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Abstract: Long-distance multi-vehicle detection at night is critical in military operations. Due to
insufficient light at night, the visual features of vehicles are difficult to distinguish, and many missed
detections occur. This paper proposes a two-level detection method for long-distance nighttime
multi-vehicles based on Gm-APD lidar intensity images and point cloud data. The method is divided
into two levels. The first level is 2D detection, which enhances the local contrast of the intensity
image and improves the brightness of weak and small objects. With the confidence threshold set, the
detection result greater than the threshold is reserved as a reliable object, and the detection result
less than the threshold is a suspicious object. In the second level of 3D recognition, the suspicious
object area from the first level is converted into the corresponding point cloud classification judgment,
and the object detection score is obtained through comprehensive judgment. Finally, the object
results of the two-level recognition are merged into the final detection result. Experimental results
show that the method achieves a detection accuracy of 96.38% and can effectively improve the
detection accuracy of multiple vehicles at night, which is better than the current state-of-the-art
detection methods.

Keywords: long-distance; multi-vehicle detection; Gm-APD lidar

1. Introduction

In future information-based warfare, improving the situational awareness of the bat-
tlefield can effectively improve the overall control of the war. All major military powers
are strengthening the development and research of related technologies. The detection
and recognition of military objects is the key technology that affects battlefield situational
awareness [1–3]. The environment where military objects are located is more complex.
Plains, forests, and valleys may be their hiding places, and multiple objects can appear
simultaneously. Therefore, it is of great significance to carry out research on the detection
technology of multi-military objects on the battlefield in complex environments. Among
them, the detection of long-distance objects at night has specific challenges due to insuffi-
cient lighting at night and small objects. Vehicles are critical objects in military operations,
and it is of great significance to detect long-distance, weak, and small vehicle objects
at night.

As a virtual image acquisition device, the camera has the characteristics of high
resolution, strong semantics, and simple data processing. It can provide more texture
detail information, color perception, and classification capabilities. However, it has limited
ability in distance estimation, is easily affected by ambient light, cannot provide adequate
information in low light and dark environments, and cannot effectively image vehicles
at night.

Infrared sensors are also widely used imaging devices. Any object with a temperature
higher than absolute zero emits infrared rays. The wavelength and intensity of infrared
rays emitted at different temperatures are different, which can better reflect the properties
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of objects. It can work in weak light and dark environments, but the image signal-to-noise
ratio is low and the edge is fuzzy, so it cannot distinguish occluded objects.

As one of the essential means of object detection, lidar has been widely used in military
operations [4–6] and civilian applications [7–10]. Lidar can work all day and is not affected
by the change of the gray illumination level in the two-dimensional image. In recent years,
single-photon lidar has been developed rapidly. This type of lidar has the advantages of fast
detection speed, high sensitivity, strong anti-interference ability, small size, easy integration,
long detection distance, and single-photon detection capability. Among them, the Geiger-
mode avalanche photodiode (Gm-APD) is a new type of detector [11,12]. The Gm-APD
is a single-photon detection device working in Geiger mode, which has single-photon
sensitivity and picosecond time resolution. Therefore, it can be used for long-distance
detection and is widely used in military operations. Gm-APD lidar can obtain the three-
dimensional distance information of the object by the time-of-flight method through the
time difference of laser light transmission and reception, and the relative two-dimensional
intensity information of the object can be obtained by the amplitude of the echo data. It
provides a reliable data source for multi-vehicle detection at night.

Lidar can acquire data in two dimensions, as shown in Figure 1. Figure 1a is the
intensity image. It can be seen that although the two-dimensional image has noticeable
gradient changes visually, there is no spatial structure, and the occluded object cannot be
distinguished only by the intensity image. Figure 1b is the point cloud data corresponding
to the intensity image of Figure 1a. Although it lacks the texture and gradient information
of the intensity image, it contains the three-dimensional position information of the object
in space and can better distinguish occluded objects in terms of spatial structure.
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Therefore, we propose a two-level detection model based on Gm-APD lidar which
uses the two-dimensional and three-dimensional information of lidar at the same time.
Due to the differences in the data structures of 2D images and 3D point clouds, different
network structures are used for the two forms of data. The data acquisition device is
a 64 × 64 area array Gm-APD lidar. The long-distance vehicle has fewer pixels on the
intensity image, and the corresponding point cloud data has fewer data points. Therefore,
eight-times interpolation is performed on the intensity image and point cloud data, and
the local contrast enhancement method is used for weak objects with different distances
from the intensity image. The network is divided into two levels. In the first level, the
YOLO network is used to detect the two-dimensional intensity image, and two confidence
thresholds are set: a high threshold θ1 and low threshold θ2. The detection result is greater
than the first-level detection result, and the object whose confidence in the detection result
is between θ1 and θ2 is set as the suspicious area. Next, the point cloud data are extracted
in the object box of the region, the point cloud classification network is trained to obtain
the classification score of the object, and the weight is set to comprehensively consider the
two detection results as the output of the second level. Finally, the detection results of the
two-level network are combined to obtain the final detection result.
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The main contributions of the paper can be summarized as follows:

1. To solve the problem of dim and small objects not being detected at a long distance,
the method of local contrast enhancement is adopted to effectively improve the
brightness information of weak and small objects, which can improve the accuracy of
object detection;

2. We propose a two-level detection network, which combines the two-dimensional
intensity information and three-dimensional range information of lidar, effectively
reducing the missed detection rate and improving the detection accuracy;

3. We propose an improved first-level object detection network. The backbone network
introduces the lightweight neural network of MobilNetv3, which solves the problem
of increasing the computational complexity of two-level networks without reducing
the detection accuracy of the network.

