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Abstract: A water body is a common object in remote sensing images and high-quality water body
extraction is important for some further applications. With the development of deep learning (DL) in
recent years, semantic segmentation technology based on deep convolution neural network (DCNN)
brings a new way for automatic and high-quality body extraction from remote sensing images.
Although several methods have been proposed, there exist two major problems in water body
extraction, especially for high resolution remote sensing images. One is that it is difficult to effectively
detect both large and small water bodies simultaneously and accurately predict the edge position of
water bodies with DCNN-based methods, and the other is that DL methods need a large number of
labeled samples which are often insufficient in practical application. In this paper, a novel SFnet-DA
network based on the domain adaptation (DA) embedding selective self-attention (SSA) mechanism
and multi-scale feature fusion (MFF) module is proposed to deal with these problems. Specially, the
SSA mechanism is used to increase or decrease the space detail and semantic information, respectively,
in the bottom-up branches of the network by selective feature enhancement, thus it can improve
the detection capability of water bodies with drastic scale change and can prevent the prediction
from being affected by other factors, such as roads and green algae. Furthermore, the MFF module
is used to accurately acquire edge information by changing the number of the channel of advanced
feature branches with a unique fusion method. To skip the labeling work, SFnet-DA reduces the
difference in feature distribution between labeled and unlabeled datasets by building an adversarial
relationship between the feature extractor and the domain classifier, so that the trained parameters
of the labeled datasets can be directly used to predict the unlabeled images. Experimental results
demonstrate that the proposed SFnet-DA has better performance on water body segmentation than
state-of-the-art methods.

Keywords: water body extraction; remote sensing images; selective self-attention module; multi-scale
feature fusion module; domain adaptation

1. Introduction

As an essential element of the earth life support system, water is crucial for sustainable
development [1]. The extraction of water body information is of great significance to
many fields, such as flood monitoring, military reconnaissance, wetland protection, and
cartography [2—4]. With the development of remote sensing, the acquisition of water body
information from remote sensing images has become the main approach with high efficiency
and low cost. However, it is still a challenging task to accurately extract water bodies from
remote sensing images. On the one hand, water bodies usually show different appearances
due to the effect of many factors, such as green algae and sediments. Moreover, there
are many types of water bodies including lakes, ponds, rivers with many small branches,
which leads to the great difference in size and shape. As a result, it is difficult to identify
all the water bodies simultaneously. On the other hand, the edge of the water body is
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irregular by the influence of surrounding shadows, soil, vegetation, etc., making the water
edge detection more complex than buildings and roads [5]. How to accurately extract a
water body from remote sensing images, especially high-resolution images, is one of the
hot topics in recent years.

In the past decades, many water body detection methods have been published in
the literature, and they can be roughly categorized into water index methods, traditional
machine learning algorithms and deep learning algorithms. Water index methods are
simple and widely used; they rely on manual characteristics, such as the bands ratio. The
normalized difference water index (NDWI) is one of the most popular methods [6,7]. It
uses the characteristic that the water body absorbs more energy in the NIR band than in
the green band to calculate the water index and extract water bodies in which NDWI is
bigger than a certain threshold [8]. As NDWI relies too much on spectral information
and ignores spatial characteristics, it is difficult to determine the threshold when there
are other categories of objects, such as buildings, shadows, and roads, in the images [9].
Because the similar reflection patterns of water and shadow would lead to misclassification,
Feyisa et al. [10] designed the automated water extraction index (AWEI) to increase the
gap between water and non-water bodies, and the AWEI has good performance on the
Landsat dataset. Fisher et al. [11] proposed Wly15 based on Wl and compared it with
NDWI and AWEL. The experimental results show that NDWTI has high commission errors in
quarry, soil, and urban areas, while Wlg15 and AWEI have good accuracies, especially for
cloud-shadow pixels. However, the AWEI and W15 do not produce unified results for all
kinds of data [12], and the AWEI is confined to five case studies and one step [13].To meet
the requirements of automation, researchers try to use some machine learning algorithms to
automatically extract water bodies from remote sensing images [14], such as pure Bayesian
(NB), decision tree (DT), and support vector machine (SVM). Yao et al. [7] proposed an
automatic water body extraction method combining SVM with NDWI. In the method,
SVM is used to determine the optimal coefficient of the water index and generate a dark
building shadow removal model. As the building and shadow do not always satisfy the
proposed geometric relationship, the segmentation accuracy of this method may be greatly
impacted [15]. At the same time, considering that the water surface may be covered by
phytoplankton or aquatic vegetation, it is impossible to exactly detect water bodies [7].
Khandelwal et al. [13] created a new classification model by using seven reflectance bands
of two MODIS products with 500 m resolution and SVM classification model and combined
the model with the noise correction method, which shows a good effect. Tri et al. [16]
used J48 decision tree (JDT) to identify water body in images. Although its segmentation
accuracy is fine, it requires professional knowledge as well as strict parameter and data
selection. More importantly, similar to the water index methods, the traditional machine
learning algorithms cannot acquire the context information of the images.

