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Abstract: Change detection is an important task in remote-sensing image analysis. With the
widespread development of deep learning in change detection, most of the current methods improve
detection performance by making the network deeper and wider, but ignore the inference time and
computational costs of the network. Therefore, this paper proposes a lightweight change-detection
network called Shuffle-CDNet. It accepts the six-channel image that concatenates the bitemporal
images by channel as the input, and it adopts the backbone network with channel shuffle operation
and depthwise separable convolution layers. The classifier uses a lightweight atrous spatial pyramid
pooling (Light-ASPP) module to reduce computational costs. The edge-information feature extracted
by a lightweight branch is integrated with the shallow and deep features extracted by the backbone
network, and the spatial and channel attention mechanisms are introduced to enhance the expression
of features. At the same time, logit knowledge distillation and data augmentation techniques are
used in the training phase to improve detection performance. Experimental results showed that the
proposed method achieves a better balance in computational efficiency and detection performance
compared with other advanced methods.

Keywords: remote sensing; change detection; lightweight; channel shuffle; logit distillation

1. Introduction

With the continuous increase in the world’s population and the accelerated urban-
ization process, the global surface has also undergone significant changes, and the study
of the interaction between urbanization and environmental change has received more
attention. Given that the change detection based on remote-sensing images has come
into being, change detection is one of the important research directions of remote-sensing
technology, which uses registered remote-sensing images of the same area at different times
to obtain change information. It assigns binary classification labels (changed or unchanged)
to each pixel of images. Change detection of remote-sensing images is widely used in many
fields such as monitoring urban change and development, assessing earthquake and flood
disasters, and monitoring crop growth status.

In the early stage of the development of change-detection technology, traditional
methods are generally adopted. It can be divided into two steps. First, the difference map
is generated by appropriate methods. For example, the difference map is obtained by using
arithmetic operations of difference calculation and ratio calculation. Kasischke et al. [1]
proposed change vector analysis (CVA). Change vectors are calculated by subtracting
pixel vectors of bitemporal images. Principal component analysis (PCA) is applied to
bitemporal images separately and the difference map is generated by comparing the
results [2]. Second, the binary change map is obtained by using the threshold method,
clustering method (such as K-means clustering [3] and fuzzy C-means clustering [4]) or
using support vector machines [5], Markov random field models [6], etc. For example, the
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change map is achieved by partitioning the feature vector space into two clusters using
K-means clustering with k = 2 and then assigning each pixel to one of the two clusters [3].
Nemmour et al. [5] utilized binary SVM to obtain change information, which considered
the changed pixels as positive and considered the unchanged pixels as negative. These
traditional methods are generally designed with the help of manual feature selection and
extraction, which are susceptible to noise interference and often perform poorly in the
complex scenarios, especially on high-spatial-resolution remote-sensing images.

Recently, deep-learning technology, especially convolutional neural networks (CNN),
has achieved excellent performance and has been extensively applied in remote sensing
with its computing power to change detection tasks. Many deep-learning-based change-
detection methods have demonstrated better performances than traditional methods. Some
attempts use CNN to extract change information based on siamese network structure.
For example, Zhang et al. [7] utilized the siamese CNN to extract the spectral-spatial
joint representation. Then, the change map was generated through feature fusion and
discrimination learning. Daudt et al. [8] proposed two siamese architectures, FC-Siam-conc
and FC-Siam-diff, for change detection. The former concatenated the two skip connections
during the decoding steps and the latter concatenated the absolute value of their difference.
Zhang et al. [9] proposed a deeply supervised image fusion network (IFN). The extracted
deep features by a two-stream siamese backbone network were fed into a deeply supervised
difference discrimination network. Other methods use CNN based on the early converged
network by concatenating the two images before passing them through the network.
Nakamura et al. [10] proposed a U-net-based network to detect the new construction of
buildings in developing areas based on the early converged network. The skip connections
help generate good results without losing information. Zheng et al. [11] proposed an
early converged network based on an encoding–decoding structure named CLNet, which
incorporated multiscale features and multilevel contextual information by embedding
cross-layer blocks (CLBs) in the encoder. Peng et al. [12] proposed an early converged
network based on UNet++. It utilized both global and fine-grained information to generate
feature maps. Then, the fusion strategy of multiple side outputs was adopted to combine
change maps from different semantic levels.

With the continuous improvement of the spectral and spatial resolution of remote-
sensing images, recurrent neural networks (RNN) and self-attention mechanisms have
been widely used in the process of change detection to capture long-range contextual infor-
mation. Wang et al. [13] proposed the SiamCRNN to fuse time-space-spectral information.
However, the input of SiamCRNN is small neighborhood blocks, which are difficult to
use to obtain global relevant information. To solve this problem, Chen et al. [14] proposed
the STANet network, which inputs the global features extracted by the ResNet18 network
into the self-attention mechanism module, and captures the long-range spatial-temporal
dependencies for learning better representations. Some methods also introduce spatial
attention or channel attention mechanisms to improve feature expression [9,15–17]. For
example, Song et al. [15] proposed AGCDetNet, which added the learned spatial attention
to the deep features to promote discrimination between the changed objects and the back-
ground. It utilized the channel-wise attention-guided interference filtering unit to enhance
the representation of multilevel features, and the transformer had powerful and robust per-
formance in various computer vision tasks after being proposed. Chen et al. [18] proposed
Bit-CD, which expressed the bitemporal image to a few tokens and used a transformer
encoder to model contexts in the compact token-based space-time. The tokens were fed
back to the pixel space for refining the original features via a transformer decoder. Other
transformer-based and swin-transformer-based methods also show good performance in
change detection tasks [19–21]. For example, Zhang et al. [21] proposed SwinSUNet, which
contains an encoder, fusion, and decoder, and all of them use swin transformer blocks as
basic units. However, these methods are not dominant in terms of computation efficiency.