2. Related Work

In recent years, with the rapid development of various imaging devices, there has
been more research on vehicle detection at night. Pin Wang et al. [13] used a particle filter
algorithm to introduce nonlinear statistics for vehicle detection at night. Fuzzy theory was
introduced into video classification after the particle filter algorithm. Through this method,
object recognition was realized, and the goal of identifying the objects of night vehicles
was achieved. With the rapid development of computer vision and artificial intelligence
technologies, object detection algorithms based on deep learning have been extensively
studied [14–16]. These algorithms can automatically extract features through deep learning.
More and more researchers are applying deep learning methods to the detection of vehicles
at night. Danyang Huang et al. [17] proposed a depth network scheme, introduced a
corner location algorithm based on Bayesian methods, and used lamp pixels to obtain
more accurate corners and optical information with good generalization to assist in night
vehicle detection. Experimental results showed that the method achieved 97.2% and 96.86%
accuracy on the night vehicle detection dataset.

At present, vehicle detection is mainly based on visual images. The visual images at
night are not clear, and the details of vehicles are not clear. Most existing nighttime vehicle
detection techniques rely on paired-vehicle taillights or headlights [18–20]. However, when
multiple vehicles appear at the same time it is impossible to accurately match the headlights,
which leads to a large number of false detections, and in a dim environment weak vehicle
details cannot be presented in the visual image. Therefore, some researchers use thermal
infrared cameras to collect vehicle data at night. Thermal infrared cameras use the thermal
radiation characteristics of objects to preserve the details of weak objects at night through
thermal imaging. Shixiao Li et al. [21] proposed a car headlamp recognition method based
on thermal imager data acquisition. The results showed that the accuracy of the method
was 94.2%, and the recall rate was 78.7%. Although using thermal infrared images to
detect objects at night can improve the detection accuracy, the infrared thermal imager only
uses the two-dimensional plane information of the object. It cannot distinguish and detect
occluded objects well.

Lidar has recently received more attention as a device that actively obtains three-
dimensional information about an object. Therefore, more and more researchers are using
lidar and other sensors to detect vehicles. Yingfeng Cai et al. [22] proposed an application
of lidar and camera sensor fusion technology in vehicle detection to ensure high detection
accuracy. The network structure fully uses the depth information of a lidar point cloud
and RGB image for object detection. Heng Wang et al. [23] proposed a new clustering
algorithm to obtain candidate vehicles from point cloud data collected by preprocessed
LiDAR. A classifier trained by a support vector machine (SVM) algorithm was used to detect
vehicles from candidate vehicles. The authors in [24] proposed a variant of the generalized
learning system (BLS) with a unified spatial autoencoder (USAE) as a lightweight model
for recognizing 3D objects. The results showed that the average recognition accuracy of
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the model for vehicles as well as other objects was similar to the current state-of-the-art 3D
object recognition models.

The above lidar detection method data are mainly used to fuse with other sensors,
which require data registration. The operation is complex and may cause specific errors.
Moreover, the equipment used is based on scanning lidar data. This kind of lidar is charac-
terized by high resolution, good concealment, and a detection range of about 100m [25,26].
However, in military operations, it is necessary to strike long-distance objects precisely,
and the detection distance of 100m is far from enough. In contrast, the Gm-APD used in
this study has better long-distance detection capabilities, and the method proposed in this
paper only uses lidar data sources to obtain different types of data and uses its different
features to detect objects, which it has more of than others. The method of sensor data
fusion has better robustness.

3. Method

We used Gm-APD lidar to collect information on long-distance vehicles at night and ob-
tain intensity images and point cloud data through advanced reconstruction algorithms [27].
Due to the characteristics of the imaging principle, there is also echo information in the
background, resulting in excessive background noise in the point cloud data. It is not easy
to directly use this data for object detection. The lights of vehicles at night have obvious re-
flectance information in the intensity image. However, the echo of the long-distance object
is weak, and the image intensity value is close to the background. Therefore, a two-level
object detection network was proposed for the data characteristics of our Gm-APD lidar.
The contrast enhancement algorithm was used to process the weak long-distance objects
in the intensity image and 2D object detection was performed on the processed intensity
image as the leading judgment of the first-level network. Setting thresholds to screen out
suspicious object areas and using the 3D information features of the corresponding point
cloud data to make secondary judgments through the classification network can further
improve the detection performance.

3.1. Data

The data used in this study was obtained through a Gm-APD lidar fixed position, and
the dynamic vehicle data from a 330 m to 600 m distance on the road was collected at night.
The data acquisition scenario is shown in Figure 2.
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The details of the data are shown in Table 1. The specific collection time was from
20:37:19 to 21:23:50 at night. Twelve sets of data, a total of 6000 images, constituted the
night vehicle dataset of this study. It can be seen from the table that the data were primarily
dense objects, and some objects occupied a tiny pixel ratio in the image. The small object
data in the dataset are shown in Figure 3.
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Table 1. Night vehicle data details.

Time Number of Image Frames
Maximum Number of

Objects per Frame Minimum
Object Ratio

Image Minimum
Object Pixel Count

20:37:19 500 15 3.052 × 10−5 8
20:37:58 500 11 3.052 × 10−5 8
20:38:11 500 12 1.907 × 10−5 5
20:38:24 500 6 1.907 × 10−5 5
20:52:09 500 11 1.907 × 10−5 5
20:52:22 500 9 3.052 × 10−5 8
20:52:37 500 17 3.052 × 10−5 8
20:52:51 500 16 1.907 × 10−5 5
21:22:48 500 8 3.052 × 10−5 8
21:23:05 500 8 2.670 × 10−5 7
21:23:24 500 7 3.052 × 10−5 8
21:23:50 500 7 2.670 × 10−5 7

Remote Sens. 2022, 14, 3553 5 of 24 
 

 

The details of the data are shown in Table 1. The specific collection time was from 
20:37:19 to 21:23:50 at night. Twelve sets of data, a total of 6000 images, constituted the 
night vehicle dataset of this study. It can be seen from the table that the data were primar-
ily dense objects, and some objects occupied a tiny pixel ratio in the image. The small 
object data in the dataset are shown in Figure 3. 

