 1.6 

 PAN 0.4 

QuickBird MS 2.4 

 PAN 0.6 

To facilitate uniform training and testing, we divided the datasets of the three satel-

lites into uniform image sizes. Based on Wald’s protocol [36], the artificial datasets instead 

of the real datasets were divided into the training and testing datasets. In this case, the 

ratio of training to validation in the training set was divided 4:1. In the training set, we 

patched the original MS images as ground truth (GT) images. All the training set MS/PAN 

image pairs were 16/64 in size, simulated experimental image pairs were 128/512 in size, 

and real experimental image pairs were 256/1024 in size. The details are shown in Table 2. 

Table 2. The specific settings for simulation and real datasets. 

Dataset Kind Satellite Size Number 

Training dataset Simulated experiment GaoFen-2 
16 × 16, MS Training, 6812 

64 × 64, PAN Validation, 1703 

  WorldView-2 
16 × 16 Training, 1819 

64 × 64 Validation, 452 

  QuickBird 
16 × 16 Training, 2779 

64 × 64 Validation, 694 

Testing dataset Simulated experiment GaoFen-2 
128 × 128, MS 

512 × 512, PAN 
52 

  WorldView-2 
128 × 128 

512 × 512 
33 
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  QuickBird 
128 × 128 

512 × 512 
33 

 Real experiment GaoFen-2 
256 × 256 

1024 × 1024 
100 

  WorldView-2 
256 × 256 

1024 × 1024 
100 

  QuickBird 
256 × 256 

1024 × 1024 
100 

3.2. Comparison Methods 

In order to verify the effectiveness of our proposed approach, we selected eight dif-

ferent methods as our comparison experiments and conducted simulations and real ex-

periments in the three datasets described above. Among them, the main deep learning-

based methods are the PNN [22], MSDCNN [25], MUCNN [29], and Pansformer [32], 

which are four excellent methods. Due to the large time overhead, we did not cover the 

variational optimization-based approach. The traditional CS and MRA algorithms mainly 

include GS [8], PRACS [5], Wavelet [9] and GLP with MTF-matched filter (MTF-GLP) [37] 

methods. Moreover, to ensure the fairness of the experiments, all the traditional methods 

were implemented on MATLAB 2018b. All deep learning-based algorithms were imple-

mented on the PC side using NVIDIA GeForce RTX 3060 GPUs in the PyTorch framework. 

The training parameters of the deep learning-based model are shown in Table 3. We 

set the training iterations to 1200 because the number of iterations should be chosen to fit 

the current amount of data, and too many iterations will inevitably reduce the efficiency 

of the algorithm. The normal pytorch-based fusion framework was set to 1000 iterations; 

we have also tried 1500 and 2000 iterations, but found that 1200 is the most appropriate, 

which is the parameter setting chosen by most PyTorch-based fusion algorithms. We set 

the training batch size to 16, as the transformer-based algorithm requires a certain amount 

of computational resources, and too large or too small a batch size will affect the compu-

tational efficiency and the final fusion results. We chose to use Adma as the optimizer for 

all deep learning-based fusion networks because, compared to SGD, the dominant opti-

mizer, Adma is able to avoid local optima and to design independent adaptive learning 

rates for different parameters by calculating first- and second-order moment estimates of 

the gradients with little or no fine-tuning. Therefore, the typical values of Adma’s param-

eters, i.e., 0.001 and (0.9,0.999), are used for both the learning rate and the decay factor, 

which are also the parameter settings of most fusion models. During the training of the 

model, we performed validation every 50 batches and saved the best parameter model in 

the validation set every 100 batches for simulation and real testing. 

Table 3. Parameter setting of the training model. 

Iterations Batch Size Optimizer Learning Rate Decay Rate 

1200 16 Adam 0.001 (0.9, 0.999) 

3.3. Evaluation Metrics 

In order to comprehensively evaluate the experimental results, we evaluated the fu-

sion effect from both subjective and objective perspectives. The subjective evaluation 

mainly relies for its determination on the observation of the pseudo-color maps of the 

generated results. The objective perspective mainly relies on the reference indicators used 

to evaluate the simulated experimental results and the non-reference indicators used to 

evaluate the real experimental results. The reference indicators include the relative global 

synthesis error (ERGAS) [38], the spectral angle mapper (SAM) [39], the correlation coef-

ficient (CC) [10], a universal image quality index (UIQI) [40] and its extended index 4Q  

[41]. Among them, the SAM is the most commonly used spectral index, which represents 
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the angle between the reference vector and the processing vector of a pixel in the image 

spectral feature space. ERGAS calculates the quality of the fused image as the normalized 

mean error of the fused image band, which ranges from zero to infinity, with lower values 

indicating a higher degree of similarity between the two images. The CC reflects the geo-

metric distortion of the image. UIQI and 4Q  are the universal image quality indexes for 

each and all bands between the fused image and the reference image, with values ranging 

from 0 to 1. A value of 1 indicates that the two images are perfectly similar. 

