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Abstract: The leaf area index (LAI) is a direct indicator of vegetation activity, and its relationship with
the normalized difference vegetation index (NDVI) has been investigated in many research studies.
Remote sensing makes available NDVI data over large areas, and researchers developed specific
equations to derive the LAI from the NDVI, using empirical relationships grounded in field data
collection. We conducted a literature search using “NDVI” AND “LAI” AND “crop” as the search
string, focusing on the period 2017-2021. We reviewed the available equations to convert the NDVI
into the LAI, aiming at (i) exploring the fields of application of an NDVI-based LA, (ii) characterizing
the mathematical relationships between the NDVI and LAl in the available equations, (iii) creating
a software library with the retrieved methods, and (iv) releasing a publicly available software as a
service, implementing these equations to foster their reuse by third parties. The literature search
yielded 92 articles since 2017, where 139 equations were proposed. We analyzed the mathematical
form of both the single equations and ensembles of the NDVI to LAI conversion methods, specific
for crop, sensor, and biome. The characterization of the functions highlighted two main constraints
when developing an NDVI-LAI conversion function: environmental conditions (i.e., water and
light resource, land cover, and climate) and the availability of recurring data during the growing
season. We found that the trend of an NDVI-LAI function is usually driven by the ecosystem water
availability for the crop rather than by the crop type itself, as well as by the data availability; the data
should be adequate in terms of the sample size and temporal resolution for reliably representing
the phenomenon under investigation. Our study demonstrated that the choice of the NDVI-LAI
equation (or ensemble of equations) should be driven by the trade-off between the scale of the
investigation and data availability. The implementation of an extensible and reusable software library
publicly queryable via API represents a valid mean to assist researchers in choosing the most suitable
equations to perform an NDVI-LAI conversion.

Keywords: field crop; leaf area index; normalized difference vegetation index; remote sensing; SaaS;
software component

1. Introduction

The leaf area index (LAI) is defined as the ratio of the one-sided leaf surface area per
unit ground surface area [1]. The LAI is directly related to the crop growth dynamics,
the geometry of the vegetation canopy, as well as to ecological processes at a global and
regional scale [2]. The LAl is often used in modeling biophysical processes and represents
a key input for crop growth estimation and yield forecasting activities [3,4]. The reliable
assessment of the LAI is therefore a major concern; however, many related factors are
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far from being trivial, such as the complexity of the canopy architecture, the internal
arrangement of leaves, and the background effects of the soil [5].

The LAI can be either directly measured by destructive leaves sampling or indi-
rectly assessed using devices such as a ceptometer or LAI-2000 [6]. Both approaches are
labor-intensive, time-consuming, and expensive [7,8]. Furthermore, although these in situ
techniques can be accurate, they are not practical for the spatially explicit and continuous
monitoring of an LAI over large geographic areas [9]. Remote sensing has then been widely
used to fill these gaps by delivering timely LAI data. Advances in remote sensing infras-
tructure have led to relevant improvements in mapping and monitoring crop dynamics, as
well as in crop yield forecasting [10]. The advantage of using a remote sensing technique is
its applicability at multiple scales, according to the study objective and the sensor used:
from global applications for agro-ecological and agro-climatic studies, to the sub-field scale
for precision farming [5].

There is a strong interest in developing methodologies for the remote estimation of
the LAI[11,12], to be used as an indicator of crop vegetation status [13] or to be assimilated
into crop growth models [14,15]. Several remote sensing techniques for LAI estimation
have been explored at different spatial scales and over different canopy structures [2,3,16].
Empirical methods are one of the most widespread techniques to estimate the LAI, and they
mainly consist of exploiting the correlations between the LAI and some vegetation indices
(VIs). VIs are widely used in remote sensing, primarily due to their easy derivation and
applicability [11]. They are specific combinations of various spectral bands which allow for
evaluating the plant status from images. Because the vegetation shows a strong absorption
in the red spectral range (depending on plant chlorophyll) and a high reflectance in the near-
infrared bandwidth (depending on the intercellular structure of the leaves mesophyll) [17],
VIs combining these spectral responses may provide an indicator of vegetation “greenness”,
and hence a proxy of the LAI and chlorophyll content [18]. Accordingly, a simple ratio
(SR) [19], normalized difference vegetation index (NDVI) [20], and soil-adjusted vegetation
index (SAVI) [21] are among the most used VIs to estimate the LAI [7].