It can be seen that to enhance the expression ability of features, some attempts have
been made to solve the problem by using deeper or wider networks, and the integration of
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more attention mechanism modules or transformer-based structures. However, these strate-
gies also increase computational costs and are extremely unfriendly to the inference time.
At present, many works have begun to pay attention to the design of lightweight networks,
such as directly manual design [22–26], including the ShuffleNet series [27,28]. For example,
Howard et al. [24] utilized depthwise separable convolutions to build MobileNets, which
factorize a standard convolution into a depthwise convolution and a 1 × 1 convolution
called a pointwise convolution. Meanwhile, knowledge distillation [29–31] can also reduce
the computational costs of models. Knowledge distillation is a procedure for model com-
pression, in which a small (student) model is trained to match a large pre-trained (teacher)
model. Knowledge is transferred from the teacher model to the student by minimizing a
loss function, aimed at matching softened teacher logits as well as ground-truth labels [29].
Although various studies have focused on increasing the accuracy in change detection
tasks, few studies focus on increasing the computational efficiency. Chen et al. [32] pro-
posed a lightweight multiscale spatial pooling network to detect changes in SAR images.
Multiscale pooling kernels were equipped in a convolutional network to exploit the spatial
information. Wang et al. [33] proposed a lightweight network that replaces the regular con-
volutional layers with bottlenecks and employs convolutional kernels with some non-zero
entries, but it does not give specific network parameters and operation metrics, making
it difficult to evaluate the efficiency of the network. Song et al. [34] proposed 3M-CDNet
and its lightweight network 1M-CDNet used for change detection tasks. Deformable
convolution is integrated into the residual network and shallow and deep features are
fused. 1M-CDNet is simpler than the 3M-CDNet in the classifier, but the application of
deformable convolution cannot further reduce the inference time. In these lightweight
networks, the down-/upsampling is used to increase the receptive field, resulting in spatial-
detail information loss and perhaps a failure to precisely depict boundaries. To solve this
problem, some methods attempt to integrate edge information or combine edge detection
with contextual aggregation. For example, Guo et al. [35] proposed an edge-preservation
network named SG-EPUNet, which designs the edge-detection branch based on residual
networks and fuses with contextual information to refine fuzzy boundaries. Liu et al. [36]
utilized the edge-constraint loss to constrain the differences between the boundaries of
the predicted mask and the ground truth, which were extracted by the Sobel filters. Yang
et al. [37] composed the backbone network and edge-perception network and utilized an
edge-aware loss to obtain accurate results. Inspired by this spirit, this paper designs a
lightweight network named Shuffle-CDNet for the change-detection task and a lightweight
edge-information feature-enhancement branch is involved. Shuffle-CDNet better balances
computing costs, inference time and detection performance compared with 1M-CDNet and
other methods.

The main contributions of this paper are summarized as follows. A lightweight net-
work named Shuffle-CDNet is proposed, which uses a lightweight backbone network and a
concise classifier. The backbone consists of the building blocks of ShuffleNet v2 [28], which
adopts channel shuffle, depthwise separable convolutions, and other operations to reduce
computational costs. The classifier uses the Light-ASPP module to classify the features
extracted by the backbone and generate a binary change map. To improve the edge detec-
tion in the changed regions, especially for small objects, the lightweight edge-information
feature-enhancement branch of the changed regions is designed and integrated with the
shallow and deep features of the backbone network, and to enhance the feature-expression
ability, the spatial and channel attention mechanism are introduced in the backbone. At
the same time, the logit knowledge-distillation technology is used to distill the student
network Shuffle-CDNet with 3M-CDNet [34] as the teacher network. 3M-CDNet can pro-
vide supervision information and improve the detection performance of Shuffle-CDNet.
In addition, the online data-augmentation strategy is used in the training phase, and the
Tversky loss function is introduced to balance the accuracy and recall of the detection.
Without sacrificing the detection performance of the network, the computational costs
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and inference time of Shuffle-CDNet are better than most other advanced networks. The
balance between the detection performance and the computational costs is well-realized.

2. Proposed Methods

The proposed network named Shuffle-CDNet mainly consists of the backbone and the
classifier. A lightweight edge-information feature-enhancement branch is also involved.
The workflow of the Shuffle-CDNet with a flexible modular design is shown in Figure 1.
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fleV2Block, which generates the multilevel features. It accepts the six-channel image that concatenates
the bitemporal images by channel. (b) Classifier: accepts the fusion features and generates the binary
change map.

The input of Shuffle-CDNet is a six-channel image I(1,2) ∈ R6×H×W obtained by
contacting the bitemporal images in the channel dimension. It passes through the Input
Layer, Layer 1 and Layer 2 to obtain the low-dimensional features X ∈ R24× H

4 ×
W
4 , X_1st ∈

R128× H
4 ×

W
4 , and X_2nd ∈ R256× H

4 ×
W
4 , respectively. A lightweight edge-information feature-

enhancement branch of the changed regions is designed; that is, shallow feature X passes
through the Edge Layer module to obtain edge-information feature X_edge ∈ R128× H

4 ×
W
4 .

The X_1st, X_2nd, and X_edge are contacted in the channel dimension and output through
Layer 3 and Layer 4. The extracted pixel features are classified into two categories: changed
and unchanged. Layer 3 consists of a channel attention module (CAM), a 1 × 1 convolution
layer, and a upsample layer. The upsample layers involved in the network are implemented
by bilinear interpolation. Layer 4 consists of a Light ASPP module, an upsample layer,
and a sigmoid layer. Finally, a binary change map CM ∈ R1×H×W is output by a fixed
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threshold segmentation. It is worth noting that the part inside the dashed box in Figure 1
can be removed when in the test phase, reducing the inference time.

The proposed method is applied to three public datasets. Quantitative and qualitative
results are shown to evaluate the method. As for quantitative results, overall accuracy,
IoU, and F1 metrics are shown. As a result, the proposed method can better balance the
computational efficiency and detection performance.

2.1. Backbone

As shown in Figure 1, the backbone network of Shuffle-CDNet is mainly composed
of Input Layer, Layer 1, and Layer 2. Among them, the Input Layer is composed of two
convolutional layers connected by a maximum pooling layer, of which the first is 3 × 3
convolution and the second is 1 × 1 convolution. ‘Conv (6, 24, 3, 2)’ in Figure 1 indicates
input channels, output channels, kernel size, and stride of the layer, and the same is true
for other similar symbols. The input image is downsampled by 4 times through the Input
Layer to obtain a shallow feature map X, reducing the computational costs for the post-
sequence network. Layer 1 and Layer 2 are mainly composed of 4 and 8 ShuffleV2Block
base blocks, respectively. The ShuffleV2Block base block adopts the idea of the ShuffleNet
V2 network [28] to reduce the computational costs, expressed by Equation (1) as:

Xl
out = ξ

(
Xl

A

)
} H

(
Xl

B

)
(1)

The main idea of the ShuffleV2Block base block is to first divide the input feature Xl−1
out

for the lth base block into two subfeatures Xl
A and Xl

B with the same channel dimension.
The two subfeatures pass through the left branch ξ(·) and the right branch H(·) of the base
block, respectively. } Indicates that the processed subfeatures are contacted in the channel
dimension. The stride of all base blocks in Layer 1 is 1; that is, the spatial resolution of the
feature map is not changed through Layer 1. The stride of the first base block in Layer 2
is 2; that is, the spatial resolution of the feature map is reduced to half. The stride of the
remaining base blocks in Layer 2 is 1. Its architecture is shown in Figure 2.

To maintain the spatial resolution of feature maps (stride = 1), as shown in Figure 2a,
the left branch ξ(·) represents the identity function and the right branch H(·) is cascaded
by three convolution layers. Among them, the 3 × 3 convolution layer uses depthwise
convolution. To double-downsample in the spatial dimension (stride = 2), as shown in
Figure 2b, Xl−1

out = Xl
A = Xl

B, and the left branch ξ(·) is a depthwise separable convolution,
modeled sequentially by 3 × 3 and 1 × 1 convolution layers. The 3 × 3 convolution layer
uses depthwise convolution and the stride is 2. The right branch H(·) is also cascaded by
three convolution layers, where the 3 × 3 convolution layer is a depthwise convolution and
the stride is 2. The channel dimension of the feature is doubled after the base block of stride
2, and the spatial resolution becomes one-half of the original. Batch normalization (BN)
and ReLU activation function are cascaded after the 1×1 convolution layer to improve the
stability of model training; only the BN layer is cascaded after the 3 × 3 convolution layer,
and there is no activation function layer to reduce computational costs. BN can accelerate
the training by reducing internal covariate shift [38], and ReLU can avoid the gradient
disappearance and alleviate overfitting [39].