The reference-free quality index (QNR) [42] consists of two main components: the spec-

tral quality index D  to assess the spectral quality of the image and the spatial quality 

index sD  to measure the structural performance of the pansharpening results; the closer 

the values of both indexes to 0, the better the corresponding spectral and spatial quality. The 

QNR evaluates the overall pansharpening performance of the generated images. 

3.4. Simulation Experiment Results and Analysis 

In this section, we perform simulation experiments on the WorldView-2, GaoFen-2 

and QuickBird datasets for 9 different methods and give the corresponding metric results 

and visualization results, respectively. In addition, to facilitate the observation of the in-

formation in the visualization results, we not only place the detailed local zoomed-in maps 

of the corresponding methods, but also show the mean square error maps based on the 

GT images. 

Table 4 shows the objective evaluation metrics of all methods on the WorldView-2 

dataset, where we bolded the best value of each metric. It is found that the deep learning-

based methods outperform traditional methods in most of the metrics. Among them, the 

PNN and MSDCNN, have close values of the finger table on spectral and spatial conser-

vation. While the MUCNN and Pansformer perform better than the PNN and MSDCNN 

in terms of numerical values and higher overall image quality, the LG-HSSRN is superior 

to the other methods in all metrics. 

Table 4. Quantitative evaluation metrics for the WorldView-2 simulation dataset. 

Method SAM ERGAS CC UIQI  Q4 

Reference 0 0 1 1 1 

GS 4.7293 6.4284 0.8385 0.7770 0.7626 

PRACS 5.965 3.7119 0.9031 0.8216 0.8042 

MTF-GLP 3.2137 6.7711 0.8887 0.8649 0.8351 

Wavelet 2.6919 6.8493 0.8749 0.8057 0.7843 

PNN 3.9862 5.6703 0.9661 0.8913 0.8805 

MSDCNN 3.9734 5.6449 0.9776 0.9257 0.9159 

MUCNN 3.2673 4.2673 0.9838 0.9482 0.9375 

Pansformer 2.7412 3.8938 0.9826 0.9590 0.9453 

LG-HSSRN 1.5060 2.9222 0.9882 0.9731 0.9645 

Figures 7 and 8 show the local zoom and difference maps, respectively, of the fusion 

results of the various methods on the WorldView-2 dataset and it can be seen that MTF- 

GLP and Wavelet show significant spatial distortion and the overall image appears 

blurred. The overall architecture of the deep learning-based method is clearer, and the 

local zoomed-in parts do not show obvious contour blurring. By comparing the difference 

maps of the deep learning methods, it can be seen that the errors of the PNN and 

MSDCNN with GT are larger. Through the location of the dock in the image, it is found 

that the error brightness of the MUCNN and Pansformer is weaker than in the previous 

cases, but the results generated by the LG-HSSRN are closer to the GT images. 
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Figure 7. Comparison of pseudo-color maps of various methods on the WorldView-2 simulated 

dataset. 
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Figure 8. Comparison of mean square error maps of various methods on the WorldView-2 simu-

lated dataset. 

Figures 9 and 10 show the pseudo-color maps and the difference maps, respectively, 

of different methods on the GaoFen-2 dataset. It is clearly seen that GS and PRACS have 

obvious color blurring, and the spatial and color distortion of buildings in the images ap-

pear obvious. The spatial structure of the overall image of MTF-GLP and Wavelet is de-

stroyed, and obvious spatial blurring appears. The PNN mitigates the spatial distortion, 

but obvious spectral distortion appears, and the red roof color degree is too light. The 

MSDCNN, MUCNN and Pansformer are closer in spatial structure and spectral retention, 

but still show some spatial blurring phenomenon. 
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Figure 9. Comparison of pseudo-color maps of various methods on the GaoFen-2 simulated dataset. 
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Figure 10. Comparison of mean square error maps of various methods on the GaoFen-2 simulated 

dataset. 