In recent years, the convolutional neural network (CNN) has shown strong feature
expression ability and has been widely used in the field of remote sensing [17,18]. Yu
et al. [19] introduced CNN to water body detection in remote sensing images. However,
due to the shallow network structure, it is insufficient in learning ability and robustness.
Because the shallow layers are generally universal filters and the wetland species in Canada
are similar, Rezaee et al. [20] used the pre-trained model to fine-tune the parameters rather
than complete training to predict the RapidEye imagery. Different from the methods of
putting image slices into CNN, a fully convolutional network (FCN) abandons traditional
fully connected layers and utilizes convolutional networks to classify an entire image at
pixel level [21]. For this property, FCN not only can meet the condition of different image
sizes, but greatly improves the efficiency and precision of the segmentation. Isikdogan
et al. [22] proposed the FCN-based model, named DeepWaterMap, which changes the
number of model parameters and the way of layer splicing, making the network more
suitable for water segmentation. Li et al. proposed a method based on FCN to extract
water information from high-resolution remote sensing images [15]. Compared with other
methods mentioned above, the FCN can obtain better results, but the edges of the final
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predicted water bodies are always blurred. What is more, small water bodies are often
missed as lots of feature in the process of continuous downsampling, which expands the
receptive fields. To overcome this deficiency, U-Net for biomedical image segmentation
is presented [23]. The U-Net employs a symmetrical encoder-decoder structure, which
is linked by skip connections to settle the problem of resolution degradation. Feng et al.
used Deep U-Net and a superpixel-based conditional random field (CRF) model to detect
water bodies [24]. It has poor performance on small water areas, as it directly concatenates
different levels of feature maps and makes the characteristics confusing [25]. Inspired
by Resnet’s ability to continuously reuse information and Densenet’s ability to acquire
new features, Shamsolmoali et al. [26] combined Resnet and Densenet to achieve better
segmentation while being GPU-friendly. Multi-scale water extraction convolutional neural
network (MWEN) [9] adds a multi-scale dilated convolution in the last layer to combine
the information in different scales, but it is insufficient since the multi-scale extractor is
only added on the last layer. Considering these aspects, a multi-feature extraction and
combination network (MECNet) [5] is proposed to integrate different receptive fields and
channel information. However, MECNet only considers global information and ignores
spatial information, which leads to the detail loss. What is more, the several methods
mentioned above are based on the structure of the encoder-decoder, though this structure
alleviates the problem of information loss during the downsampling process, the low-level
feature maps also lose unrecoverable details that are vital for the prediction. Different from
the traditional encoder—decoder architecture, a novel network HRnet V2 [27] is proposed.
In this network, four parallel branches are used to acquire and fuse features, and the first
branch maintains a full resolution image. However, if HRnet V2 is directly applied to
water segmentation without considering the characteristics of water bodies, it still leads
to location information loss. Additionally, it is known that high accuracy lies in enough
labeled samples for training almost all DL methods. However, due to the lack of labeled
samples in real applications, the deep learning methods are difficult to achieve ideal results
in practical remote sensing application. At same time, the mount of labeling samples
is costly. The multiscale residual network (MSRnet) obtains the semantic information
of the images through self-supervised learning strategies and predicts unlabeled images
through the combination of semantic information and supervised learning parameters [28].
Although the MSRnet has great performance, it needs labeled samples, as it directly shares
the parameters of supervised learning. Among all the above methods, the water index
methods lack automatic detection abilities, and the machine learning methods rely on
feature and data selections. Although the water detection accuracy produced by DL is
improved, the DL methods cannot obtain semantic and location information simultaneously
and require the mount of labeled samples, which indicates that although there are many
excellent water segmentation studies, there exists room for progress.