The NDVI is, by far, the most used and stable VI for estimating the LAI [5]. Neverthe-
less, its relationship with the LAl is essentially non-linear [22], showing high sensitivity to
changes in the crop canopy at early growth stages (low LAI) and saturating when the crop
canopy becomes dense [2,9]. New approaches have been proposed to overcome this limit,
by using, for instance, spectral regions in the green and red edge [23-25]. However, data
from the red-edge spectral region are not always available, and the green band is usually
available at a coarser spatial resolution than other bands [22]; consequently, the derivation
of the LAI from the NDVlI is still widely applied in the literature.

The soundness of the empirical equation correlating the NDVI and LAI depends on the
variability and quality of the data in the specific conditions tested [8]. Many research studies
investigated the crop-specific relationship between the LAl and NDVI at different times,
sites, and biomes [8,26-28]. However, the robustness and the transferability of empirical
LAI-NDVI relationships to other regions may potentially be altered by many factors, such as
sun-surface sensor geometry, crop management practices, and environmental and climatic
conditions [7]. Moreover, the canopy cover reflectance depends on multiple variables
related to crop seasonality and distribution patterns [29,30]. Consequently, a plethora of
NDVI-based LAI equations have been proposed and published in the literature, deriving
from applications in different regions, on different crops, and with different remote sensors.

Shedding light on the use of the NDVI to estimate the crop LAl is then a key field
of investigation to unravel the different methodological approaches and practical aspects
covered by the equations proposed in the literature so far. The objective of the work is
therefore to perform a quantitative assessment of the state-of-the-art of the methodologies
used to estimate the LAI from the NDVI in agriculture, by (i) exploring the use of an NDVI-
based LAI in the literature, (ii) characterizing the NDVI-LAI algorithms available in the
literature in terms of crop, type of equation, sensor, and biome, (iii) creating a library with



Remote Sens. 2022, 14, 3554

3of 14

the NDVI-LAI algorithms available in the literature, and (iv) releasing a publicly available
software as a service (SaaS) to integrate remote sensing data with crop simulation models.

2. Materials and Methods
2.1. Collecting and Characterizing the NDVI-LAI Equations

We conducted a literature search on agriculture and crops using Google Scholar
database, focusing on articles, conference proceedings, reviews, book chapters, notes,
articles in press and letters, published in English language. We used “NDVI” AND “LAI”
AND “crop” as search string, focusing on the period 2017-2021. Only the publications
where the conversion equation was reported were retained in the analysis.

The crops under investigations were wheat, maize, barley, rice, vineyard, soybean,
esunflower, sugarcane, pasture, poplar plantations, and mixed land cover.

We extracted the NDVI-LAI conversion equation and categorized the mathematical
form as: linear, exponential, power, polynomial, and logarithmic; when present, we also
reported the coefficient of determination (R?) as accuracy index.

The sensors used to derive NDVI values were characterized (i.e., field, airborne, or
spaceborne), and we grouped them in four categories according to their spatial resolution:
very high (<1 m), high (1-10 m), moderate (10-30 m), and low (>30 m).