To enhance the information exchange between different parts of channels in the
network, channel shuffle [27] is used. That is, the features obtained through the right
branch are inserted into the features obtained through the left branch according to the
channel. The number of groups is set to 2, assuming that the channel dimension of the
feature Xl

out is n, the channel dimension is first reshaped to (2, 2
n ). Then, the channel

dimension is transposed to ( 2
n , 2). Finally, the channel dimension is reshaped to n, which

realizes the purpose of the channel-shuffle operation.
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To improve the distinction between the changed regions and the background in the se-
mantic features, a SAM module [9] is introduced at the end of Layer 1. The implementation
details are introduced in Section 2.3.

2.2. Classifier

As shown in Figure 1, the classifier of the Shuffle-CDNet consists mainly of Layer 3
and Layer 4. The input feature of the classifier Xc ∈ R512× H

4 ×
W
4 is obtained by contacting

X_edge, X_1st, and X_2nd in the channel dimension. For the high-dimensional features
obtained after contact, a CAM module is introduced. The implementation details are
introduced in Section 2.3. Then, the channel dimension of Xc is reduced from 512 to 256
by a 1 × 1 convolution layer to further reduce the computational costs for the subsequent
network. The Light-ASPP module is based on ASPP in the Deeplabv3 series [40]. It takes
into account the different scales of changed regions and reduces the computational costs.
The architecture of the Light-ASPP module is shown in Figure 3.

In the Light-ASPP module, three parallel feature-extraction branches are formed. The
input feature of the Light-ASPP module is X_ f eature ∈ R256× H

2 ×
W
2 . The first branch is a

1 × 1 convolution layer, which retains the original information of the feature and reduces
the channel dimension from 256 to 32. The second branch is a 3× 3 atrous convolution layer
with a dilation rate of 8 to capture semantic features at different scales. The third branch
obtains image-level global features through an adaptive average pooling layer, a 1 × 1
convolution layer, and the upsample layer. After three parallel feature-extraction branches,
the feature dimension is R32× H

2 ×
W
2 , and is R96× H

2 ×
W
2 after contacting three features. Then,
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the output of the Light-ASPP module is obtained by three convolution layers. In addition,
the dropout regularization strategy is introduced in the Light-ASPP module during training.
Each convolutional layer in the Light-ASPP module is cascaded with a BN layer and a
hard-swish activation function [26], which ensures detection performance and reduces
computational costs. The expression of the hard-swish function is shown in Equation (2),
where ReLU6 refers to the clipping of the output value of the ReLU function so that its
maximum output value is 6.

hard_swish(x) = x · ReLU6(x + 3)
6

(2)

The output of the Light-ASPP module is double-upsampled, and then the pixelwise
change probability map is obtained after the sigmoid layer. CM ∈ R1×H×W is obtained
by a fixed threshold of 0.5 during the test stage. When the pixelwise change probability is
greater than 0.5, it is judged as a changed pixel. Otherwise, it is judged as unchanged.
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2.3. Attention Mechanism

To enhance features of high correlation with change-detection tasks, the channel and
spatial attention modules are used [9], as shown in Figure 4.

The expression of CAM is shown in Equation (3):

Fout_c = [σ(MLP(AvgPool(Fin_c)) + MLP(MaxPool(Fin_c)))]× Fin_c (3)

Fin_c represents the input feature, AvgPool (·) represents average pooling, MaxPool (·)
represents maximum pooling, MLP represents multilayer perceptron, and σ(·) represents
the hard_swish activation function. Suppose Fin_c ∈ RC×H×W , then the dimension of MF

c
is RC×1×1, assigning weights to each channel. The CAM is shown in Figure 4a, which
is mainly divided into two steps: (1) aggregating the information of each channel and
calculating the channel attention distribution of the features, that is, MF

c ; (2) combining
MF

c with the original feature Fin_c. The module is used after contacting X_edge, X_1st, and
X_2nd to enhance the discriminative ability of features.

The SAM-used expression is shown in Equation (4):

Fout_s =
[
σ
(

f 7×7([AvgPool(Fin_s)} MaxPool(Fin_s)])
)]
× Fin_s (4)
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Fin_s represents the input feature, f 7×7 represents a 7 × 7 convolutional layer, [}]
indicates a concatenation operation in the channel dimension, and the rest is the same as
the CAM. Assuming that the input feature dimension Fin_s ∈ RC×H×W , the dimension of
MF

s is R1×H×W . The pixel values of each channel are assigned weights. The SAM is shown
in Figure 4b, which is mainly divided into two steps: (1) aggregating the information of
each pixel in the channel dimension and calculating the spatial attention distribution MF

s ;
(2) combining MF

s with the original feature Fin_s. SAM is applied in Layer1 to enhance the
distinction between the changed area’s information and the unchanged area’s information.
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2.4. Edge-Information Feature Enhancement

In the change-detection task, the performance of the edge detection of the changed
areas is poor, especially for the small targets. Therefore, to pay more attention to the edge
detail information and reduce the occurrence of missed detection, especially for small
targets, the lightweight edge-information feature-enhancement module of the changed area
is designed to improve the detection performance.

As can be seen in Figure 1, for the shallow feature X ∈ R24× H
4 ×

W
4 obtained by the

Input Layer, the edge-information feature X_edge ∈ R128× H
4 ×

W
4 is obtained after passing

through the Edge Layer. X_edge is then used to enhance the semantic features. The
Edge Layer is cascaded by three ShuffleNetV2Block basic blocks, and to avoid excessive
downsampling and information loss, the spatial resolution is maintained in the Edge Layer.
The edge-information feature X_edge is successively a 3 × 3 convolution layer, a 1 × 1
convolution layer, a 4 × upsample layer, and the sigmoid activation function to obtain
the edge-detection output map of the changed areas. The canny operator [41] is used to
process the change-detection ground truth label to obtain the edge label of changed areas,
to perform supervised learning on the module.

2.5. Logit Knowledge Distillation

For the deep-learning network which is a black-box model, the “knowledge” of
network learning is abstract; that is, learning how to map from the input to the output. For
the change-detection task, the probability of classification as the changed class is learned by
the model. The probability is a soft label relative to the 0/1 hard truth label, which reflects
the probability relationship between the model to classify the image pixel into changed and
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unchanged classes. Therefore, the change probability generated by the large model can be
used as a soft label in the training to guide the small model. That is, the large model can
be used as the teacher model to transmit the learned knowledge information to the small
model [29]. It helps achieve better detection performance with a smaller model.