The LG-HSSRN is closest to the ground truth image, and it is obvious that the ar-

rangement of the houses in the local zoomed image is complete, the edges of the buildings 

are clear, and the color fidelity is high. The differential image in Figure 10 also confirms 

the superior performance of the proposed method. Table 5 highlights the performance of 

the proposed method in terms of index data. 
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Table 5. Quantitative evaluation metrics for the GaoFen-2 simulation dataset. 

Method SAM ERGAS CC UIQI  Q4 

Reference 0 0 1 1 1 

GS 2.5771 3.3413 0.8922 0.8556 0.8384 

PRACS 3.7160 3.2467 0.9033 0.8020 0.8018 

MTF-GLP 2.2970 3.0897 0.8922 0.8665 0.8448 

Wavelet 2.9142 3.8819 0.9114 0.8793 0.8582 

PNN 2.1781 2.3802 0.9590 0.9555 0.9307 

MSDCNN 2.1383 2.3538 0.9614 0.9614 0.9404 

MUCNN 1.6530 2.5389 0.9707 0.9631 0.9432 

Pansformer 1.7299 1.9183 0.9766 0.9739 0.9593 

LG-HSSRN 1.2598 1.4595 0.9817 0.9813 0.9783 

Table 6 shows the results of the evaluation metrics of all methods on the QuickBird 

dataset for simulation experiments, and it is seen that the LG-HSSRN is optimal in all 

evaluation metrics results except for the SAM spectral metrics which have a difference 

within 0.03 with the MUCNN. 

Table 6. Quantitative evaluation metrics for the QuickBird simulation dataset. 

Method SAM ERGAS CC UIQI  Q4 

Reference 0 0 0 1 1 

GS 4.3427 3.0762 0.9058 0.7836 0.7718 

PRACS 3.1412 2.2663 0.9336 0.8433 0.8229 

MTF-GLP 5.5898 3.7469 0.8607 0.7839 0.7639 

Wavelet 3.0123 2.0967 0.9538 0.8437 0.8238 

PNN 2.1483 1.9285 0.9754 0.9252 0.9034 

MSDCNN 1.6763 1.1271 0.9755 0.9373 0.9221 

MUCNN 1.0477 0.7888 0.9819 0.9591 0.9305 

Pansformer 1.5306 1.0487 0.9822 0.9670 0.9414 

LG-HSSRN 1.0759 0.7026 0.9834 0.9679 0.9487 

Figures 11 and 12 show the visualization results and residual plots, respectively, of 

the corresponding methods on the QuickBird dataset. Both CS- and MRA-based methods 

show significant spatial and spectral distortions, and the residual plots of these methods 

also exhibit significant errors with the GT images. From the PNN, MSDCNN, and 

MUCNN fusion results, it is seen that the colors of the red houses are too light compared 

to the GT images and show some degree of spectral distortion. In addition, some artifacts 

can be observed in the results of the Pansformer method. In contrast, the LG-HSSRN is 

closest to the GT image, and it can also be observed that there are no obvious bright spots 

in the error map, which means that our method has the best fusion effect. 
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Figure 11. Comparison of pseudo-color maps of various methods on the QuickBird simulated dataset. 
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Figure 12. Comparison of mean square error maps of various methods on the QuickBird simulated 

dataset. 

3.5. Real Experiment Results and Analysis 

Figures 13–15 show the data results of real experiments with different methods on 

the WorldView-2, GaoFen-2 and QuickBird datasets, respectively. Figure 14 shows that 

the GS method has obvious spectral distortion and the color distribution of the whole 

image is chaotic and accompanied by spatial blurring. In contrast, the PRACS, Wavelet, 

and MTF-GLP methods show significant spatial distortion. For example, the PRACS and 

Wavelet images in Figure 13 show white artifacts, and the generated image of MTF-GLP 

in Figure 14 shows spatial distortion as a whole, and the outlines of roads and houses in 

the local detail enlargement are unclear. 
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Figure 13. Comparison of pseudo-color maps of various methods on the WorldView-2 real dataset. 