Finally, we extracted the geographic coordinates (latitude and longitude) of the experi-
mental field where the study was executed. For those articles where the coordinates were
not clearly stated, we referred to the geographic location of the region, city, or county cited
in the text. A bioclimatic attribute was assigned to each NDVI-LAI equation, by intersecting
the equation dataset with the Ecoregion map of the world (https:/ /ecoregions.appspot.com,
accessed on 23 May 2022 [31]) using a Geographic Information System (GIS) environment
to derive the biome category, i.e., ecosystems with similar climate, topography, and soils,
and characterized by distinctive association of plants and animals [32]. We grouped the
biomes identified into: Xeric, Mediterranean, Temperate, and Tropical.

The resulting dataset entailed the following attributes for each NDVI-LAI equation: (i) the
equation type, (ii) the coefficient of determination, (iii) the sensor, (iv) the spatial resolution of
the sensor, (v) the crop, and (vi) the biome of the experimental field (https://doi.org/10.6084/
m9 figshare.20359437.v2). When the same equation was used in the same publication for
different crops, sensors, or biomes, we replicated the corresponding record with all relevant
attributes. To characterize each equation, we considered the positive part of the whole
NDVI range of existence (i.e., from 0 to 1) and computed all the possible corresponding
LAI values according to the different NDVI-LAI conversion methods identified. As for
NDVI saturation, when LAI values were not upper limited (e.g., logarithmic equations), the
maximum LAI value was assigned equal to the maximum value reported in the correspond-
ing publication. The results of the different equations have been analyzed by grouping
the NDVI-LAI values per crop, equation type, sensor spatial resolution, and biome and
exploring the corresponding confidence intervals together with the distribution of the R?
values declared in the articles.

2.2. Developing a Software Library Implementing NDVI-LAI Equations

Conversion equations retrieved from literature were implemented in a software com-
ponent which provides a structured repository of methods to estimate crop LAI from NDVI
values. NDVI-LAI equations were categorized by the sensor they were derived from, the
crop they refer to, and the biome of the experimental field.

The equation library was implemented in a software component written as C# li-
braries and compiled for the Windows NET 4.6.2 framework. Software design follows the
guidelines of the BloMA modeling platform [33], which aims at encapsulating modeling
problems into discrete, specific domain, and reusable software units (components). Within
this framework, the definition of the input/output (I/O) data structures is separated from
the modeling approaches which use them, according to an implementation of the Bridge
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pattern [34], in order to let developers to further extend available algorithms without any
change in data structures.

Equations are implemented as simple strategies (https://doi.org/10.6084 /m9.figshare.
20359437.v2), which are units of code (C# classes) isolating a single algorithm for the
conversion of a specific proxy into state/rate variables of the cropping system (e.g., satellite-
derived NDVI into LAI). Composite strategies allow to compose simple strategies into
higher-level procedures constituted by a sequential call of multiple strategies.

The component also includes methods to perform quality check of input (pre-conditions)
and output (post-conditions) variables and equation parameters, according to their ontol-
ogy (minimum, maximum, and default value, unit, type, and description).

The algorithms included in the library are fully documented at https:/ /doi.org/10.6084/
m9.figshare.20359437.v2.

2.3. Release of Software as a Service (SaaS)

NDVI-LAI conversion functions are served as RESTful APIs, a well-established soft-
ware architectural style among services offered on the internet, and an open standard in
data transmission and publication in the Cloud. API call enables users to query the model
component either by single functions or multiple function attributes (crop, sensor, biome)
via web, obtaining in the latter case a set of estimations as a result.

The RESTful protocol is developed on top of the HTTP protocol. HTTP calls and
responses are manageable, with well-established libraries, in virtually every technological
stack, e.g., Java, Python, C#, R. The data exchange format chosen is JSON.

The BioMA component has been adapted to run in an SaaS architecture, relying on
Microsoft Azure as Cloud services provider, and any piece of elaboration is executed by
an instance of an Azure Function, a stateless unit of elaboration. Therefore, the use of
the service does not require any on-premises installation by models” user, as the business
logic is contained and executed on the server side. Consequently, updates to the business
logic do not require any further installations and, in case of updates to the business logic,
no new documentation is to be sent to users unless the invocation interface changes.
Furthermore, no functional dependencies need to be installed on the invoking client side,
apart from libraries to manage HTTP calls and to parse and serialize JSON calls and
responses payloads. Finally, third party access can be configured on the server side,
allowing calls to be complemented with an access token that can be granted to a party
having an agreement with the APIs” publisher. The documentation of the RESTful API call
is reported in the Supplementary Material File S1.

