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Abstract: With the gradual improvement of Galileo and the opening of BDS-3 services, water vapor
tomography based on multi-GNSS can be effectively carried out to reconstruct three-dimensional
water vapor distribution. In this paper, experiments in Hong Kong were conducted to analyze
and assess the performances of GPS, BDS, GLONASS, and Galileo and their combinations in water
vapor tomography. Numerical results show that the number of available signal rays varies widely
in the four satellite systems, and the value can be increased by the combination of satellite systems;
the combinations also increase the number of voxels crossed by signal rays, but this value is not
directly related to the number of available signal rays; the number and distribution of the voxels with
sufficient signal rays, which most closely related to the structure of the tomographic model, show no
obvious differences in the four satellite systems and their combinations. Comparative results of slant
water vapor (SWV) estimated by GNSS data and water vapor density derived from radiosonde data
reveal that the differences in the water vapor tomography of the four satellite systems are small, and
their combinations have limited improvement in the tomographic results.

Keywords: GNSS meteorology; water vapor; tomography; multi-GNSS

1. Introduction

Since the concept of GNSS meteorology was first proposed by Bevis et al., the water
vapor information derived from GNSS has drawn increasing attention in the meteorological
and GNSS communities [1]. The precipitable water vapor (PWV), which refers to the height
of an equivalent column of water vapor [2], has been widely validated to achieve mm-level
accuracy based on the conversion of GNSS zenith tropospheric delay [3]. Further, the
three-dimensional water vapor information can also be inversed by using GPS signals as
scanning rays in the research area, which is called water vapor tomography.

Braun et al. first proposed the concept of GPS water vapor tomography [4] and
Flores et al. first realized it using the data from the Kilauea network in Hawaii [5]. The
research region, covered by ground GPS receivers, is discretized into finite voxels according
to its latitude, longitude, and altitude, and the unknown estimated parameter of the voxels
are assumed to be constant during a given period. The GPS-derived slant water vapor is
regarded as the observations for water vapor tomography.

In modeling the GPS water vapor tomography, it is found that the geometric distribu-
tion of the observed signals is an inverted cone due to the fixed structure of GPS sites and
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satellites [6]. The direct effect caused by this phenomenon is the presence of tomographic
voxels without signal rays passing through, especially at the lower and edge layer of the
area of interest. It also makes many voxels be penetrated by only a very small number of
signals. From the perspective of the water vapor tomography model, it often leads to a
large number of zero elements appearing in the coefficient matrix, which becomes a sparse
matrix [7]. This is the fundamental cause of the ill-posed problem in GPS water vapor
tomography, which seriously restricts its stable and high-accuracy solution. Obviously,
enriching the observation equation of the GPS water vapor tomography is an effective
way to overcome the above problem by introducing various observation information, and
related research has been carried out.

Based on voxel horizontal boundary selection and non-uniform symmetrical division,
Chen et al. and Yao et al. proposed an optimized approach of horizontal voxel division to
introduce more signal rays penetrated from the top layer into the observation equation [8,9].
The similar effect can be obtained by the method of constructing the tomographic buffer
area carried out by Trzcina et al. and Sa et al. [10,11]. These methods are limited to specific
tomographic regions and certain experimental periods. Adavi et al. explored how to use
the constructed virtual reference sites to augment location-specific GPS observations [12].
The virtual signals were also introduced to the tomography model using the calculated
mapping function and ZWD/PWV of corresponding site and the elevation and azimuth
of specified virtual satellite [6,13]. Studies have shown that it is a feasible method to
incorporate the GPS signal rays passed through form the side face into the tomography
model; for example, Zhao et al. constructed the unit scale factor for these signals using the
radiosonde and reanalysis data [14], Zhang et al. and Hu et al. established the height factor
models adapted to these signals from side face [15,16]. In addition, Zhao et al. tried to
extend the observations of GPS sites outside the tomographic region into the tomography
model based on the GPT2w and TMF models [17,18]. The above methods all rely on
external data or models and tend to introduce new error for the observation information.
On the other hand, some have attempted to add multi-source observation information from
various sensors into the GPS tomography model, such as the COSMIC occultation data [19],
the GNSS-R data [20], the InSAR data [21,22], WRF output data [23], LEO constellation-
augmented data [24], PWV data derived from FY-3, and MODIS [25,26]. However, the
spatiotemporal resolution, availability, and consistency with the tomographic region are the
factors that seriously restrict the fusion of the above observations into the tomography model.