  
(a) (b) 

Figure 3. Small object data in the dataset. (a) Small objects with a minimum of 8 pixels; (b) small 
objects with a minimum of 5 pixels. 

Table 1. Night vehicle data details. 

Time Number of Image 
Frames 

Maximum Number 
of Objects per 

Frame 

Minimum  
Object Ratio 

Image Minimum 
Object Pixel 

Count 
20:37:19 500 15 3.052 × 10−5 8 
20:37:58 500 11 3.052 × 10−5 8 
20:38:11 500 12 1.907 × 10−5 5 
20:38:24 500 6 1.907 × 10−5 5 
20:52:09 500 11 1.907 × 10−5 5 
20:52:22 500 9 3.052 × 10−5 8 
20:52:37 500 17 3.052 × 10−5 8 
20:52:51 500 16 1.907 × 10−5 5 
21:22:48 500 8 3.052 × 10−5 8 
21:23:05 500 8 2.670 × 10−5 7 
21:23:24 500 7 3.052 × 10−5 8 
21:23:50 500 7 2.670 × 10−5 7 

3.2. Adaptive Contrast Enhancement (ACE) Algorithm 
The Gm-APD lidar intensity is like an image generated by the intensity of the echoes 

emitted by the laser irradiating the object and then returning to the detector area array. 
The intensity image f(x,y)  can be expressed as: 

f(x, y) = H(x, y) + L(x,y)  (1) 

where L(x, y)  is the low-frequency part, which is obtained by low-pass filtering of the 
image. H(x,y)  is the high-frequency part, which is obtained by subtracting the low fre-
quency part from the original image. 

In this study, the detection of multiple vehicle objects at long distances was carried 
out. When the distance is long, and the emitted laser is interfered with by environmental 
factors such as atmospheric scattering in the air, the echo of the object is weak, and the 
generated intensity image has low contrast and is similar to the background. The ACE 
algorithm is different from other global image enhancement methods. This method uses 

Figure 3. Small object data in the dataset. (a) Small objects with a minimum of 8 pixels; (b) small
objects with a minimum of 5 pixels.

3.2. Adaptive Contrast Enhancement (ACE) Algorithm

The Gm-APD lidar intensity is like an image generated by the intensity of the echoes
emitted by the laser irradiating the object and then returning to the detector area array. The
intensity image f(x, y) can be expressed as:

f(x, y) = H(x, y) + L(x, y) (1)

where L(x, y) is the low-frequency part, which is obtained by low-pass filtering of the image.
H(x, y) is the high-frequency part, which is obtained by subtracting the low frequency part
from the original image.

In this study, the detection of multiple vehicle objects at long distances was carried
out. When the distance is long, and the emitted laser is interfered with by environmental
factors such as atmospheric scattering in the air, the echo of the object is weak, and the
generated intensity image has low contrast and is similar to the background. The ACE
algorithm is different from other global image enhancement methods. This method uses
local standard deviation to achieve better image local contrast enhancement than the global
image enhancement method. Therefore, we used this method to enhance the intensity
image. First, we enhanced the high-frequency part of the intensity image that represents
the details of the medium- and long-distance weak vehicle object, multiplied the high-
frequency part by a specific gain value, and then recombined it to obtain the enhanced
image. Let the pixels in the image be represented as x(i, j); then, in the area with (i, j) as
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the center and the window size of (2n + 1) · (2n + 1), its local mean and variance can be
expressed as:

mx =
1

(2n + 1)2 ·
i+n

∑
k=i−n

j+n

∑
l=j−n

x(k, l) (2)

σ2
x(i, j) =

1

(2n + 1)2 ·
i+n

∑
k=i−n

j+n

∑
l=j−n

[x(k, l)−mx(i, j)]2 (3)

The image intensity of each point is transformed based on local region statistics. That
is, the local mean mx(i, j) and local standard deviation σ2

x(i, j) are calculated on the local
region around the point. The transformed strength is:

f(i, j) = mx(i, j) + G(i, j) · [x(i, j)−mx(i, j)] (4)

where the local gain G(i, j) is expressed as:

G(i, j) = α · m
σij

, 0 < α < 1 (5)

where m is the global average of the image.
In this study, the ACE method was used to enhance the intensity image of Gm-APD,

and the 3D visualization of the enhanced image was compared with the other two image
enhancement algorithms, as shown in Figure 4. Figure 4a is the original two-dimensional
intensity image. Figure 4b is the 3D visualization of the original 2D intensity image.
Figure 4c is the 3D visualization result of the enhanced image using the ACE method.
Figure 4d is a 3D visualization of the enhanced image using the contrast-limited adaptive
histogram equalization (CLAHE) method. Figure 4e is a 3D visualization of the enhanced
image using a linear transformation method. It can be seen from the figure that the CLAHE
method cannot effectively enhance the object. Although the linear variation method
enhances the object, the background is also enhanced. The ACE method used in this study
cannot only effectively enhance the object, but also adjust the local gain for the background
area, which is less enhanced than the intensity value of the object.

The commonly used evaluation indicators for image enhancement algorithms are peak
signal-to-noise ratio, entropy, and gradient.