2.4. Application Examples

To test the applicability of the developed SaaS, we used wheat and maize as case
studies, selected as representative of fall-winter and summer crops. We focused on selected
study plots where we are confident about the crop cultivated to avoid spurious pixels and
signal noises, while ensuring a meaningful spatial heterogeneity.

We referred to the maize and wheat cadastral maps of 2018 provided by the Italian
National Statistics Institute (ISTAT) and selected two plots where the field coverage was
largely homogeneous: wheat in Southern Italy (Foggia, Mediterranean biome) and maize
in Northern Italy (Vicenza, Temperate biome). Then, we referred to the freely available
Sentinel 2 satellite data because of the high spatial resolution, to minimize the probability
of having mixed pixels. So, for each plot, we downloaded the Sentinel 2 red and NIR data
for the year 2018 and computed the NDVI for the available images. To reduce the noise and
have a regular time-series, we computed the NDVI monthly maximum value composite
(MVC) [35], obtaining 12 NDVI images per year per pixel. Pixel values were then averaged
to obtain the mean annual NDVI profile of each plot. NDVI values were converted into
LAI using the SaaS and selecting equations based on three different use scenarios (Table 1)
defined as the intersection between: (i) crop- and biome-specific equations, regardless
of the spatial resolution; (ii) crop- and spatial resolution-specific equations, regardless of
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the biome; (iii) biome- and spatial resolution-specific equations, regardless of the crop.
As an example, for maize we selected: maize-specific and Temperate equations, maize-
specific and high-resolution equations, and Temperate and high-resolution equations. To
the contrary, for wheat, we selected: wheat-specific and Mediterranean equations, wheat-
specific and high-resolution equations, and Mediterranean and high-resolution equations.
Finally, the resulting LAI seasonal profiles were analyzed according to each case study and
use scenario.

Table 1. List of the attributes of the two case studies and corresponding use scenarios. {1 indicates
the intersection between two specific attributes of the case studies.

Case Study Attributes
Features Case Study 1 Case Study 2
Crop Maize Wheat
Biome Temperate Mediterranean
Sensor Sentinel 2 Sentinel 2

Use scenarios (queries submitted to SaaS service)

Crop (1 Biome Maize [1 Temperate Wheat (1 Mediterranean

Crop (1 Spatial resolution Maize (1 High Wheat (1 High

Biome (1 Spatial resolution Temperate (1 High Mediterranean (1 High
3. Results

The literature search provided 92 articles from which 139 equations were extracted.
The number of equations for the different crops was 65 for wheat, 57 for maize, 17 for rice,
9 for barley, 6 for vineyard, 4 for sugarcane and pasture, 3 for soybean, 2 for sunflower and
mixed land cover, and 1 for poplar plantations. The characterization of the dataset as well as
the corresponding NDVI-LAI equations library are available at https://doi.org/10.6084/m9
figshare.20359437 .v2. For the sake of simplicity, in this work, only the results for maize and
wheat, which are the two most widely grown staple crops worldwide [36], are presented.

For all the equations identified, exponential and linear were the most frequent math-
ematical relationships proposed to convert the NDVI to the LAI in both crops (Figure 1).
While on maize the use of two forms was balanced (34% linear and 32% exponential), the
exponential form was largely the most used on wheat (47%). The exponential form actually
represents the most widely accepted relationship between the NDVI and the LAI, being
characterized by NDVI saturation at dense canopy cover; yet, linear equations are still used
when few experimental LAI values are collected, reflecting a specific sampling moment
rather than the whole growing season.