To overcome these defects mentioned above, a selective feature enhancement and
multi-scale feature fusion network based on domain adaptation (SFnet-DA) is proposed
in this work. To improve the ability of anti-noise and identification under the premise of
ensuring the location information, the SFnet develops a spatial information-based selective
self-attention (SSA) mechanism that employs different feature enhancement methods for
various branch fusions, which selectively increases the details or semantic information of
the images, making the top-down branches hold a state of increasing semantic information
and decreasing location information. With SSA structure, the network can resist the noise
disturbances, such as clouds and green algae, while having the ability to identify small and
vast water bodies simultaneously. A multi-scale feature fusion (MFF) module is designed
to enhance the location and detailed information of the feature map without increasing
the number of network parameters, which raises the accuracy and connectivity of the
water edge. Furthermore, to predict more refined images, the fully connected CRFs [29]
are applied to post-process the predicted images. To avoid image labeling, the domain
adaptation, which utilizes the existing labeled dataset to predict the target unlabeled dataset,
is preferred. The feature distribution of the labeled dataset is related to but likely different
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from the feature distribution of the target dataset. The labeled dataset is defined as the
source domain, and the target dataset is defined as the target domain. The SFnet-DA builds
an adversarial relationship between the feature extractor and domain classifier to make
the feature distribution of source domain and target domain consistent, namely domain
invariance. Specifically, the feature extractor maps the images of the source domain and
the target domain so that the domain classifier determines that the features from the source
domain and the target domain are source domain features as much as possible, and the
domain classifier correctly determines whether the features come from the source domain
or the target domain as much as possible. In addition, to ensure the prediction effect of
unlabeled samples, we connect the feature extractor with SFnet to train through source
domain images and labels. After learning, the mapped features from —source domain and
target domain are both domain invariant and discriminative, so the target domain can
predict the unlabeled samples by using the parameters trained in the source domain.
The main contributions of this paper can be summarized as the following.

(1) We designed a novel SFnet composed of SSA, MFF, and fully connected CRF post-
processing modules. Specifically, SSA selectively intensifies the features of different
scales and enhances the capability of anti-noise. The combination of fully connected
CRFs and MFFE, which changes the proportion of each branch feature, and the splicing
method not only can improve the position information of feature maps, but can
optimize the edges of water bodies.

(2) Toreduce the demand for labeled samples, the adversarial domain adaptation method,
for the first time, is embedded in the proposed SFnet-DA. Specifically, through the
adversarial relationship between the feature extractor and the domain classifier, the
labeled dataset and the unlabeled dataset are connected, which enables us to directly
use the parameters trained by the labeled dataset to predict the unlabeled images.

(8) The designed water detection method combines SFnet with adversarial domain adap-
tation (SFnet-DA), and the test results of our method on public datasets are better
than other advanced methods.

The rest of the paper is structured as follows. Section 2 introduces the methods,
including the design of SFnet, the domain adaptation method, and fully connected CRFs.
The evaluation data, experimental settings, algorithm results, and discussion are shown in
Sections 3 and 4. Finally, the summarization is given in Section 5.

2. The Proposed Method

With the domain adaptation (DA) mechanism, the proposed SFnet-DA has four branches.
The lower branches of SFnet are responsible for the location and detailed information of the
water bodies, and the upper branches of SFnet are responsible for the semantic information.
To obtain the water body information of different sizes and alleviate the influence of
noises, the SSA is embedded into SFnet. To obtain an accurate water edge, SFnet embeds
the MFF module and takes the fully connected CRFs as the post-process method. Then
the combination of SFnet and DA is used to construct SFnet-DA to avoid labeling tasks.
Figure 1 is the flowchart of the proposed method. First, we mark the source domain
images as 0 and the target domain images as 1, and put them into the feature extractor
to generate the feature vectors, which would enter the domain classifier. The feature
extractor maps the images of the source and target domains, and the domain classifier
determines which domain the mapped feature vectors come from, so that the resulting
adversarial relationship makes the features mapped in the source and target domains
similar and achieves domain invariance of the feature vectors. Then, the feature vectors
of the source domain images generated by feature extractor will be processed by SFnet.
The SFnet trains parameters together with the source domain labels, which guarantees the
discriminability of the mapped feature vectors, i.e., the water segmentation performance of
the network. After training, the mapped features from source domain and target domain
are both discriminative and domain invariant, so the target domain can directly use the
SFnet, trained in the source domain, to predict its own unlabeled samples.
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Figure 1. The flow chart of the SFnet-DA.