Peak signal-to-noise ratio (PSNR): It is an objective evaluation index of images, which
is based on the error between corresponding pixels; that is, based on error-sensitive image
quality evaluation [28]. The larger the PSNR value, the less the distortion. The calculation
formula is:

PSNR = 20 · log10(
MAXI

RMSE
) (6)

where MAXI represents the maximum value of the gray level of the image point, RMSE is
the root-mean-square error of the image, and the calculation formula is:

RMSE =

√√√√ 1
M ·N ·

M

∑
i=1

N

∑
j=1

[g(i, j)− f(i, j)]2 (7)

where g(i, j) is the pixel value of the original image, f(i, j) is the pixel value of the processed
image, M is the row of the image, and N is the column of the image.

Entropy: Expressed as the maximum amount of information in an image [29]. Gener-
ally speaking, an image with a large entropy value contains rich details, and the calculation
formula is:

E = −∑
i

p(i) · logp(i) (8)

where p(i) is the probability that the pixel has brightness i.
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Gradient: Measures the sharpness of the object edge. The higher the sharpness value,
the higher the image clarity.

G(x, y) = dx(i, j) + dy(i, j) (9)

dx(i, j) = f(i + 1, j)− f(i, j) (10)

dy(i, j) = f(i, j + 1)− f(i, j) (11)

where f(i, j) is the image pixel value, and (i, j) is the coordinate of the pixel.
The above three indicators were calculated for the entire dataset by three data enhance-

ment algorithms, and the results are shown in Figure 5. It can be seen that although the
gradient of the image obtained by the linear transformation method is more significant,
the entropy value is lower than that of the ACE method we used, and the image does not
contain rich, detailed information. The peak signal-to-noise ratio of the CLAHE and linear
methods is lower than that of the ACE method. Therefore, the ACE method used in this
paper can better enhance the detailed information and gradient information of the image
than the other two methods and can obtain more features for object detection.

3.3. Two-Level Multi-Vehicle Detection Network

This section mainly introduces the specific details of the two-level network. The
first-level network mainly uses the improved YOLOv5s network to detect vehicles in the
two-dimensional intensity image of lidar. The second-level network uses the 3D graph
convolution network’s (3DGCN) point cloud classification network to further judge the
suspicious areas in the first-level network to improve the detection accuracy of the object.
The two-level detection network structure is shown in Figure 6.
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3.3.1. Improved First-Level YOLO Network

YOLOv5 is the best-performing network of the YOLO series of networks in re-
cent years, and it has made many improvements over the previous YOLOv3 [30] and
YOLOv4 [31]. It improves the network structure and adds some image processing methods
and training skills. The design of the network is mainly aimed at the visible image. The
image’s color, texture, edge, and other features are extracted through the backbone network
with multiple residual blocks stacked. However, most of the features learned by the net-
work have grayscale information and there is no complex texture information of visible
light images; thus, it is not ideal for the object detection task in a lidar intensity image.
The complex feature extraction network only extracts more repeated features. Therefore,
to reduce unnecessary operations, this study adopted the MobileNetv3 [32] lightweight
feature extraction network as the backbone network of YOLOv5.
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The MobileNetv3 network is further improved on the basis of the advantages of
the Mo-bileNetv1 [33] and MobileNetv2 [34] network design. It adopts a combination of
complementary search technologies, and the resource-constrained NAS (platform aware
NAS) performs the module search. After each module is determined, the network layer
performs a local search through netadapt to make fine adjustments. The h-swish activation
function is introduced into the network structure. The MobileNetv3 network not only
ensures accuracy but also greatly reduces the amount of network computing. The network
module of MobileNetv3 is shown in Figure 7. NL is a linear activation function.
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The structural parameters of the MobileNetv3-Small network used in this study are
shown in Table 2.

Table 2. MobileNetv3-Small network structure parameters.

Input Operator Exp Size Out SE NL s

6402 × 3 bneck, 3 × 3 - 16 - HS 2
3202 × 24 bneck, 3 × 3 16 16

√
RE 2

1602 × 24 bneck, 3 × 3 72 24 - RE 2
802 × 24 bneck, 3 × 3 88 24 - RE 1
802 × 40 bneck, 5 × 5 96 40

√
HS 1

402 × 40 bneck, 5 × 5 240 40
√

HS 1
402 × 40 bneck, 5 × 5 240 40

√
HS 1

402 × 40 bneck, 5 × 5 120 48
√

HS 1
402 × 48 bneck, 5 × 5 144 48

√
HS 1

402 × 96 bneck, 5 × 5 288 96
√

HS 2
202 × 96 bneck, 5 × 5 576 96

√
HS 1

202 × 96 bneck, 5 × 5 576 96
√

HS 1

Although the swish activation function can effectively improve the accuracy of the
network, the amount of calculation of swish is too large. Therefore, using the h-swish (hard
version of swish), the calculation is as follows:

h− swish[x] = x · ReLU6(x + 3)
6

(12)

where ReLU6 can avoid the loss of numerical accuracy, run fast, and promote the improve-
ment of network accuracy.

3.3.2. Second-Level 3DGCN Network

This research was aimed at the long-distance detection of multiple weak and small
vehicles by lidar. It used the two-dimensional intensity image information from the first-
level detection, which causes many missed detection problems. Lidar point cloud data are a
collection of vectors in a three-dimensional coordinate system. They not only represent the
outer-surface shape and position information of an object, but also can represent the color
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information (RGB) and reflection intensity information (Intensity) of a point. They can make
up for the lack of information in two-dimensional images. Due to the characteristics of the
Gm-APD imaging principle, there is also echo information in the background, resulting
in the excessive background noise of the point cloud data. Therefore, we did not directly
use 3D point cloud data for object detection. In order to re-duce the interference of point
cloud background noise, the suspicious area of the first-level network was mapped to the
3D point cloud area. In the second-level detection, the 3DGCN point cloud classification
network [35] was introduced to make use of the 3D point cloud information of lidar to
judge the missed object again.