The Temperate biome was the most frequent on both maize (67%) and wheat (57%),
followed by the Tropical (19%) on maize, and the Mediterranean (16%) and Xeric (16%) on
wheat (Figure 1). This distribution well reflects the environmental suitability of the two
crops: maize is a C4 plant with a high productivity under well-watered conditions, while
wheat is a winter rainfed cereal also adapted to semi-arid environments.

According to Figure 1, the mostly used sensors to derive the NDVI data on maize
were moderate-resolution satellites (41%), like Landsat, and very high spatial resolution
sensors (25%), like field-based or airborne instruments. To the contrary, on wheat, we
found the prevalence of field and drone cameras (37%), followed by high- (25%) and
moderate-resolution (23%) satellites. The larger dimension of the archive, the free image
availability, and the higher temporal resolution may explain the predominance of the
moderate-resolution satellites with respect to those with very high and high spatial detail.
Furthermore, satellites with 30 m pixel size may still be suitable for crops with homogeneous
and large field coverage, like maize and wheat.
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Maize Wheat

Equation type
Linear
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. 1-10m
B 1030m
B -zom

Figure 1. Pie charts describing the percentage of equations for maize and wheat sorted by (top) mathe-

matical form (total number of collected equations for maize, n = 57; n = 65 for wheat), (middle) biome
(n = 57 for maize; n = 66 for wheat), and (bottom) sensor spatial resolution (1 = 60 for maize; n =72
for wheat).

The characterization of the NDVI-LAI conversion equations was made in terms of the
sensor spatial resolution, biome, and equation type, and the corresponding computation
of the LAI values starting from the NDVI positive range of existence (i.e., from 0 to 1) has
provided the results shown in Figures 2—4.

On maize, most of the NDVI-LAI conversion equations had a linear relationship
(n = 20), developed in the Temperate zones (n = 35), and used moderate-resolution satellite
images (n = 24). On the contrary, on wheat, the equations mainly used an exponential form
(n = 31) and were mainly applied in Temperate biomes (n = 37) using field or airborne data
(n=27).

On both crops, the narrowest 25-75th percentile function distribution area corre-
sponded to the exponential form, for which the highest R? values (R? > 0.5) have been also
reported (Figure 2). This highlights that, in the selected studies, the exponential form is
more accurate with respect to other forms, like, e.g., the linear relationship. In this latter
case, several inconsistencies emerged, e.g., a largest divergence among different equations,
an R? lower than 0.5, and an LAI = 0 when the NDVI < 0.3. The linear equation form is
generally used when only a few spot data during the season are available and is then less
representative of the actual non-linear relationship between the NDVI and LAI during the
season. It is noteworthy that all the function ensembles, regardless of the equation type,
tend to follow an exponential dynamic with a saturation around the LAI values equal to 5.
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Figure 2. Correlation plots between the positive part of the normalized difference vegetation index
(NDVI) existence range and leaf area index (LAI) for maize and wheat, sorted by mathematical form.
The grey shadows indicate the 5-95th (light grey) and the 25-75th percentile (dark grey) of the LAI
values obtained from the equations considered. The half-violin plot shows the R? distribution; n is
the number of equations.

Maize Wheat
1.001 -
0.751 n=5 n=11 | &
0.504 1.0 1.0 j %
0.251 05 05 3
0.004 0.0 0.0 e
1.004
0.75 n=36 n=37 g
0504 1.o-i| 1.o-q 3
0.251 051 051 %
S 0004 00+ (X EE—
Q 1004 =
Z
0.75+ n=10 n=7 |4
0.50 101 01 s
0.251 051 <| 054 8
0.00- 00+ (X -
1.001 -
0.75 / n=6 n=11
x
0.504 1.0 - 1.0 5
o
0.254 05 05
0.004 00 00