It is more reasonable and convenient to construct the GNSS water vapor tomography
model together with the observations from GPS and the other three satellite navigation
systems. Bender et al. simulated GPS, GLONASS, and Galileo data and introduced the
method for obtaining three-dimensional water vapor information by tomography technique
in multi-satellite systems [27]. Wang et al. compared the tomographic accuracy of BDS
and GPS based on simulated data, and showed that the result using 9 satellites of BDS is
basically comparable to that of GPS [28]. Xia et al. and Benevides et al. carried out the water
vapor tomography experiments of GPS combined with GLONASS and GPS combined with
Galileo in Hongkong and Lisbon regions, respectively [29,30]. Dong et al. and Zhao et al.
utilized the measured data derived from different numbers of BDS2 satellites and combined
it with GPS and GLONASS data to construct the tomography model in Wuhan and Guiyang,
respectively [31,32]. With the gradual improvement of Galileo and the opening of BDS-3
services, the above experiments based on simulated data or incomplete satellite data cannot
fully reflect the current status of water vapor tomography based on multi-GNSS. Therefore,
this paper aims to explore the differences between the four satellite navigation systems
and their combination in water vapor tomography, including the modeling process and the
reconstructed results.
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2. Materials and Methods

The observations in GNSS water vapor tomography are the slant water vapor (SWV)
which can be converted from slant wet delay (SWD) as follows [33]:

SWV =
106

ρw × R
mw

(
k3
Tm

+ k2 − mw
md

× k1

) × SWD (1)

where ρw refers to the liquid water density with the unit of g·m−3; R = 8314 Pa·m3·K−1·kmol−1

denotes the universal gas constant; mw and md represent the molar mass of water and
the dry atmosphere and their values are 18.02 kg·kmol−1 and 28.96 kg·kmol−1, respec-
tively; Tm is the weighted mean temperature, which can be calculated by using surface
temperature [34,35]; k1, k2, and k3 are the empirical physical constants, which are equal to
77.60 K·hPa−1, 70.4 K·hPa−1, and 3.739 × 105 K·hPa−1, respectively [36]. After mapping
the zenith wet delay (ZWD) and the wet delay gradients into the elevation direction, the
SWD can be obtained as follows [37]:

SWD = mw(ele)× ZWD
+ mw(ele)× cot(ele)×

(
Gw

NS × cos(azi) + Gw
WE × sin(azi)

) (2)

where mw indicates the wet mapping function and the global mapping function (GMF) was
used in this paper; ele and azi denote the satellite elevation and azimuth angles, respectively.
Gw

WE and Gw
NS represent the wet delay gradient parameters in the east-west and north-south

directions, respectively. Affected by water vapor along the signal ray, ZWD is the wet
component of zenith total delay (ZTD) which is the primary parameter retrieved from GNSS
observation. To obtain ZWD, the zenith hydrostatic delay (ZHD) should be subtracted
from ZTD [38]. In this paper, the Saastamoinen model is used to calculate the accurate
ZHD using the pressure measurements as follows [39]:

ZHD =
0.002277 × Ps

1 − 0.00266 × cos(2ϕ)− 0.00028 × H
(3)

where ϕ and H denote the latitude and geodetic height of the GNSS site, respectively. Ps is
the measured surface pressure.

In the water vapor tomography, the SWV value is also an integral expression of
water vapor along the slant path from the ground receiver and GNSS satellite, given by
the following:

SWV = 10−6·
∫

ρ(s)ds (4)

where ρ(s) in g·m−3 denotes the water vapor density and ds refers to the path traveled
by a satellite signal ray. After discretizing the tomographic region into finite voxels, the
observation equation of GNSS water vapor tomography can be established based on the
distances of GNSS signal rays crossing the divided voxel and the unknown estimated water
vapor density with each voxel. It can be expressed as follows:

SWV =
n

∑
i=1

di·xi (5)

where n represents the total number of divided voxels in the research region. di denotes
the distance of signal rays inside voxel i, which can be calculated by using the coordinates
of GNSS sites and satellites. xi refers to the water vapor density of voxel i, which is the
unknown estimated parameter.