3M-CDNet [34] is used as the teacher network to distill Shuffle-CDNet. Because
of the difference in the structure of the two networks, logit distillation is used. That
is, the probability distribution of the outputs of the two networks is directly matched.
The activation function of both networks’ output layers is the sigmoid function, and the
expression is shown in Equation (5):

f (x) =
1

1 + e−x (5)

The output of the teacher network and the student network through the sigmoid
function are “softened” during the training process; that is, the temperature coefficient T is
introduced. The modified nonlinear activation function is shown in Equation (6):

fT(x) =
1

1 + e−
x
T

(6)

T is set to 1 during the student network test, so that the results learned by the student
network are as close as possible to the results of the teacher network.

In the experiment, the knowledge distillation strategy was used on the LEVIR-CD
dataset and the season-varying dataset to distill the student network Shuff-CDNet with
the teacher network 3M-CDNet for training. On the SYSU-CD dataset, the detection
performance of the Shuffle-CDNet is already better than that of the 3M-CDNet after the
adoption of the specific data-augmentation strategy, so the knowledge-distillation strategy
is no longer used.

3. Experiment Settings
3.1. Training Datasets

In the experiment, Shuffle-CDNet was evaluated on three publicly available change-
detection remote-sensing image datasets, including LEVIR-CD [14], season-varying [42],
and SYSU-CD [43] datasets.

(1) LEVIR-CD dataset: It contains 637 pairs of two-phase optical satellite remote-
sensing images of building changes collected from the Google Earth platform. Each remote-
sensing image contained three bands of RGB, with a spatial resolution of 0.5 m/pixel, and
the period of the two phases of images ranged from 5 to 14 years. The types of building
changes mainly involve the new construction and demolition of buildings. It is randomly
divided into three parts: 70% for the training set, 10% for the validation set, and 20% for the
test set. The 512 × 512 sliding windows with a stride of 256 are used to crop the original
image to 512 × 512 image slices.

(2) Season-varying dataset: It contains 7 pairs of remote-sensing images of seasonal
changes taken from Google Earth, each with an original size of 4725 × 2700. The spatial
resolution ranges from 3–100 cm/pixel. The seasonal differences between the two phases
of the image are significant, mainly reflecting the changes in buildings, roads, vehicles, and
other features, ignoring the changes brought about by seasonal changes (e.g., vegetation
growth and wilting, snow-covered ground). The dataset author cropped the original image
into image slices of 256 × 256, enhanced by random rotation within 360◦, resulting in a
total of 16,000 pairs of image slices. Ultimately, it is divided in a way consistent with the
original paper: 10,000 pairs of samples as the training set, 3000 pairs as the validation set,
and the remaining 3000 pairs as the test set.

(3) SYSU-CD dataset: It contains 20,000 pairs of aerial images with a resolution of
0.5m, reflecting the rich changes in buildings, especially high-rise buildings in Hong Kong,
China, and port-related change information between 2007 and 2014. The main types of
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changes include new urban buildings, suburban expansion, preconstruction foundations,
vegetation changes, road expansion, and offshore construction. The 20,000 pairs of datasets
are randomly divided into training, validation, and testing sets in a 6:2:2 ratio.

3.2. Implementation Details

Shuffle-CDNet was implemented based on the Pytorch framework [44]. The model
training was performed using the AdamW optimizer [45] with β1 = 0.9 and β2 = 0.99,
of which the initial learning rate and weight decay were empirically set to 0.000125 and
0.0005, respectively. It was trained without pretrained models on a single NVIDIA RTX
3090 GPU. The batch size of the training was set to 16. The training epochs were set to 400,
900, and 250 for LEVIR-CD, season-varying, and SYSU-CD datasets, respectively.

3.3. Data Augmentation

Online data augmentation (DA) was used to simulate scale changes, light changes, and
pseudo-variations. After loading each batch of data, online DA is applied randomly with
a probability of 0.8 through random movement, rotation, scaling, horizontal and vertical
flipping, and changing the spectral feature strategy. Each DA method is randomly applied
with a probability of 0.5.

Moreover, according to the qualitative analysis of the datasets, the spectral difference
between the prephase and postphase images of the LEVIR-CD dataset and the season-
varying dataset is relatively large, but it is relatively small for the SYSU-CD dataset. There-
fore, the specific DA strategy of switching the channel order when contacting the prephase
and postphase images as the input I(1,2) ∈ R6×H×W is adopted with a probability of 0.25
for the SYSU-CD dataset.

3.4. Loss Function

The loss function consists of three parts weighted, and the expression is shown in
Equation (7):

Ltotal = αLcd + βLedge + γLkd (7)

The first part of the loss function Lcd consists of the standard binary cross-entropy loss
function and the Tversky loss function weighted, as shown in equations (8).

Lcd = α1lbce + α2ltversky

lbce = − 1
N

N
∑

n=1
(yn log(ŷn) + (1− yn) log(1− ŷn))

ltversky = 1− 1
N

N
∑

n=1

yn ŷn
yn ŷn+α21(1−yn)ŷn+α22yn(1−ŷn)

(8)

yn (1/0) represents a changed pixel or an unchanged pixel in the truth label, and ŷn
represents the probability that the pixels in the prediction image belong to the changed
class. When α21 = α22 = 1, the Tversky loss is the Jaccard loss [34]. Due to the problem of
sample imbalance in the change-detection task, the number of unchanged pixels is much
greater than the number of changed pixels. Therefore, to avoid some changed pixels being
mistakenly judged as unchanged pixels, the Tversky loss hyperparameter α21 = 0.3 and
α22 = 0.7 are set in the experiments. That is, the weight ratio of false negative (FN) is
increased. The goal is to balance the recall and the precision rate and improve the F1
coefficient of the detection results. The hyperparameters α1 and α2 in Lcd are set to 0.3 and
0.7, respectively. It increases the weight ratio of the Tversky loss in the Lcd loss function.

The second part of the loss function Ledge is the standard binary cross-entropy loss
function. It is aimed at the edge-information feature-enhancement module. The prediction
is the edge-detection output map of the changed areas, and the true label is the edge label
of the changed areas extracted by the canny operator. The third part of the loss function Lkd
is the standard binary cross-entropy loss function, which is for the logit distillation module.
The prediction is the prediction output of the student network Shuffle-CDNet, and the true
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label is the prediction output of the teacher network 3M-CDNet. The hyperparameters of
the loss weights of each part are set in the Ltotal α = 1, β = 0.5, and γ = 25, respectively. It
is worth noting that for the SYSU-CD dataset, the Ltotal does not contain Lkd because no
knowledge-distillation strategy was used.

3.5. Evaluation Metrics

F1-Score (F1), intersection over union (IoU), precision rate (Pr), recall rate (Re), and
overall accuracy (OA) are mainly used as evaluation metrics, as shown in Equation (9):

Pr = TP
TP+FP

Re = TP
TP+FN

OA = TP+TN
TP+FP+TN+FN

IoU = TP
TP+FP+FN

F1 = 2×Pr×Re
Pr+Re

(9)

TP, TN, FP, and FN, respectively, mean true positive, true negative, false positive, and
false negative. IoU and F1 are comprehensive evaluation metrics. The larger the evaluation
metric value, the better the comprehensive performance of the model.