The 3DGCN network is a three-dimensional graph convolution network that extracts
features from point cloud data and applies them to point cloud object classification. A point
cloud instance is seen as a set containing N points P = {pn|n = 1, 2, . . . , N} located on the
surface of the object of interest. pn represents the nth point of this example, and its attributes
can describe coordinates, normal vector, color and reflectivity information, etc. This study
only uses the position information of the point cloud. That is, for pn = {xn, yn, zn}, the
three-dimensional point cloud objects are represented by a matrix of size N × 3 as input to
the network, and the output produces predicted output scores c for each class of interest.
The network structure is shown in Figure 8.
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3D point cloud data are an unordered collection of data points and no specific spatial
3D pattern can be observed; therefore, a learnable kernel is used in the 3DGCN.

(1) Learnable kernel

A 3D point cloud object with N points is denoted as P = {pn|n = 1, 2, . . . , N},
pn ∈ R3, and in order to describe the features of each point in the 3DGCN, the asso-
ciated D-dimensional feature vector is represented by f(p) ∈ RD. In order to obtain the
local geometric information of the pn point, the three-dimensional receptive field of the pn
point is determined by the set of M adjacent points. The receptive field RM

n and the kernel
KS graph are shown in Figure 9.

RM
n is expressed as the receptive field of a point pn of size M:

RM
n = {pn, pm|∀pm ∈ N(pn, M)} (13)

where N(pn, M) denotes the M nearest neighbors of pn based on distance ‖pm − pn‖, and
the corresponding direction vector, which is used for the convolution calculation. The
corresponding direction vector dm,n = pm − pn is used for convolution calculation.

The 3D point cloud structure is convolved using the 3D graph convolution kernel KS,
where S represents the number of supports in the kernel. KS consists of the S + 1 core point
kj ∈ R3, that is,

KS = {kC, k1, k2, . . . , kS} (14)

where kC = (0, 0, 0) is the center of the kernel, and k1 to kS denote the relevant support.
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(2) 3DGCN calculation

Unlike 2D convolution, this measures the features within the receptive field of pn
(i.e., f(pn), f(pm), ∀pm ∈ N(pn, M), as defined in Equation (13)) and the weight of the
kernel KS similarity between vectors. Centered on kC with S supports (i.e., w(kC), w(kS),
∀s = 1, 2, . . . , S), consider all possible pairs between (pm, kS). Therefore, Conv(RM

n , KS) in
the 3DGCN is defined as:

Conv(RM
n , KS) = 〈f(pn), w(kC)〉+ g(A) (15)

where 〈·〉 represents the inner product operation, A = {sim(pm, ks)|∀s ∈ (1, S)}, and sim
is defined as:

sim(pm, ks) = 〈f(pm), w(ks)〉
〈dm,n, ks〉
‖dm,n‖‖ks‖

(16)

The above formula yields the inner product between f(pn) and w(kC) based on cosine
similarity. Function g in Equation (15) is the maximum similarity sim(pm, kS) of each
supported kS in the kernel. According to the above definition, the 3D graph convolution
operation in the 3DGCN is calculated as:

Conv(RM
n , KS) = 〈f(pn), w(kC)〉+

S

∑
s=1

max
m∈(1,M)

{sim(pm, ks)} (17)

Since the direction vector dm,n in Equation (17) is not a global coordinate, the 3DGCN
model introduces a shift-invariant property. In Equation (16), the similarity function simply
calculates the cosine similarity between dm, n and kS, regardless of their length. That is,
the scale-invariant property is introduced.

3.3.3. Confidence Threshold Processing Method

By setting the confidence threshold judgment method, we can ensure the reliability
of the detection performance and better improve the detection accuracy of small and
weak objects.

First, by setting the confidence threshold of the first-level detection network for lidar
intensity image object detection to θ1, and setting θ1 to 0.85, the object with a confidence
greater than or equal to 0.85 in the first-level detection is a reliable object. Result θ is
between 0.5 and 0.85, and it is judged as a suspicious object. Then, the second-level point
cloud classification is performed for the point cloud data corresponding to the position of
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the object frame, the object category score is obtained as the score, and the two-level result
is comprehensively judged as the final second-level object confidence score:

conf = λ · θ+ (1− λ) · score (18)

Finally, the reliable objects detected by the first-level network and the objects detected
by the second-level network are combined together and outputted as the final result of the
second-level detection.

4. Experimental Results and Analysis
4.1. Experimental Operating Environment

The hardware and software platforms used in the experiments were configured as
follows: Intel (R) Core (TM) i7-8700 @3.20 GHz (CPU), NVIDIA 2080Ti 11GB (2 GPUs),
Gloway DDR4 16GB (memory), Samsung 960 Pro 512GB (SSD), Ubuntu 18.04 (system), and
Pytorch (deep learning framework).

4.2. Evaluation Indicators

In this study, we used a low-computational theoretical metric (BFLOP) to evaluate
the size of the model, and the accuracy P (precision), the recall R (recall), the F1 score,
and the average precision AP (average precision) to evaluate the detection of the model
performance. The formula is as follows:

P =
TP

TP + FP
(19)

R =
TP

TP + FN
(20)

F1 =
2PR

P + R
(21)

AP =
∫ 1

0
P(R)dR (22)

where P is the precision rate, R is the recall rate, TP is the number of true positive samples,
FP is the number of false positive samples, and FN is the number of false negative samples.