0123456780910111213 0123 456 7 8 910111213
LAI
Figure 3. Correlation plots between the positive part of the normalized difference vegetation index
(NDVI) existence range and leaf area index (LAI) for maize and wheat, sorted by biome. The grey
shadows indicate the 5-95th (light grey) and the 25-75th percentile (dark grey) of the LAI values
obtained from the equations considered. The half-violin plot shows the R? distribution; n is the
number of equations.
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Figure 4. Correlation plots between the positive part of the normalized difference vegetation index
(NDVI) existence range and leaf area index (LAI) for maize and wheat, sorted by sensor spatial
resolution. The grey shadows indicate the 5-95th (light grey) and the 25-75th percentile (dark grey) of
the LAI values obtained from the equations considered. The half-violin plot shows the R? distribution;
n is the number of equations.

As for the biomes where the NDVI-LAI equations have been developed, both for
maize and wheat, the Temperate conditions were those mostly studied (Figure 3). However,
the highest R? values (R? > 0.5) have been recorded in the Mediterranean regions, where
the narrowest 25-75th percentile area was also observed, suggesting that the NDVI-LAI
algorithms developed for the Mediterranean biomes are mutually more consistent with
respect to other regions. To the contrary, the largest divergence among the different
equations was detected in the Temperate biomes for wheat and the Tropical biomes for
maize, where, in addition, most equations presented values of the LAI equal to zero with
NDVI values up to 0.3. These bioclimatic conditions are those with the highest variability
thanks to the presence of a wide spectrum of environments from dry to wet; thus, the
functions developed tend to each cover a different range of environmental conditions and
have distinct behaviours.

The 25-75th percentile of the equation distribution area was narrower for low spatial
resolution sensors on maize, indicating a higher consistency among the corresponding
equations (Figure 4). The same result was obtained on wheat, where high and moderate
resolutions showed a larger width of the 25-75th percentile distribution. It is to be noticed
that most equations with 1-10 m spatial resolution on wheat and 10-30 m on maize
presented an LAI = 0 when the NDVI < 0.4. The LAI tended to saturate at values around
5 on both crops and considering all spatial resolutions. The best accuracy was associated
to the NDVI-LAI equations derived from low-resolution images (R? > 0.5) on both crops.
Our results highlighted a higher consistency in the LAI estimation from equations using
low-resolution satellites rather than very high resolution data, on both crops; this could be
due, on one side, to the higher spatial heterogeneity detectable with fine-scale observations,
and, on the other side, to structural errors sensor-dependent associated to human-based
scanning, detection time, flight conditions, etc. These issues tend to be overcome with
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satellite-based observations that flatten intra-pixel heterogeneity and ensure recording
consistency and noise-removal in the pre-processing phase.

Examples of the application of the RESTful API to perform the NDVI-LAI conversion
are presented in Figure 5; the LAI seasonal dynamics derived from all the equations using
the MVC monthly NDVI data as input are reported for the maize and wheat plots. The
LAI maximum values are in line with the literature data for wheat grown in Foggia (max
LAIL 6-7, [37]) and maize in Veneto (values > 6, [38,39]). On maize, the ensemble of the
LAI profiles obtained combining crop- and biome-specific equations was the one with the
highest number of functions (n = 36), but at the same time showing the lowest variability
from April to October, considering the 25-75th and the 5-95th percentile. This means
that all the functions built for maize in the Temperate region tend to behave similarly and
are consistent in the derived LAI values, despite that they were developed using data
from other sensors than Sentinel 2. To the contrary, selecting a combination of crop- and
spatial resolution-specific equations reduces the number of available equations (n = 10),
constraining the choice to a few alternatives, developed in different biomes. As for the
wheat plot, the largest number of functions was recorded in the crop- and spatial resolution-
specific equations combination (n = 18). However, the ensemble of functions leading
to the lowest LAI variability from February to May, at least for the 25-75th percentile,
was derived using the spatial resolution- and biome-specific combination which has few
functions (n = 5), but similar. This means that choosing few functions developed in the
Mediterranean biome and using Sentinel 2-like sensors, even if for different crops, ensured
a higher consistency than relying on wheat-specific equations, in terms of both the LAI
values and seasonal trend.
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Figure 5. Leaf area index (LAI) seasonal profile of the case studies, computed from normalized
difference vegetation index (NDVI, dots) values according to the equations derived from the following
combinations of attributes: (top) crop- and biome-specific equations; (middle) crop- and spatial
resolution-specific equations; (bottom) biome- and spatial resolution-specific equations. The grey
shadows indicate the 5-95th (light grey) and the 25-75th percentile (dark grey) of the LAI values
obtained from the equations considered.
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4. Discussion