4. Results

In order to compare with the proposed Shuffle-CDNet on different datasets, sev-
eral state-of-the-art deep-learning-based methods were selected for comparative experi-
ments. These methods includes pure convolutional-network-based approaches: FC-Siam-
Diff [8], FC-Siam-Conc [8], FC-Siam-Res [46], and CLNet [11]; Attention-based approaches:
STANet [14] and FarSeg [47], Transformer-based approaches: BIT-CD [18], and lightweight
networks for remote-sensing images: MSPP-Net [32], Lite-CNN [33], 1M-CDNet, and
3M-CDNet [34].

4.1. Computational Efficiency

Table 1 lists the number of parameters (M), the computational costs (GFLOPs), and
the inference time (ms) of different methods. FLOPs represent the number of floating-
point operations and 1GFLOPs = 109FLOPs. Tests based on Table 1 were performed on
an NVIDIA RTX 2080Ti GPU with 11 GB of memory. The fixed 1 × 6 × 512 × 512 and
1 × 6 × 256 × 256 image sizes were used as inputs when testing the computational costs.
The fixed 16 × 6 × 512 × 512 and 16 × 6 × 256 × 256 image sizes were used as inputs to
make full use of GPU memory capacity when testing the inference time and improve the
inference efficiency. The average time of 1000 forward inferences using randomly generated
test samples was used as the inference time to reduce the test error. “-” indicates that the
STANet requires a large amount of memory and cannot be run on a single GPU.

As can be seen from Table 1, the parameters of Shuffle-CDNet are only 0.71 M, which
is 0.55 M lower than 1M-CDNet. It is the lowest among all networks. For the computational
costs, Shuffle-CDNet has 12.52 GFLOPs and 3.13 GFLOPs in the input image size of
1 × 6 × 512 × 512 and 1 × 6 × 256 × 256, respectively, which is 5.91 G and 1.48 GFLOPs
lower than 1M-CDNet. It is second only to the FC-EF-Res in all comparison networks.
However, the computational costs cannot directly reflect the inference time. The latter is
also affected by other factors such as the degree of parallelism and the memory access
cost [28], so the inference time should be directly tested on the target computing platform.
For the inference time, the inference time of Shuffle-CDNet is 123.10 ms and 31.60 ms for
the input size of 16 × 6 × 512 × 512 and 16 × 6 × 256 × 256, respectively. It is 5.56 ms and
2.02 ms lower than 1M-CDNet, respectively, which has a clear advantage in inference time
after FC-EF-Res and Lite-CNN in all comparison networks. Compared with Lite-CNN,
the computational costs of Shuffle-CDNet are significantly lower than that of the former,
but the inference time is greater, because the degree of parallelism of Lite-CNN is better
than that of Shuffle-CDNet. Shuffle-CDNet uses edge-information feature enhancement
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and two-stage feature-fusion strategy to balance the degree of network parallelism and
detection performance.

Table 1. Comparison of network parameters, computational costs, and inference time.

Method
Number of
Parameters

(M)

Computational Costs
(GFLOPs) w/bs = 1

Inference Time (ms)
w/bs = 16

512 × 512 256 × 256 512 × 512 256 × 256

FC-Siam-Diff 1.35 20.74 5.18 130.75 32.05
FC-Siam-Conc 1.55 20.75 5.19 133.09 32.12

FC-EF-Res 1.10 6.94 1.73 92.35 23.54
MSPP-Net 6.25 66.16 16.54 190.85 47.09
Lite-CNN 3.88 19.17 4.79 117.98 29.38
1M-CDNet 1.26 18.43 4.61 128.76 33.62
3M-CDNet 3.12 94.83 23.71 336.87 55.28

CLNet 8.53 35.65 8.91 130.87 33.01
STANet 16.93 206.68 32.42 - -
FarSeg 31.38 47.45 11.86 171.14 44.38
BIT-CD 3.05 62.68 15.67 264.56 64.67

Shuffle-CDNet 0.71 12.52 3.13 123.10 31.60

4.2. Comparisons on LEVIR-CD Dataset

(a) Quantitative evaluation

Table 2 lists the experimental results for quantitative comparison of the LEVIR-CD
dataset. Compared with 1M-CDNet, Shuffle-CDNet increased by 0.07% on the F1 metric
and 0.11% on the IoU metric. As available from Table 1, the Shuffle-CDNet has compu-
tational costs of 12.52 GFLOPs when the input image size is 1 × 6 × 512 × 512, which
is only about 68% of 1M-CDNet. Compared with the teacher model 3M-CDNet in the
logit distillation training, F1 and IoU metrics of the student model Shuffle-CDNet are
a little lower than the former, but the computational costs of the latter are only about
13% of the former, and the inference time of the latter is only about 36% of the former,
which greatly improves the detection efficiency. Compared with the baseline STANet
and BIT-CD, Shuffle-CDNet increased by 3.17% and 1.22% on the F1, respectively, and by
5.21% and 2.03% on the IoU, respectively. As available from Table 1, Shuffle-CDNet has
only about 20% of the computational costs of the BIT-CD. For other lightweight networks,
Shuffle-CDNet increased the computational costs and inference time a little higher than
that of the FC-EF-Res, but the former increased by 1.52% and 2.53% respectively in F1 and
IoU; Shuffle-CDNet increased by 3.09% and 0.89% on F1 compared with MSPP-Net and
Lite-CNN networks, respectively. The IoU also improves by 5.07% and 1.48%, respectively.
Combined with the metrics, it can be seen that the Shuffle-CDNet has the best balance
between computational costs and detection performance.

(b) Qualitative evaluation

For visual comparison, Figure 5 shows the detection results on the LEVIR-CD test sets.
Black, white, red, and green pixels represent TN, TP, FP, and FN, respectively. It can be seen
that Shuffle-CDNet can reduce missing detection of small changed objects, mainly due to the
edge-information feature-enhancement module. For example, in Figure 5a–c, Shuffle-CDNet
is clearly improved with regard to the missed detection phenomenon of small objects
compared with other CNN-based networks such as Lite-CNN and 1M-CDNet. Attention-
based networks such as STANet and FarSeg, as well as CLNet, take contextual information
into account and perform well in small-object detection. However, for the detection of large-
range changed areas, as shown in Figure 5d,e, Shuffle-CDNet can generate a change map
with better changed regional internal compactness compared to other networks including
3M-CDNet. It can be seen that the qualitative results are consistent with the analysis of the
quantitative results, and Shuffle-CDNet performs better than other advanced networks on
the LEVIR-CD dataset.
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Table 2. Comparison results on the LEVIR-CD dataset.