In water vapor tomography, two types of constraints are widely used in tomographic
modeling along with the observation equation, one is the horizontal constraint and the other
is vertical constraint, since a spatial relation exists between water vapor in a specific voxel
and its surrounding ones. For the horizontal constraint, it assumes that the distribution of
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water vapor density is relatively stable in the horizontal direction within a small region,
and represents the relationship between the water vapor density of a certain voxel and
those of its adjacent voxels in the same layer. For the vertical constraint, it refers to the
exponential relationship between the water vapor density of voxels for two consecutive
layers. These two constraints can be expressed as follows:

wh
1x1 + wh

2x2 + · · ·wh
i−1xi−1 − xi + wh

i+1xi+1 + · · ·wh
mxm = 0 (6)

xi − wv
i+mxi+m = 0 (7)

where m is the total number of voxels in the same layer. wh and wv denote the horizontal
weighted coefficient and the vertical weighted coefficient, respectively. The horizontal
weighted coefficient is constructed based on the Gaussian inverse distance weighted func-
tion as the following equation:

wh
i−1 = − e−

d2
i,i−1
2σ2

m
∑

j=1
e−

d2
j,i

2σ2

(8)

where d is the distance between the two voxels. j is a number from 1 to m, represented the
voxel ordering of the same horizontal layer. σ denotes the smoothing factor. The vertical
weighted coefficient is constructed based on exponential function as follows:

wv
i+m = e(hi+m−hi)/Hs (9)

where h represents the height of the corresponding voxel and Hs refers to the water vapor
scale height with an empirical value of 1.5 km [40]. Note that each voxel has corresponding
equations for horizontal and vertical constraints.

Thus, the tomography model for water vapor reconstruction can be established by
combining the observation equation of multi-GNSS and the two types of constraint equations.

yG
swv

yC
swv

yR
swv

yE
swv
0
0

 =



AG
AC
AR
AE
H
V

·x (10)

where yswv denotes the vector with SWV values derived from these four satellite systems;
A represents the coefficient matrices of the observation equation for different types of satel-
lite systems; H and V are the coefficient matrices of the horizontal and vertical constraints,
respectively. The tomography solution of the unknown water vapor density vector x can
be obtained as follows:

x̂ =
(

AT
GPG AG + AT

CPC AC + AT
RPR AR + AT

EPE AE + HT PT H + VT PVV
)−1

·
(

AT
GPGyG

swv + AT
CPCyC

swv + AT
RPRyR

swv + AT
EPEyE

swv
) (11)

where P represents the weighting matrices of different equations, which are determined by
an optimal weighting method using the variance components estimation and homogeneity
test [41]. Note that the number of satellite systems in Equations (8) and (9) can be adjusted
in the experiment.

3. Results
3.1. Experimental Description

In this paper, the Hong Kong satellite Positioning Reference Station Network (SatRef)
was selected to conduct the water vapor tomography experiment. We divided this research
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region into 560 voxels ranging from 113.87◦ to 114.35◦, from 22.19◦ to 22.54◦, and from
0 to 8 km for longitude, latitude, and altitude, respectively; that is, a voxel of 8 × 7 in
the horizontal direction and 10 layers in the vertical direction. As shown in Figure 1,
thirteen GNSS sites (T430, HKKT, HKLT, HKSL, HKNP, HKMW, HKPC, HKLM, HKOH,
HKSC, HKST, HKSS, HKWS) in this region were used to provide SWV in the tomography
modeling, and one GNSS (HKQT) and one radiosonde (45004) site were selected to validate
the results of the water vapor tomography.
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We utilized the GAMIT 10.71 software to estimate the tropospheric parameters in-
cluding ZTD and gradient parameters using the four GNSS systems. In this process,
the elevation cutoff angle was set to 15◦, the IGS precise ephemeris was adopted. Three
MEGX stations (JFNG, URUM, and LHAZ) were incorporated into the solution model to
reduce the strong correlation of tropospheric parameters caused by the short baseline. The
processing strategies were set to LC_AUTCLN and BASELINE modes, meaning that the
ionosphere-free linear combination was selected and the orbital parameters were fixed,
respectively. The tropospheric parameters, including troposphere delay gradients and ZTD
at 4 and 2 h intervals, are estimated and interpolated to a 30 s sampling rate in the GAMIT
software. After calculating the ZHD using the measured pressure recorded by an automatic
meteorological device, the SWV values of each satellite system were obtained by using
Equations (1) and (2).