The key importance of the LAI as a biophysical parameter to characterize crop growth
and development is widely recognized and largely explored across disciplines [40—-42]. In
remote sensing research, a major concern is the quantitative assessment of the LAI [8,11];
currently, there are both generic solutions based on proprietary software algorithms (such
as ESA-SNAP) or ready-to-use data provided as satellite products (such as MODIS), and
crop ad hoc approaches, developed by means of field measurements, spectral indices,
and empirical models. One added value of our contribution with respect to the already
available generic LAI products lies exactly in the efforts made by authors of the articles we
derived the equations from. Using generic LAI products flattens all the possible variability
in the LAI values associated with different crop types, different bioclimatic environments,
and the different sensors used. The reason why so many authors did not rely on global LAI
products but struggled to develop their own NDVI-LAI conversion equations is the need
to have realistic data according to their own cropping systems. With this work, we tried to
organize and explore this complexity, adding further value to that provided by the involved
scientific literature. In this perspective, the characterization of the different NDVI-LAI
equations may enable scientists to also monitor, model, and map the crop growth process,
going beyond the field extent and considering wider area coverage, by using existing and
upcoming satellite missions, and according to their own research purpose.

A deeper understanding of the state-of-art of the use of vegetation indices, like the
NDVI, to estimate the crop LAI is required to grasp the limits and potentialities of the
methodologies proposed so far. This work contributed to fill this research gap by reviewing
the use of the NDVI to derive the LAI and releasing a RESTful API to make a compendium
of (i) the NDVI-LAI equations available in the recent literature, (ii) their characterization,
and (iii) their expert-based selection.

The characterization of the NDVI-LAI equations highlighted two main constraints
when developing a function: the environmental conditions and the availability of recurring
data during the growing season. The heterogeneity of environments in terms of resource
availability represents a key discriminant in the development of an NDVI-LAI equation.
According to our results, the main differences among functions emerged in biomes with
the highest variability in terms of water availability (i.e., biomes which include dry to
wet environments); here, the available equations tend to each cover a specific range of
bioclimatic conditions, and therefore show a distinct behaviour. This is mainly due to the
crop-specific demand of resources, such as water and light, that is not only the expression
of the crop genotype but also of the management and weather conditions [43,44]. The latter
determine the form and behaviour of the NDVI-LAI function, directly by affecting the crop
cycle (e.g., anticipating or delaying the achievement of phenological phases, shortening or
lengthening the growing season), through precipitation and temperatures, and indirectly
by influencing the availability of reliable, not-cloudy satellite data.