Method Pr (%) Re (%) OA (%) IoU F1

FC-Siam-Diff 91.25 88.18 98.97 81.30 89.69
FC-Siam-Conc 89.49 89.18 98.92 80.72 89.33

FC-EF-Res 91.48 88.04 98.97 81.37 89.73
MSPP-Net 89.65 86.73 98.81 78.83 88.16
Lite-CNN 90.77 89.96 99.02 82.42 90.36
1M-CDNet 92.32 90.06 99.11 83.79 91.18
3M-CDNet 91.99 91.24 99.15 84.52 91.61

CLNet 90.85 90.53 99.05 82.97 90.69
STANet 85.01 91.38 98.74 78.69 88.08
FarSeg 91.04 90.22 99.05 82.86 90.63
BIT-CD 90.38 89.69 98.99 81.87 90.03

Shuffle-CDNet 91.41 91.08 99.11 83.90 91.25
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4.3. Comparisons on Season-Varying Dataset

(a) Quantitative evaluation

Table 3 lists results on the season-varying dataset, which has some pseudo-variational
interference due to seasonal variations. Shuffle-CDNet still performs well on comprehen-
sive metrics such as F1 and IoU compared to most other detection networks. For example,
compared with the FarSeg, Shuffle-CDNet has increased by 0.16% and 0.30% on the F1
and IoU, respectively. It can be obtained from Table 1 that when the network input im-
age size is 1 × 6 × 256 × 256, the computational costs of Shuffle-CDNet are only 26% of
FarSeg. Compared with lightweight networks, Shuffle-CDNet is superior to FC-Siam-Conc,
FC-Siam-Diff, and MSPP-Net in terms of computational costs, inference time, and metrics
F1 and IoU. Compared with FC-EF-Res and Lite-CNN, although it is slightly better than
shuffle-CDNet in terms of computational costs or inference time, Shuffle-CDNet is 8.14%
and 3.71% higher than the FC-EF-Res and Lite-CNN networks on F1 metric, and the IoU
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metric is increased by 14.17% and 6.73% respectively, which is a significant improvement.
Compared to 1M-CDNet, Shuffle-CDNet achieves nearly equal detection performance with
lower computational costs and faster inference time.

Table 3. Comparison results on the season-varying dataset.

Method Pr (%) Re (%) OA (%) IoU F1

FC-Siam-Diff 93.98 81.05 97.02 77.05 87.04
FC-Siam-Conc 91.94 82.06 96.90 76.56 86.72

FC-EF-Res 89.91 87.37 97.25 79.56 88.62
MSPP-Net 92.95 85.93 97.46 80.67 89.30
Lite-CNN 96.58 89.76 98.34 87.00 93.05
1M-CDNet 95.05 98.61 99.19 93.79 96.80
3M-CDNet 95.88 99.16 99.37 95.10 97.49

CLNet 98.62 94.46 99.15 93.23 96.50
STANet 93.13 93.59 98.36 87.55 93.36
FarSeg 95.12 98.13 99.15 93.43 96.60
BIT-CD 98.49 92.34 98.88 91.05 95.31

Shuffle-CDNet 95.54 98.01 99.19 93.73 96.76

(b) Qualitative evaluation

Figure 6 shows the results of different methods on the season-varying test sets. In
terms of test results, Shuffle-CDNet is significantly superior to CNN-based networks such
as FC-EF-Res and Lite-CNN networks. From Figure 6d,e, it can be seen that for the change
detection of dense small objects or slender areas, Shuffle-CDNet has better performance
than 1M-CDNet, STANet, and FarSeg networks, especially with better boundary-detection
performance. Shuffle-CDNet can better maintain the independence of the detected area
and can achieve a detection effect similar to that of the 1M-CDNet network with lower
computational costs. The qualitative analysis is consistent with the quantitative results.
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results of five pairs of bitemporal images.
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4.4. Comparisons on SYSU-CD Dataset

(a) Quantitative evaluation

Table 4 lists the results of the SYSU-CD dataset. It can be seen that the F1 and IoU
metrics of Shuffle-CDNet are better than other methods. For example, compared with
the FarSeg network, Shuffle-CDNet improves by 0.38% and 0.54% on F1 and IoU metrics,
respectively. Compared with the 1M-CDNet method, Shuffle-CDNet improves by 0.39%
and 0.56% on the F1 and IoU. Especially for 3M-CDNet, Shuffle-CDNet also improves
by 0.06% and 0.09% on the F1 and IoU indicators, respectively. From Table 1, when the
input image size is 1 × 6 × 256 × 256, the computational costs and inference time of the
Shuffle-CDNet network are also much smaller than that of 3M-CDNet.

Table 4. Comparison results on the SYSU-CD dataset.

Method Pr (%) Re (%) OA (%) IoU (%) F1 (%)

FC-Siam-Diff 89.13 61.08 89.06 56.84 72.48
FC-Siam-Conc 81.95 77.05 90.59 65.87 79.42

FC-EF-Res 81.08 78.33 90.58 66.22 79.68
MSPP-Net 75.86 78.40 89.02 62.75 77.11
Lite-CNN 79.80 82.18 90.89 68.03 80.98
1M-CDNet 80.73 81.55 91.06 68.26 81.14
3M-CDNet 80.78 82.16 91.18 68.73 81.47

CLNet 82.64 79.08 91.15 67.81 80.82
STANet 73.53 82.49 88.87 63.60 77.75
FarSeg 84.03 78.45 91.40 68.28 81.15
BIT-CD 83.18 72.92 90.14 63.56 77.72

Shuffle-CDNet 80.93 82.14 91.22 68.82 81.53

(b) Qualitative evaluation

Figure 7 shows the detection results of different methods on the SYSU-CD test sets.
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The SYSU-CD dataset has more large-scale variation areas, such as Figure 7d,e images;
it can be seen that in the test results of the Shuffle-CDNet network compared to other
CNN-based networks such as FC-EF-Res and 1M-CDNet, as well as lightweight networks
Lite-CNN, more false detections are clearly avoided. At the same time, CLNet and STANet
also perform relatively well on the Figure 7d,e images, but there are more missed detections
on the Figure 7a–c images compared with the Shuffle-CDNet network. In particular, the
STANet network has more false detections. Therefore, overall, Shuffle-CDNet has better
detection performance on the SYSU-CD dataset, which is consistent with the quantitative-
analysis results.

4.5. Ablation Studies

The effects of the two-level feature-fusion strategy, edge-information feature-enhancement
module, logit distillation module, Tversky loss, and attention mechanism on the perfor-
mance of Shuffle-CDNet were verified by ablation experiments. Tables 5–9 list the results
of ablation experiments on the LEVIR-CD, season-varying, and SYSU-CD datasets, where
“w/” and “w/o” mean “with” and “without”, respectively. All data in the tables are in
percentage form.

Table 5. Effects of two-level feature-fusion strategy.

Methods
LEVIR-CD Season-Varying SYSU-CD

OA IoU F1 OA IoU F1 OA IoU F1

w/o two-level 99.09 83.52 91.02 99.14 93.32 96.54 90.93 67.86 80.86
w/two-level 99.11 83.90 91.25 99.19 93.73 96.76 91.22 68.82 81.53

Table 6. Effects of edge-information feature-enhancement module.

Methods
LEVIR-CD Season-Varying SYSU-CD

OA IoU F1 OA IoU F1 OA IoU F1

w/o edge 99.09 83.60 91.07 99.10 93.06 96.41 91.10 68.85 81.55
w/edge 99.11 83.90 91.25 99.19 93.73 96.76 91.22 68.82 81.53

Table 7. Effects of logit distillation.