The overall spatial architecture of the images of the PNN, MSDCNN and MUCNN 

methods is still clear, but some detailed information is still not enhanced and complete, 

such as the mound in Figure 14. The fusion results of the Pansformer method are better 

overall, and the enhancement of some edge details is more accurate. However, compared 

with the LG-HSSRN, there remain some spectral distortions in its resolution-enhanced 

images, for example, the color degree of the red house in Figure 14 is weaker than the 

color degree of our generated results. In addition, the enhancement of some spatial details 

is not as good as the LG-HSSRN, as can be seen from the crescent-shaped white block 

between the white square container and the brown building in Figure 15, which is shown 

more completely by our method. In conclusion, the LG-HSSRN is able to improve the 

resolution of MS images while fully maintaining spatial and spectral information. 
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Figure 14. Comparison of pseudo-color maps of various methods on the GaoFen-2 real dataset. 
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Figure 15. Comparison of pseudo-color maps of various methods on the QuickBird real dataset. 

Table 7 shows the results of the full-resolution no-reference metrics on the three da-

tasets, and our proposed method has the best performance in terms of overall metrics. The 

MUCNN and Pansformer are the next best. Compared with the first three methods, the 

PNN and MSDCNN fusions show spatial and spectral distortions, and both methods have 

higher values of the spectral metric Dλ and spatial metric DS, implying that significant 

spatial and spectral distortions occur. The overall indexes of both CS and MRA-based 

methods are lower and the fusion effect is poor. In general, the LG-HSSRN can effectively 

reduce the spatial and spectral distortions and retain the structural and spectral infor-

mation as much as possible. 

Table 7. Quantitative evaluation metrics for the different real datasets. 

 WorldView-2 GaoFen-2 QuickBird 

 QNR Dλ DS QNR Dλ DS QNR Dλ DS 

Reference 1 0 0 1 0 0 1 0 0 

GS 0.7875 0.0765 0.1471 0.8387 0.0254 0.1393 0.7973 0.0279 0.1797 

PRACS 0.8577 0.0497 0.0973 0.8298 0.0596 0.1175 0.8073 0.0592 0.1417 

Wavelet 0.8670 0.0805 0.0569 0.8226 0.0806 0.1051 0.7917 0.1616 0.0556 

MTF-GLP 0.8094 0.0176 0.1759 0.7865 0.0234 0.1945 0.8133 0.0647 0.1303 

PNN 0.9089 0.0215 0.0710 0.8794 0.3540 0.0882 0.8923 0.0366 0.0737 

MSDCNN 0.9206 0.0326 0.0482 0.8916 0.0627 0.0486 0.9135 0.0381 0.0502 

MUCNN 0.9520 0.0304 0.0179 0.9327 0.0162 0.0518 0.9292 0.0327 0.0392 

Pansformer 0.9545 0.0304 0.0154 0.9455 0.0182 0.0369 0.9351 0.0261 0.0396 

LG-HSSRN 0.9750 0.0110 0.0140 0.9592 0.0153 0.0258 0.9479 0.0145 0.0380 
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3.6. Performance Verification of Network Modules 

Since the texture-transformer (TT), Multi-Dconv transformer (MDT), and MSCA 

modules are the main contributions we present, we focus on performance validation of 

these modules. Table 8 shows the data results of our module validation on the 

WorldView-2 dataset. Figure 16 shows its visual comparison results. 

Table 8. Quantitative evaluation metrics of different modules in the WorldView-2 dataset. 

  TT MDT MSCG SAM ERGAS CC UIQI Q4 

(1) W/O(TT)  ✓ ✓ 1.8094 3.3359 0.9742 0.9624 0.9532 

(2) W/O(MDT) ✓  ✓ 3.5611 3.4647 0.9860 0.9526 0.9467 

(3) W/O(MSCG) ✓ ✓  2.9203 4.1828 0.9728 0.9517 0.9426 

LG-HSSRN All ✓ ✓ ✓ 1.5060 2.9222 0.9882 0.9731 0.9645 

In Experiment 1 we removed the texture-transformer module, and in Experiment 2 

we removed the Multi-Dconv transformer module. Removing the texture-transformer 

module slightly decreases the metric, but the overall numerical performance remains at a 

certain level. After removing the Multi-Dconv transformer module, it is obvious that the 

SAM spectral metric increases and the overall image evaluation metric Q4 decreases sig-

nificantly. This indicates that the Multi-Dconv transformer module is indispensable for 

the model. 

     

     

W/O(TT) W/O(MDT) W/O(MSCG) Proposed GT 

 

Figure 16. Performance validation of different modules in the WorldView-2 dataset. 

In contrast, the metric data from Experiment 3 with the removal of the MSCA module 

shows that similar high-resolution feature aggregation is essential for the pansharpening 

task. The MSCA module also plays a key role in the whole network. 