4.3. Network Training

In this experiment, 12 sets of data were collected, with a total of 6000 intensity images
corresponding to 6000 point cloud data. Since this experiment collected dynamic data in
continuous time for different distances and different scenes, the object changes in adjacent
frames were small. Therefore, using as few training sets as possible can achieve better
detection results. In the first-level two-dimensional object detection network, 1260 intensity
images were used as the training set, 540 intensity images were used as the validation set,
and 4200 intensity images were used for network testing. The second-level 3D point cloud
network used the point cloud data corresponding to the first-level intensity images to train
the network.

The parameters of the first-level network training were 100 epochs, the batch size was
32, and the initial learning rate was 0.01. The original and contrast-enhanced data were
trained by the network, and the training results are shown in Figure 10a (the loss curve of
training). Figure 10b is the epoch curve of training. It can be seen from Figure 10a that the
loss curve during the training process using the ACE method decreases with the increase
in epochs. When the epoch is 60, the loss drops to a position close to 0.04 and, finally, tends
to be stable when the epoch is 100, which is when the model training results are the best.
This curve can eventually obtain a lower loss value compared to the loss curve trained on
the original data. It can be seen from Figure 10b that with the increase in epoch value in the
training process of the ACE method, the curve change is relatively smooth compared with
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the original image training curve. Similarly, when the epoch is 60, the training accuracy
begins to stabilize to 100, and the final training prescription value is higher than the
original image.

Remote Sens. 2022, 14, 3553 13 of 24 
 

 


1

0
AP = P(R)dR  (22) 

where P is the precision rate, R is the recall rate, TP is the number of true positive samples, 
FP is the number of false positive samples, and FN is the number of false negative samples. 

4.3. Network Training 
In this experiment, 12 sets of data were collected, with a total of 6000 intensity images 

corresponding to 6000 point cloud data. Since this experiment collected dynamic data in 
continuous time for different distances and different scenes, the object changes in adjacent 
frames were small. Therefore, using as few training sets as possible can achieve better 
detection results. In the first-level two-dimensional object detection network, 1260 inten-
sity images were used as the training set, 540 intensity images were used as the validation 
set, and 4200 intensity images were used for network testing. The second-level 3D point 
cloud network used the point cloud data corresponding to the first-level intensity images 
to train the network. 

The parameters of the first-level network training were 100 epochs, the batch size 
was 32, and the initial learning rate was 0.01. The original and contrast-enhanced data 
were trained by the network, and the training results are shown in Figure 10a (the loss 
curve of training). Figure 10b is the epoch curve of training. It can be seen from Figure 10a 
that the loss curve during the training process using the ACE method decreases with the 
increase in epochs. When the epoch is 60, the loss drops to a position close to 0.04 and, 
finally, tends to be stable when the epoch is 100, which is when the model training results 
are the best. This curve can eventually obtain a lower loss value compared to the loss curve 
trained on the original data. It can be seen from Figure 10b that with the increase in epoch 
value in the training process of the ACE method, the curve change is relatively smooth 
compared with the original image training curve. Similarly, when the epoch is 60, the 
training accuracy begins to stabilize to 100, and the final training prescription value is 
higher than the original image. 

  
(a) (b) 

Figure 10. The curve of the training process of the first-level network on the original data and the 
data processed by the ACE method. (a) Loss curve of training; (b) precision curve of training. 

In order to verify the robustness and generalization of the model, the loss curve in 
the training process of the image enhanced by the ACE method is compared with the loss 
curve change in the verification process, as shown in Figure 11. It can be seen from the 
figure that the loss values of both the training set and the validation set decrease with the 
increase in the epoch value and tend to be stable at 100 epochs, and the training model 
has strong robustness. 

0 20 40 60 80 100
0.03

0.04

0.05

0.06

0.07

0.08

epochs

 original 
 ACE

lo
ss

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

epochs

 original
 ACE

pr
es

ic
io

n

Figure 10. The curve of the training process of the first-level network on the original data and the
data processed by the ACE method. (a) Loss curve of training; (b) precision curve of training.

In order to verify the robustness and generalization of the model, the loss curve in
the training process of the image enhanced by the ACE method is compared with the loss
curve change in the verification process, as shown in Figure 11. It can be seen from the
figure that the loss values of both the training set and the validation set decrease with the
increase in the epoch value and tend to be stable at 100 epochs, and the training model has
strong robustness.
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Figure 11. The loss curve of the first-level network in the training process of the original data and the
data processed by the ACE method.

The training parameters for the second-level 3D point cloud network were set to
epochs of 100 and a batch size of 16. The training results are shown in Figure 12. Figure 12a
shows the loss change curve of the training set and the validation set during the training
process. It can be seen that with the increase in training epochs, the loss value is constantly
decreasing and tends to be stable. Figure 12b shows the precision change curve of the
training set and the validation set during the training process. The curve increases with the
increase in training epochs and, finally, achieves a better training result.
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Figure 12. The curve changes of training set and validation set during the training of 3D point cloud
network. (a) Loss curve; (b) precision curve.

4.4. Test Results and Analysis
4.4.1. Comparison of First-Level Networks

Due to the two-level network used in this study for object detection, in order to
avoid the redundant calculation of the two-level network, the first-level YOLOv5s network
was optimized and improved, and its backbone network CSPDarknet was designed as a
lightweight network to reduce the complexity of the network and improve the detection
accuracy. In this study, MobileNetv3 was used as the backbone network, which has fewer
parameters, less computation, and a shorter reasoning time, and introduces an attention
mechanism as compared with CSPDarknet. Because of the high signal-to-noise ratio of the
enhanced intensity image and prominent vehicle characteristics, the network can effectively
learn the characteristics of the object. The parameters and structure of this network were
compared with several other lightweight networks, as shown in Table 3.