Methods
LEVIR-CD Season-Varying

OA IoU F1 OA IoU F1

w/o kd 99.08 83.36 90.93 98.94 91.98 95.82
w/kd 99.11 83.90 91.25 99.19 93.73 96.76

Table 8. Effects of Tversky loss.

Datasets Methods Pr Re OA IoU F1

LEVIR-CD
w/o Tversky loss 91.99 90.12 99.10 83.56 91.04
w/Tversky loss 91.41 91.08 99.11 83.90 91.25

Season-Varying w/o Tversky loss 94.68 98.34 99.11 93.18 96.47
w/Tversky loss 95.54 98.01 99.19 93.73 96.76

SYSU-CD
w/o Tversky loss 82.53 79.41 91.18 67.99 80.94
w/Tversky loss 80.93 82.14 91.22 68.82 81.53

Table 9. Effects of attention mechanism.

Methods
LEVIR-CD Season-Varying SYSU-CD

OA IoU F1 OA IoU F1 OA IoU F1

w/o attention 99.09 83.47 90.99 99.04 92.57 96.14 90.92 67.86 80.86
w/attention 99.11 83.90 91.25 99.19 93.73 96.76 91.22 68.82 81.53
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4.5.1. Effectiveness of Two-Level Feature-Fusion Strategy

Table 5 shows that when the two-stage fusion strategy is adopted, the fusion of
edge-information features X_edge, low-level features X_1st, and high-level features X_2nd
(w/two-level) is used to achieve better detection performance on three datasets than only
the use of X_edge and X_2nd. feature fusion (w/o two-level). F1 increases by 0.23%,
0.22%, and 0.67% on the LEVIR-CD, season-varying, and SYSU-CD datasets, respectively.
IoU increases by 0.38%, 0.41%, and 0.96%, respectively. It can be seen that this strategy
can improve detection performance, supply more detailed information, and balance the
computational costs and detection performance.

4.5.2. Effectiveness of Edge-Information Feature-Enhancement Module

Table 6 shows that the introduction of the edge-information feature-enhancement
module (w/edge) achieved better detection performance than without introduction (w/o
edge) on the LEVIR-CD and the season-varying datasets. F1 increases by 0.18% and 0.35%
on the LEVIR-CD and season-varying datasets, respectively, and IoU increases by 0.30%
and 0.67%, respectively. However, on the SYSU-CD dataset, it can be seen that this module
cannot work well, because there are many dense small changed areas for the LEVIR-CD and
season-varying datasets, but the labeled changed areas of the SYSU-CD dataset are mostly
large-scale, while this module can mainly help to improve the detection performance of the
small-scale changed areas and especially improve missed detection for small targets.

The qualitative results of the ablation experiment of this on LEVIR-CD and season-
varying datasets are shown in Figure 8. It can be seen that especially for the detection of
the small changed targets, this module can improve the detection performance for small
targets and edge areas of changed regions and improve the detection performance. It is
consistent with the quantitative-analysis results in Table 6.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 24 
 

 

 

Figure 8. Effects of edge-information feature-enhancement module. Different colors are used for a 

better view, i.e., white for true positive, black for true negative, red for false positive, and green for 

false negative. (a–d) are in the LEVIR-CD dataset. (e–h) are in the season-varying dataset. 

Table 6. Effects of edge-information feature-enhancement module. 

Methods 
LEVIR-CD Season-Varying SYSU-CD 

OA IoU F1 OA IoU F1 OA IoU F1 

w/o edge 99.09 83.60 91.07 99.10 93.06 96.41 91.10 68.85 81.55 

w/edge 99.11 83.90 91.25 99.19 93.73 96.76 91.22 68.82 81.53 

4.5.3. Effectiveness of Logit Distillation 

Table 7 shows that the introduction of the logit knowledge-distillation module 

(w/kd) has achieved a significant improvement in quantitative metrics compared with di-

rect training (w/o kd) on the LEVIR-CD and season-varying datasets. F1 increases by 

0.32% and 0.94% on the LEVIR-CD and season-varying datasets, respectively, and IoU 

increases by 0.54% and 1.75%, respectively. When the logit distillation module is intro-

duced, in the process of training Shuffle-CDNet as the student network, the information 

learned by 3M-CDNet is introduced, which improves the training effect. 

Table 7. Effects of logit distillation. 

Methods 
LEVIR-CD Season-Varying 

OA IoU F1 OA IoU F1 

w/o kd 99.08 83.36 90.93 98.94 91.98 95.82 

w/kd 99.11 83.90 91.25 99.19 93.73 96.76 

4.5.4. Effectiveness of Tversky Loss 

As can be seen from Table 8, after the introduction of the Tversky loss (w/Tversky 

loss), compared with the use of only the binary cross-entropy loss function in 𝐿𝑐𝑑 (w/o 

Figure 8. Effects of edge-information feature-enhancement module. Different colors are used for a
better view, i.e., white for true positive, black for true negative, red for false positive, and green for
false negative. (a–d) are in the LEVIR-CD dataset. (e–h) are in the season-varying dataset.



Remote Sens. 2022, 14, 3548 18 of 23

4.5.3. Effectiveness of Logit Distillation

Table 7 shows that the introduction of the logit knowledge-distillation module (w/kd)
has achieved a significant improvement in quantitative metrics compared with direct
training (w/o kd) on the LEVIR-CD and season-varying datasets. F1 increases by 0.32%
and 0.94% on the LEVIR-CD and season-varying datasets, respectively, and IoU increases
by 0.54% and 1.75%, respectively. When the logit distillation module is introduced, in
the process of training Shuffle-CDNet as the student network, the information learned by
3M-CDNet is introduced, which improves the training effect.

4.5.4. Effectiveness of Tversky Loss

As can be seen from Table 8, after the introduction of the Tversky loss (w/Tversky loss),
compared with the use of only the binary cross-entropy loss function in Lcd (w/o Tversky
loss), the performance improvement was achieved in metrics. F1 increases by 0.21%, 0.29%,
and 0.59% on the LEVIR-CD, season-varying, and SYSU-CD datasets, respectively, and
IoU increases by 0.34%, 0.55%, and 0.83%, respectively. After the introduction of Tversky
loss, the Pr and Re metrics are relatively more balanced, which is why the F1 metric can be
improved.

4.5.5. Effectiveness of Attention Mechanism

As can be seen from Table 9, when CAM and SAM (w/attention) are introduced, F1
increases by 0.26%, 0.62%, and 0.67% on the LEVIR-CD, season-varying, and SYSU-CD
datasets, respectively. IoU increases by 0.43%, 1.16%, and 0.96%, respectively. When
the attention mechanism module is introduced, the features with high correlation with
the change-detection task are enhanced, and the distinction between the changed area
information and the unchanged area information is enhanced. As a result, the performance
of Shuffle-CD is significantly improved.

5. Discussion

In this study, we proposed the lightweight network named Shuffle-CDNet for change-
detection tasks. The quantitative and qualitative results on three datasets have confirmed
that Shuffle-CDNet can achieve a better balance in computational efficiency and detection
performance. The lightweight network meets the current practical application require-
ments [48].