In this experiment, the GNSS observation data of one month from DOY 121 to
151, 2021 were selected to conduct the modeling and solution of water vapor tomog-
raphy. For each tomographic solution, the period covered is 0.5 h. To assess the per-
formance of water vapor tomography based on different satellite systems and different
combinations of satellite system, each tomographic solution has 15 results, including
those of a signal satellite system, the combination of two satellite systems, the combi-
nation of three satellite systems, and the combination of four satellite systems, namely
GPS (G), BDS (C), GLONASS (R), Galileo (E), GPS+BDS (GC), GPS+GLONASS (GR),
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GPS+Galileo (GE), BDS+GLONASS (CR), BDS+Galileo (CE), GLONASS+Galileo (RE),
GPS+BDS+GLONASS (GCR), GPS+BDS+Galileo (GCE), GPS+GLONASS+Galileo (GRE),
BDS+GLONASS+Galileo (CRE), and GPS+BDS+GLONASS+Galileo (GCRE). Note that
both BDS-2 and BDS-3 were included in the experiment.

3.2. Experimental Analysis

The number of satellite signal rays available for the four satellite systems in each
tomographic solution is counted and their averages during the 31 days from DOY 121 to
151, 2021 are shown in Figure 2. It can be seen that the BDS has the largest number (704) of
available signal rays, followed by GPS, Galileo, and GLONASS with the average values
of 507, 329, and 351, respectively. The percentages of available signal rays in BDS that
exceed GLONAA and Galileo are more than 100%, achieving 114% and 101%, respectively.
Compared with GPS, the value also reaches 39%. The number of signal rays used in GPS is
the most stable during the experimental period, the difference between the maximum and
minimum value is less than 100 with the standard deviation (STD) being only 23. While
the other three satellite systems have obvious fluctuations in the number of available signal
rays, with the differences between the maximum and minimum value far greater than 100
and the STDs reach 51, 48, and 34 for BDS, GLONASS, and Galileo, respectively. Note that
the average number of signal rays used in Galileo is greater than that of GLONASS, but
there are still days when GLONASS has more available signal rays than Galileo. When the
satellite systems are combined, only the available signal rays of RE have just reached the
level of BDS and the other combinations are all obviously improved compared with these
single systems, especially since the average number of signal rays used in the combination
of four systems could be close to 2000.
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Figure 2. Average number of signal rays used in each solution based on different satellite systems
during the experimental period.

The number of voxels passed through by signal rays for the four satellite systems in
each tomographic solution is also counted, and their average values are shown in Figure 3.
It was observed that the GPS has the largest number of voxels crossed by signal rays,
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followed by BDS, GLONASS, and Galileo with average values of 425, 424, 392, and 377,
respectively. Corresponding to the 560 voxels in the entire tomographic region, the coverage
rate of the four satellite systems reaches 75.9%, 75.4%, 70%, and 67.3%, respectively. Note
that GPS and GLONASS with fewer available signal rays have more penetrated voxels than
BDS and Galileo, respectively, and in fact, their differences are relatively small. In addition,
the number of voxels crossed by signal rays for the four satellite systems all show a certain
fluctuation during the experimental period.
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Figure 3. Average number of voxels penetrated by signal rays in each solution based on different
satellite systems during the experimental period.

When combining the satellite systems, the number of crossed voxels and their coverage
rate is counted and shown in the form of a histogram in Figure 4. It can be seen that
the number and coverage rate of voxels are increased after the combinations compared
with single satellite system. In addition, the performances of the three-satellite systems
combination are better than those of the two-satellite systems combination, and four satellite
systems combination outperforms the three-satellite systems combination. Specifically,
combination of GCRE achieved the best performance with the number and coverage rate
of voxels of 468 and 83.6%, respectively.

In the tomographic experiment, we found the existence of voxels that were only
penetrated by a few signal rays, thus the concept of voxels crossed by sufficient signal
rays was introduced from the relevant literature [7]. Based on the fact that a ray crossed a
minimum number of voxels when the signal ray passed vertically through the tomographic
region, the minimum probability that a voxel will be penetrated by a ray could be calculated.
In this experiment, the value is 10/560, namely 1.79%. Then, the value of minimum
probability multiplied by total SWV used is regarded as the criteria to determine whether a
voxel is crossed by sufficient signal rays. Therefore, the number of voxels passed through
by sufficient signal rays for the four single satellite systems and their combinations are
counted and listed in Table 1 during the experimental period. It was observed that GPS
had the largest number of voxels penetrated by sufficient signal rays among the four
single systems, and only 7 voxels more than Galileo with the least effective voxels. After
the combinations, the number of voxels increased but very little and the value of the
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combination of four system was only 278. Regarding the coverage rate, the difference of
those 15 values in Table 1 is even smaller.
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Table 1. Average number of voxels penetrated by sufficient signal rays based on different satellite
systems and different combinations during the experimental period.