Having at one’s disposal a dense time-series of NDVI data allows to develop a more
realistic NDVI-LAI equation, able to represent the whole crop season and take into con-
sideration the different crop phenological phases. In this sense, high temporal resolution
satellites, like MODIS, though providing low spatial resolution data, are especially suitable
for crop LAI estimation over large areas [45]. Furthermore, unlike high-resolution satellite
missions such as Sentinel 2, MODIS operationally produces temporally aggregated images
(i.e., composites) which consider the most reliable observations within a time window and
therefore are little affected by cloud cover [10]. Our results confirmed a higher consistency
in the LAI derivation with equations using low rather than very high spatial resolution
satellites on both crops, the former ensuring good quality data at a regular time interval
throughout the growing season. Accordingly, when only a few spot data are available, the
linear equations are commonly used, reflecting single moments during the season rather
than the whole growing process of the crop. To the contrary, when a large number of NDVI
seasonal observations are available, the exponential relationship is mostly used, being
capable of reflecting non-linearities and the NDVI saturation at canopy close stages. Our
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results showed how, regardless of crops, biomes, and sensors, the NDVI-LAI relationship
tends to plateau around an LAI ~ 5. This evidence has been confirmed by other authors,
e.g., [8,26] underlined that as the LAI exceeds 2, the NDVI is generally insensitive to detect
LAI changes in grasses, cereals, and broadleaf crops; [46,47] found an exponential relation-
ship between the NDVI and LAI and highlighted that the NDVI is not sensitive at LAI > 3
on wheat, soybean, and corn. Such evidence underlines that the choice of the mathematical
form, e.g., exponential, power, or logarithmic, requires meaningful parameters (e.g., in
terms of saturation) in order to reliably reflect the crop growth process and phenology.

The physical and biological properties of a vegetation canopy vary along with the
phenological development, affecting the seasonal profiles of the NDVI, and in turn of the
LAI [2]. When considered, the phenological component was generally taken into account,
developing as many conversion functions as the different phenological events (i.e., tillering,
elongation, flowering, grain-filling, and maturity; e.g., [48]). However, even though the crop
phenological evolution is essential to characterize the LAI-NDVI relationship, it has been
largely neglected in the available studies, which mostly use a single regression equation to
only reproduce the period of “green” and active vegetation, without considering the early
beginning and the end of the growing season [2]. On the other hand, data availability is an
unavoidable constraint that necessarily determines methodological choices; as observed
by [49] while developing a physically based algorithm for the estimation of the LAI from
NDVI observations, where “the algorithm must be viewed within a framework dominated
largely by practical consideration, and to a lesser extent by accuracy”.

5. Conclusions

Our study demonstrated that the choice of the most suitable NDVI-LAI equation
depends on data accessibility, the scale of the investigation, and the location of the study
area, and therefore a trade-off of priorities is needed. In this sense, this study underlined
that there is no need for preferring one single equation with respect to an ensemble of
different equations and that knowing the variability of the LAI estimations allows for
associating a degree of reliability /uncertainty to the specific approach: rather than being a
question of estimation accuracy, it is a problem of output consistency. To the best of our
knowledge, this is something never done before and with useful implications for scientists
who cannot rely on field-observed LAI data for different reasons (e.g., a lack of resources,
retrieval difficulties, a large-scale approach, high temporal resolution requirements, etc.).

This work contributed to the development of a RESTful API to foster the choice of
the most suitable NDVI-LAI equations for further studies. The main strengths of this API
are (i) the practicality of collecting a battery of equations in a single component, (ii) the
possibility of comparing the outputs of different equations with the same input NDVI
dataset, and (iii) the opportunity for checking the unrealistic outputs when the equations
are applied on new case studies. As for technological aspects, software architecture allows
an ease of maintenance and ensures extensibility, concerning both new equations and input
bands. The release of an SaaS product solves long-standing issues related to the installation,
configuration, and updating of the software, transferring problems connected to computing
capacity to the service provider. Placed between satellite data sources and crop models,
the SaaS could enable performing large-scale simulations, overcoming issues related to the
application limits of the single functions by relying on the “wisdom of the crowd” of the
function ensemble. Furthermore, the software service is ultimately global and available,
and it can be crowdsourced to users all over the world for verification, correction, and
improvement to expand the usability of the service.

Exploiting the potentialities of artificial intelligence methods for interpreting remote
sensing data and estimating vegetation characteristics, in terms of high computational
efficiency and the ability to accurately approximate complex non-linear functions, could
represent an alternative way to enrich the system and extract information from multi-
dimensional data, without subjective effects.
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