The proposed method mainly consists of the backbone network and the classifier.
The building blocks of ShuffleNet v2 [28] are adopted to form the backbone network. It
introduces channel shuffle and depthwise separable convolution operations to reduce the
computational costs without sacrificing network accuracy. The idea of the ShuffleNet v2
is also used in other applications such as forest-fire recognition [49], which also adopts
channel-shuffle operation. At the same time, the depth and width of the proposed network
are reduced greatly, with the channels of the final output feature of the proposed backbone
being 256 but 512 for 3M-CDNet [34]. Compared with other advanced methods, for
example, BIT-CD [18] and SwinSUNet [21] adopt transformers in the backbone network,
3M-CDNet [34] adopts the deformable convolution, STANet [14] adopts complex attention
mechanisms, and Peng et al. [12] proposed the method based on UNet++ with dense skip
connections. These operations increase computational costs. We can see from Table 1
that the inference time of Shuffle-CDNet is about 47% of BIT-CD and about 37% of 3M-
CDNet. But from Tables 2–4, Shuffle-CDNet performs better than BIT-CD. For example, it
increases F1 (1.22%) and IoU (2.03%) metrics on the LEVIR-CD dataset compared to BIT-CD.
Shuffle-CDNet achieves nearly equal detection performance compared to 3M-CDNet with
lower computational costs and faster inference time. It even improves the F1 (0.06%) and
IoU (0.09%) metrics on the SYSU-CD dataset compared to 3M-CDNet. The Light-ASPP
module is adopted to utilize the multilevel features in the classifier. Multilevel feature
aggregation is important for change detection such as AGCDetNet [15], which introduces
the attention module in the ASPP module. Some operations are also adopted to balance
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computational efficiency and performance. The lightweight edge-information feature-
enhancement module is introduced and edge constraint is adopted in the loss function
since downsampling operations could lose spatial details. It helps to improve the edge
detection, especially for small changed regions, which is consistent with other studies such
as EANet [37] and EPUNet [35]. Compared with EPUNet, which adopts UNet architecture,
Shuffle-CDNet adopts the building block of ShuffleNet v2 as the basic block in this module,
which can reduce the computational costs. The edge information is rarely considered in
lightweight missions such as MSPP-Net [32], Lite-CNN [33] and 1M-CDNet [34]. From
Tables 1–4, Shuffle-CDNet improves performance greatly compared to MSPP-Net and Lite-
CNN with even faster inference time than MSPP-Net. Compared with these lightweight
methods, Shuffle-CDNet adopts concise channel attention and spatial attention modules to
enhance the features associated with the changed areas. It can capture long-range contextual
information. This idea is consistent with other methods such as CLNet [11], FarSeg [47] and
IFN [9], but it is different from IFN [9] and AGCDetNet [15], in that Shuffle-CDNet does
not use dense attention modules to improve the computational efficiency while the former
two methods use attention modules in more positions. From Tables 1–4, Shuffle-CDNet
improves F1 and IoU metrics compared to CLNet and FarSeg with lower computational
costs on three datasets. For example, Shuffle-CDNet improves F1 (0.56%) and IoU (0.93%)
metrics on the LEVIR-CD dataset compared to CLNet. Furthermore, the proposed method
introduces knowledge distillation in change-detection tasks, which was almost absent
in previous research and could effectively improve detection performance. However,
knowledge distillation is used widely in speech recognition [50], scene classification [51],
and other tasks. It is a general idea and we have migrated well to the change-detection
tasks. Because of those operations, the Shuffle-CDNet still perform well under the condition
of lower computation costs. As we can see in Tables 2–4, Shuffle-CDNet obtains a better
performance than most of other methods with better computational efficiency.

Taking the LEVIR-CD dataset as an example, the Grad-CAM visualization method [52,53]
is used to visually analyze the key layers and modules of the Shuffle-CDNet network. The
Grad-CAM method uses the gradients of the changed regions to produce heatmaps showing
the relevance for the decision of individual pixels and highlighting the important regions.
The results are shown in Figure 9.
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If the area is closer to red, it means that the area of the features generated by the
modules is more important to the change-detection task. If the area is closer to blue,
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the opposite is true. It can be seen that the shallow features of Shuffle-CDNet can be
obtained through the Input Layer, and then the edge-information features can be obtained
through the Edge Layer. The SAM module can enhance the pixel-level features related to
change detection in the spatial domain, and then the deep features of the network can be
gradually obtained. As can be seen from Figure 9d, for some large-scale changed areas,
the relevant features cannot be well-extracted after passing through the Input Layer, so
the edge information of the large-scale changed areas cannot be featured after the Edge
Layer. This is also the reason why the edge-information feature-enhancement module
has a poor effect on the SYSU-CD dataset containing more large-scale changed areas. The
network visualization also reflects the rationality and effectiveness of the Shuffle-CDNet
structure. In the future, it will be necessary to solve the problem of edge-information fusion
in large-scale changed areas. Moreover, a neural architecture search (NAS) [54] and model
pruning [55] will be tried to further reduce the computational costs and the inference time
of the network, and improve the detection performance.

6. Conclusions

In order to reduce computational costs and reduce the inference time of the network, a
lightweight network structure Shuffle-CDNet is proposed for the change-detection task of
remote-sensing images in this paper. In the backbone, the building blocks of ShuffleNet
v2 are adopted. The channel shuffle and depthwise separable convolution operation are
integrated, and the depth and width of the backbone network are greatly reduced. In
addition, the Light-ASPP module is designed to consider the global information and local
context information to detect the binary change-detection output. In addition, to balance
the network computation, inference time, and detection performance, the lightweight edge-
information feature-enhancement module is designed to integrate with the shallow and
deep features of the backbone network. This can improve the edge-detection performance of
Shuffle-CDNet, especially for the small changed targets. The SAM and CAM are introduced
to improve the feature expression ability and suppress the feature information unrelated
to the change-detection task. The logit knowledge-distillation strategy is adopted on the
LEVIR-CD and season-varying datasets. 3M-CDNet was used as the teacher network to
provide more supervisory information for Shuffle-CDNet during the training phase. The
data-augmentation strategy of randomly switching the channel order of the original image
is adopted on the SYSU-CD dataset to improve the detection performance

A large number of comparative experiments have verified the effectiveness of Shuffle-
CDNet. Experimental results show that compared with other current advanced methods,
Shuffle-CDNet greatly reduces the computational costs without sacrificing network ac-
curacy, even if comprehensive metrics F1 and IoU are higher than most other networks.
Additionally, the inference time of Shuffle-CDNet also occupies an advantage, improving
efficiency. For example, the F1 and IoU metrics of Shuffle-CDNet reached 0.9125 and
0.8390 on the LEVIR-CD dataset, 0.9676 and 0.9373 on the season-varying dataset, and
0.8153 and 0.6882 on the SYSU-CD dataset, respectively. The ablation studies and network
visualization results also illustrate the effectiveness and rationality of the design of the
Shuffle-CD network. On the whole, Shuffle-CDNet balances the computational costs and
detection performance well and improves the detection efficiency of the network.
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