Table 3. Comparison of parameters of different lightweight network structures.

Model Layers Parameters GFLOPs Weight Size

YOLOv5s 270 7,235,389 16.5 13.7 MB
YOLOv5s_Shufflenetv2 308 3,844,193 8.1 7.68 MB

YOLOv5s_Ghost 453 3,897,605 8.8 7.50 MB
Ours 340 3,542,756 6.3 7.17 MB

Table 3 shows that the number of network parameters optimized by using Mo-
bileNetv3 is only 3,542,756, which is more than half of the parameters compared with
the original YOLOv5s, and the floating-point calculation is only 6.3 GFLOPs. The com-
parison of the training results of the above four different backbone networks is shown
in Figure 13.

As shown in Figure 12a, the detection accuracy of different backbone networks varies
with network training. It can be seen that the detection accuracy of the MobileNetv3 used
by us is higher than that of YOLOv5s and ShuffleNetv2 when it tends to be stable. The
change curve of the loss function in Figure 12b shows that the v5s_ MobileNetv3 network
gradually becomes stable with the increase in the number of training times and, finally,
can reach a lower loss value. Combining the analysis of the complexity of the network
structure and the detection accuracy, we can conclude that v5s_MobileNetv3 has a better
performance compared with several other networks. It not only has the lowest network
complexity but also has a higher detection accuracy.
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Figure 13. The loss and precision curves of 3D point cloud network training. (a) Precision curve of
training; (b) loss curve of training.

The confidence thresholds of the first-level network were set to 0.5, 0.65, 0.75, and
0.85. The comparison of the detection results of the four networks on 4200 test images is
shown in Figure 14. The results of different networks at different confidence thresholds
were compared by using four evaluation indexes. It can be seen that with the increase
in confidence threshold, P, R, F1, and AP50 all decrease. When the threshold value is set
to 0.85, the detection accuracy of the MobileNetv3 backbone network used in this study
is 95.71%, 1.0% lower than v5s, and 1.4% and 8.5% higher than Ghost and Shufflenetv2,
respectively. The recall rate was 44.70%, 1.0% lower than v5s, 1.0% higher than Ghost, and
14.5% higher than ShuffleNetv2. F1 is 60.9%, 1.8% lower than v5s, 1.2% higher than Ghost,
and 16.1% higher than ShuffleNetv2. AP50 is 44.88%, 0.56% lower than v5s, 1.65% higher
than Ghost, and 14.91% higher than ShuffleNetv2. The overall performance is significantly
lower than when the confidence is 0.5. Although the accuracy of the detected objects is
high, there are many missed objects, resulting in a low recall rate and a low AP50 value;
thus, the objects cannot be accurately detected.

As the confidence thresholds of 0.5 and 0.65 shows little difference in the calculation of
each index, AP50, AP75, AP85, and AP@50:5:95 of the four networks under the confidence
thresholds of 0.5, 0.75, and 0.85 are shown in Table 4, as they can more objectively evaluate
the performance of different networks. Based on the above indicators, although the per-
formance of MobileNetv3 was slightly worse than that of v5s, the network performance
used in this study was better at measuring the detection accuracy and model complexity.
Figure 15 shows the partial detection results of the four methods with confidence levels
greater than 0.85. It can be seen that there are still a lot of missed detections for small objects.
Therefore, multiple objects cannot be accurately detected using only intensity images.
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Figure 14. Comparison of test results of different networks (confidence thresholds are 0.5, 0.65, 0.75
and 0.85). (a) AP50; (b) recall; (c) F1; (d) precision.

Table 4. Comparison results of AP values of different networks with different confidence thresholds.

AP v5s v5s_ShuffeNetv2 v5s_Ghost Ours

Conf = 0.5
AP50 0.9682 0.9749 0.9722 0.9751
AP75 0.9682 0.9748 0.9718 0.9749
AP85 0.9682 0.9740 0.9692 0.9744

AP@50:5:95 0.9546 0.9596 0.9532 0.9540
Conf = 0.75

AP50 0.9047 0.8963 0.9143 0.9116
AP75 0.9047 0.8963 0.9141 0.9115
AP85 0.9047 0.8963 0.9127 0.9115

AP@50:5:95 0.8938 0.8857 0.8991 0.8944
Conf = 0.85

AP50 0.4544 0.2997 0.4323 0.4488
AP75 0.4544 0.2997 0.4323 0.4488
AP85 0.4544 0.2997 0.4323 0.4488

AP@50:5:95 0.4510 0.2983 0.4282 0.4432

4.4.2. Comparison of Second-Level Networks

This study adopted a 2D object detection method for intensity images in the first-
level network and set a confidence threshold of 0.85. The object with a first-level network
detection result threshold greater than 0.85 was defined as a reliable object, and the object
with a confidence threshold between 0.5–0.85 was defined as a suspicious object. A second-
level point cloud classification network needs to be used for secondary identification of such
suspicious objects. For our point cloud data, the number of point clouds varied significantly
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at different distances. Therefore, we used the 3DGCN point cloud classification network,
which has good classification performance at present. This network can extract local 3D
features from point clouds across scales, introduce translation and scale invariance, and
use the graph maximum pool mechanism to define a learnable kernel.
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(b) YOLOv5s_Ghost detection result (conf ≥ 0.85); (c) YOLOv5s_ShuffleNetv2 detection result
(conf ≥ 0.85); (d) YOLOv5s_MobileNetv3 detection result (conf ≥ 0.85).