Figure 16 shows the corresponding visual comparison plots. It can be seen that after 

removing the Multi-Dconv transformer and the MSCA module respectively, the red build-

ings in the local zoomed image appear lighter in color and the overall error increases. This 

also reflects the importance of several components from the side. 
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4. Discussion 

Based on the analysis of the simulated and real experimental results in Sections 3.4 

and 3.5 and the module performance check in Section 3.6, we give a final summary and 

discussion in this section. First, for the quantitative analysis and visual effect comparison 

of eight different comparison methods on the WorldView-2, GaoFen-2 and QuickBird da-

tasets, we found that the GS and PRACS methods generally show spectral distortion, 

while their overall spatial quality is not too high and the coupling is poor for different 

datasets. Wavelet and MTF-GLP, two MRA-based methods, on the other hand, show sig-

nificant spatial distortion, and the spatial quality of their generated results is too low, both 

in terms of metric data and visual perception. Among the deep learning-based methods, 

the PNN has different fusion effects on different datasets, poor algorithm robustness, and 

obvious spectral and spatial distortion, which indicates that the shallower network cannot 

fully acquire the deep features. The MSDCNN can fully improve the spatial quality on the 

basis of the PNN, and the structural information of the generated images is relatively 

clear, but the spectral distortion still exists. The MUCNN has good spectral retention and 

its spatial effect is relatively high, but the enhancement of detailed information is not suf-

ficient, i.e., the enhancement of texture information is not sufficient. Pansformer can ob-

tain relatively good spectral and spatial retention on some datasets. However, the overall 

robustness of the model is slightly lacking. The enhancement of some detailed information 

still needs to be improved. 

The LG-HSSRN, on the other hand, can improve the overall image quality by effec-

tively extracting global and local information. By focusing on the extraction of both chan-

nel and spatial features, our proposed model is also able to extract the corresponding fea-

tures from both spatial and spectral perspectives for mass spectral images. Finally, the 

MSCA module is able to integrate and map the acquired features to high resolution with 

high representational power, which is crucial for overall image quality improvement. Sim-

ulated and real experiments on the three datasets and the final component validation ex-

periments demonstrate the good spatial and spectral retention of our model. 

In general, the proposed LG-HSSRN effectively captures spatial and channel depend-

encies from both global and local perspectives, achieves feature extraction from multiple 

sources images at multiple levels and perspectives, and fuses them by means of high-res-

olution representations. Compared to CNN-based pansharpening methods, our method 

extracts more comprehensive features; compared to other transformer-based fusion archi-

tectures, we not only capture long-range dependencies from a spatial perspective, but also 

extract non-local information from a channel perspective, which takes into account the 

spectral dimensionality of spectral images. 

Of course, our proposed approach still has shortcomings in that it does not do much 

to deal with the redundant and discrepant information between the PAN and MS images. 

In future work, we will further modify the model to achieve efficient, low-redundancy 

image fusion. In addition, we intend to apply the model to hyperspectral and multispec-

tral images fusion work to achieve cross-channel feature extraction of high-dimensional 

spectral images. 

5. Conclusions 

In this paper, we propose the LG-HSSRN for the fusion of remote sensing images. 

We use an LGFE module to capture local and long-range dependencies. A texture-trans-

former module is designed not only for learning texture features between images, but a 

Multi-Dconv transformer module is added for obtaining cross-channel letter context in-

formation in the global feature extraction module using the characteristics of PAN and 

MS images. Moreover, to better fuse the images, an MSCA module is used to obtain more 

representational high-resolution features. Finally, the results of simulations and real ex-

periments on WorldView-2, GaoFen-2 and QuickBird datasets show that the LG-HSSRN 

exhibits the most superior performance. 
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Abbreviation 

The abbreviations for all key terms in this article are explained below: 
MS  Multispectral 

PAN Panchromatic 

HRMS High-resolution multispectral 

LRMS Low-resolution multispectral 

CNN Convolutional neural network 

LG-HSSRNLocal-global based high-resolution spatial-spectral representation network

LGFE Local-global feature extraction 

MSCA Multi-scale context aggregation 

MSFF Multi-stream feature fusion  

TT Texture-transformer 

MDT Multi-Dconv Transformer 

MSRB Multi-scale residual block 

Dconv Deep convolution 

ERGAS The relative global synthesis error 

SAM Spectral angle mapper 

CC Correlation coefficient 

UIOI/Q4 Universal image quality index and its extended index 

QNR Reference-free quality index 
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