Combinations Number Coverage Rate

G 271 48.4%
C 268 47.9%
R 265 47.3%
E 264 47.1%

GR 278 49.6%
GC 273 48.8%
GE 274 48.9%
CR 272 48.6%
CE 270 48.2%
RE 271 48.4%

GCR 277 49.5%
GEC 276 49.3%
GRE 276 49.3%
CRE 275 49.1%

GCRE 278 49.6%

Further, the situation that each voxel passed through by signal rays in a certain
tomographic solution (UTC 11:45–12:15, DOY 137, 2021) is shown in detail in Figure 5,
in which the black and white rectangles represent the voxels crossed by sufficient and in
sufficient signal rays, respectively. Note that only the four single satellite systems and the
combination of the four systems are illustrated in this figure. It is observed in the figure
that the distribution of the black and white rectangles for different systems is very similar,
especially in the lower and middle layers. From this point, for water vapor tomography in
Hong Kong, the selection of a single satellite system or multi-GNSS combination has little
effect on the structure of the tomographic model.
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4. Discussion

To assess the performance of water vapor tomography using different satellite systems,
SWV of the GNSS sites for validation were computed using these 15 tomographic results
and the distances of signal ray in each voxel based on the observation equation established
in Equation (5). The 15 tomography-computed SWV were then compared with the GAMIT-
estimated SWV (as a reference). Figure 6 shows the change of tomography-computed vs.
GAMIT-estimated SWV residuals with elevation angle during the experimental period
for the four single systems. The change of the SWV residuals has the same trend in the
four satellite systems, and they decrease as the elevation angle increases. It is observed
that the residuals of four systems all ranged from −10 to 10 mm, and most of them
concentrated between −2.0 and 2.0 mm. The percentage of absolute residuals smaller
than 2.0 mm are 86.9%, 88.1%, 85.7%, and 85.3% for GPS, BDS, GLONASS, and Galileo,
respectively. The largest absolute residual of the four satellite systems is 8.46, 9.63, 9.37,
and 9.91 mm, respectively. We obtained the SWV residuals for various combinations of
satellite systems, which also follow a decreasing trend with increasing elevation. These
ranges and concentrated areas of the SWV residuals are unchanged compared with the
four single satellite systems.
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To further assess their performance, SWV values were grouped into individual eleva-
tion bins of 5◦, i.e., all SWVs with an elevation angle between 15 and 20◦ were evaluated as
a single unit. Thus, the RMSE of each elevation bin for these 15 tomographic results was
calculated and is shown in Figure 7. It can be seen from the left panel that the GLONASS
and Galileo performance is not as good as the BDS and GPS at low elevation angles. As the
elevation angle increases, their differences become very small. BDS achieved the best RMSE
with a value of 1.59 mm, followed by GPS, Galileo, and GLONASS. In fact, the differences
between these RMSEs are small and the values do not exceed 0.2 mm. Considering the
magnitude range of SWV, these differences can be negligible. After the combinations,
the RMSE of SWV residuals in each elevation bin were shown in the middle and right
panels, which are the combination of two systems and multi systems, respectively. The
RMSE difference of the SWV residuals for various combinations is relatively small in each
elevation bin. Specifically, the RMSEs of whole SWV residuals are 1.66, 1.59, 1.75, 1.74, 1.68,
1.64, 1.67, 1.62, 1.63, 1.60, 1.59, 1.64, 1.65, 1.65, and 1.63 mm for G, C, R, E, GC, GR, GE, CR,
CE, RE, GCR, GCE, GRE, CRE, and GCRE, respectively. Considering the magnitude range
of SWV values, the differences of RMSE mentioned above not more than 0.2 mm could
be negligible. Therefore, it is concluded that the tomographic results of different satellite
systems and different combinations have little difference in SWV validation.