In order to verify the performance of the 3DGCN network, this network was compared
with the current advanced point cloud classification dynamic graph convolutional neural
network (DGCNN) [36] and PointNet [37] network. The training results of the different
networks are shown in Figure 16.
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Figure 16. Different point cloud classification network training results. (a) Loss curve; (b) precision curve.

As can be seen from Figure 16a, the accuracy of the 3DGCN network increases steadily
with increasing epochs. The highest detection accuracy is 0.9625, 0.34% higher than
the DGCNN network and 1.5% higher than the PointNet network. It can be seen from
Figure 16b that the loss value of the 3DGCN network decreases with the increase in epochs
and, finally, stabilizes at about 0.22. During the training process of the DGCNN and the
PointNet network, the loss value decreases with the increase in epochs and, finally, stabi-
lizes at about 1.3. Therefore, we used the 3DGCN network to train with higher accuracy,
lower loss value, and better classification performance.

4.4.3. Comparison of Results between Single-Level Networks and Two-Level Networks

Since the single-level network only uses a single intensity image for multiple ob-
jects with high confidence, there are a lot of missed detections. Therefore, based on
two-dimensional intensity image detection, point cloud data with the three-dimensional
spatial structure of the object were introduced, and 3D convolution was used for the vehicle
point cloud data through the graph neural network to learn the similar features around
the object. Moreover, finally, the score of the object category was outputted. In the first-
level network, the confidence threshold was set to 0.85. Since this study focused on 2D
detection, the 3D recognition reidentified suspicious areas from the 2D detection, and λ in
Equation (18) was set to 0.6. Finally, the two-level detection results were combined into the
final detection results. As shown in Table 5, the single-level 2D network was trained for
100 epochs, and the second-level 3D network was trained for 100 epochs. Under the con-
dition that the first-level IOU threshold is 0.85, compared with the single-level network,
AP50, AP75, AP85, and AP@50:5:95 increased by 52.5%, 52.48%, 50.54%, and 52.06%, re-
spectively. Therefore, the two-level network can effectively improve the accuracy of object
detection significantly.

Table 5. Two- level detection results.

Epochs_2D Epochs_3D conf_thresd AP50 AP75 AP85 AP@50:5:95

Ours 100 100 0.85 0.9738 0.9736 0.9542 0.9638

Next, the method proposed in this paper was compared with the state-of-the-art 2D
object detection methods [38–42]. The comparison results are shown in Table 6. It can be
seen that our method was compared with the other five object detection algorithms. The
training time is short, and with the increase in the IOU threshold, the AP value is relatively
stable; therefore, the algorithm has strong robustness and better performance than the other
five methods. The detection results of the six methods are shown in Figure 17, which shows
that our method has good detection performance for weak and small objects.
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Table 6. Comparison results with other methods.

Epochs_All AP50 AP75 AP85 AP@50:5:95 Train Time

Faster R-CNN 200 0.9204 0.8044 0.7239 0.7639 6.5 h
SSD 200 0.9590 0.8770 0.8630 0.7950 5.4 h

RetinaNet 200 0.9675 0.8130 0.8114 0.7700 5.2 h
CenterNet 200 0.9680 0.803 0.7910 0.7681 3.2 h

YOLOX 200 0.9791 0.886 0.7700 0.7176 2.8 h
Ours 200 0.9738 0.9736 0.9542 0.9638 3.8 h
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In order to verify the low complexity of the algorithm proposed in this paper, the
weight of this algorithm was compared with the current advanced object detection method
using 3D point cloud data directly [43–45] and the advanced 2D object detection algorithm.
The results are shown in Figure 18.
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It can be seen from Figure 18 that the weight size of the Point-Voxel RCNN (PV-RCNN)
is 50M, and there are many network training parameters. Currently, in the advanced 3D
point cloud object detection network, the complexity of the PointPillars network is low,
and the weight size is 23 M. Among the advanced 2D object detection networks, the Faster
RCNN network has higher complexity, with a weight size of 315 M. The YOLOX network
has lower complexity, with a weight size of 68.5 M. However, we propose that the weight
of the two-level object detection network is 12 M. The algorithm complexity is lower than
other object detection networks, and the network performance is better.
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5. Conclusions

Multi-vehicle object detection at night has essential practical value in military opera-
tions. Gm-APD lidar images have different echo intensities of objects at different distances,
where the contrast of long-distance intensity images is weak, the object is tiny, and the
missed detection rate is high in dense object images. Only a single two-dimensional image
cannot accurately detect the object. We proposed a two-level deep learning object detection
method for 2D intensity images and 3D point cloud data. By selecting YOLOv5s as the
first-level 2D detection network framework and improving it, the MobileNetv3 network
was introduced as the backbone network, compressing the network model and improving
the detection accuracy of small objects by using the attention mechanism. The confidence
threshold value was set in the first-level network, and the object higher than the threshold
value was reserved. The suspicious object lower than the threshold value was converted
into the corresponding point cloud data. The 3DGCN network was used to identify the
point cloud object, and the suspicious object’s 2D and 3D detection results were used as
the detection results of the object. Finally, the 2D and 3D network detection results were
merged to obtain the final result. The experimental results show that the accuracy of the
model proposed in this paper, AP@50:5:95, is 0.9638, which is about 20% higher than other
networks. The training time is shorter, and the network has better robustness. This study
comprehensively evaluated the superiority of the proposed method, which has practical
significance for the research of lidar vehicle detection at night. In future studies, we will
build richer datasets for different weather and objects, and deeply explore new research
methods and application scenarios.
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