Radiosonde data are well suited as a reference to validate the accuracy of the water
vapor tomography results, since they can provide a water vapor density profile with high
precision based on the atmospheric parameters obtained at different altitudes. Figure 8
illustrates the water vapor density comparisons between radiosonde data and these 15 to-
mographic results for different altitudes on UTC 11:45–12:15, DOY 137, 2021, which is
consistent with the time of tomographic solution shown in Figure 5. It is clear from the
profiles that the water vapor density decreased with increasing height. The water vapor
density profiles reconstructed by these 15 tomographic results conform with those derived
from radiosonde data. From Figure 8, it is difficult to observe the difference in the water
vapor density reconstructed by different satellite combinations. Therefore, the radiosonde
comparison of 31 days from DOY 121 to 151, 2021 was conducted and the statistical results
were listed in Table 2 to further illustrate their performances. From the mean value of
RMSE, the difference between the WVD results reconstructed by single system tomography
is 0.05 gm−3, and BDS and GPS outperforms GLONASS and Galileo slightly. Compared
with the single system, improvement can be observed from the WVD results reconstructed
after the satellite system combination. The largest improvement appears from the Galileo
with a RMSE of 1.46 gm−3 to the combination of GCR with a RMSE of 1.30 gm−3. The
number of satellite systems in the combination (two, three, or four satellite systems) did not
present an obvious impact on the WVD results reconstructed by water vapor tomography.

Table 2. Statistical results of the water vapor density composition between radiosonde and tomo-
graphic results of different combinations during the experimental period.

Combinations
RMSE (gm−3) Coverage Rate

Max Min Average

G 1.98 0.52 1.42
C 2.05 0.57 1.41
R 2.08 0.51 1.45
E 2.13 0.58 1.46

GR 1.92 0.53 1.33
GC 1.96 0.48 1.34
GE 2.04 0.61 1.41
CR 2.09 0.56 1.34
CE 1.95 0.57 1.36
RE 2.01 0.61 1.40

GCR 1.95 0.44 1.30
GEC 1.97 0.50 1.34
GRE 2.01 0.49 1.36
CRE 2.02 0.59 1.37

GCRE 1.97 0.53 1.32
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Figure 8. Water vapor density comparisons between radiosonde and 15 tomographic results.

5. Conclusions

In this paper, the performances of the four navigation satellite systems and their
combinations in the water vapor tomography were analyzed and assessed using the GNSS
data of SatRef in Hong Kong. In the tomographic modeling, the signal rays that can be
used, the voxels crossed by signal rays, and the number and distribution of the effective
voxels were computed and counted for these different combinations. For the tomographic



Remote Sens. 2022, 14, 3552 14 of 16

results, the GAMIT-estimated SWV of HKQT and the water vapor density derived from
radiosonde were selected as references to assess these 15 tomographic solutions.

In the experimental period, the average number of available signal rays was 507,
704, 329, and 351 for GPS, BDS, GLONASS, and Galileo, respectively. Combining satellite
systems in water vapor tomography can increase the number of available signal rays,
especially as the value of four-system combination reaches close to 2000. The average
number of voxels crossed by signal rays are 425, 424, 392, and 377 for GPS, BDS, GLONASS,
and Galileo, respectively, showing that the number of penetrated voxels is not entirely
determined by the number of available signal rays. The combinations improved the
number of voxels crossed by signal rays; for example, the number and coverage rate of
penetrated voxels achieved by GCRE are 468 and 83.6%, respectively. When the voxels
with sufficient signal rays are concerned, these 15 tomographic solutions differ very little
in both number and coverage rate. The distribution diagram of effective voxels based
on black and white rectangle also indicated the small differences in the 15 solutions. The
numerical statistics showed that the RMSE in SWV comparison are 1.66, 1.59, 1.75, 1.74,
1.68, 1.64, 1.67, 1.62, 1.63, 1.60, 1.59, 1.64, 1.65, 1.65, and 1.63 mm for G, C, R, E, GC, GR,
GE, CR, CE, RE, GCR, GCE, GRE, CRE, and GCRE, respectively. In the comparison with
radiosonde data, the average RMSE are 1.42, 1.41, 1.45, 1.46, 1.33, 1.34, 1.41, 1.34, 1.36,
1.40, 1.30, 1.34, 1.36, 1.37, and 1.32 gm−3 for these 15 tomographic results. The above
comparisons indicated that the differences in the tomographic results of a single satellite
system are small, and the combinations of satellite systems have limited improvement in
the water vapor tomography results.

In the follow-up research, the impact of different satellite systems and their combi-
nation on water vapor tomography need to be explored in more representative regions.
In addition, the number, distribution, and density of GNSS stations in the research region
is another important factor determining the structure of the tomographic model. Thus,
it is necessary to pay more attention to the influence of the GNSS sites on water vapor
tomographic results in the case of a determined satellite system.
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