2.1. Structure of SFnet

HRnet V2 is a high-resolution neural network for human pose estimation, and it is
used as a basic framework for SFnet. The structure of the SFnet is shown in Figure 2. The
SFnet is composed of four branches. The first branch is used to extract features in the full
resolution of input images for ensuring the spatial position of the image objects. The feature
maps of the other three branches are 1/4 of the characteristic graphs of each previous branch
for capturing more context information. To ensure that the entire network is performed
with a small amount of calculation, the first feature extraction module of the first branch
is different from other modules. Specifically, it consists of two dilated convolutions, the
rectified linear unit (ReLU) activation function, the batch normalization (BN) layer, and
the BottleNeck. The BasicBlock used in other feature extraction branches is to deepen
the network and extract the feature map. At the same time, it can catch the count of
feature channels and image resolution without change. For the purpose of expressing
characteristics better, the downsampling module is a dilated convolution whose output
channels are twice that of input channels.

L1 1,2 1,3 1,4 1,5
X SSA X X X X
SSA SSA MFF

23 2.4 2,5

xZ,l x2,2 X x X
33 3.4 3.5

Dilated Convolutions, ReLU, BN, Bottleneck X X X

BasicBlock

. 4,5
Downsampling Module X

Figure 2. SFnet structure diagram. x™/* represents the feature map processed by the BottleNeck,
BasicBlock or downsampling modules. The paired images at the same stage enter the SSA, and the
features after the last layer of SSA are input into the MFF for feature fusion.

Let x™" represent the feature map after the BottleNeck, BasicBlock or downsampling
modules, where m denotes which branch the feature map is located in, and #n indexes
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the feature extraction stage. The features located in different branches at the same stage
enter the SSA for integration among them. In the relatively primary branch, the SSA
prefers to enhance the edge and detail information of the advanced branch by training
a self-attention parameter and guides the high-level feature to adaptatively discover the
salient area of each image. Similarly, in the relatively advanced branch, the SSA prefers to
enhance the ability to detect water bodies of different sizes by helping the primary branch
make full use of the large receptive field information of a high-level map. After the last SSA
operation, the network gains four-level feature maps with gradually decreasing resolution
and increasing channel numbers as well as semantic information. The feature graphs in the
low feature branches hold more detailed information but have lower semantic information
and larger noise, while the feature graphs in the high-level feature branches have more
semantic information and poor perception of details. To make use of their advantages, a
multi-scale feature fusion (MFF) module is used to effectively combine low-level features
with high-level features so that the image location information and semantic information
can be assured. The SSA and MFF are introduced in detail in the following.

2.1.1. Selective Self-Attention (SSA) Mechanism

Since the first branch retains the resolution and the other branches expand the receptive
field progressively, the functions of the four branches are different. The relatively primary
feature branches are responsible for guaranteeing the contour accuracy and connectivity
of water bodies. The advanced feature branches after downsampling, possessing larger
receptive fields and feature channels, can resist the interference of noise and effectively
identify water bodies of different size. To make different branches have different func-
tions, we propose a simple but effective selective self-attention (SSA) mechanism which
automatically adjusts the self-attention coefficient according to the feature branch number.
By the self-attention coefficient, the SSA uses the characteristic of the feature branch to
weight the characteristics of another branch in the feature reuse phase to realize the feature
magnification.

The structure of the SSA is shown in Figure 3. Figure 3A shows the shallow feature
guiding the deep feature branch and Figure 3B shows the deep feature map guiding the
shallow feature branch. In Equations (1) and (2), we pick out the feature map of the first
stage of the first branch x!"! and the map of the n-th phase of the m-th branch x™":

xl,l c thwxc (1)

h w m—1
x MM c Rom-1 X om—1 x2 ¢

2

where i and w are the height and width of the feature map in the first stage of the first
branch, respectively. The resolution of the other branch is 4~ ("~1) of the original resolution.
The counting of characteristic channels in the first branch is stated by C, and the number of
characteristic channels of m-th branch is 2" ~1C.
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Figure 3. The structure of SSA. The low-level feature guided attention module and the high-level
feature guided module are illustrated in (A,B).

To identify the salient areas of the images and choose to enhance the details or semantic
information of the water body, SSA employs a differentiable soft attention mechanism.
The self-attention coefficient « guided by a low level feature would be automatically
updated, and the importance of each pixel is adaptatively determined when the network
is backpropagated, so it is easy to identify the salient areas of the images and keep the
details of water bodies. The a guided by the deep feature conducts the shallow feature to
enhance the semantic information of the primary branch, so that the network would boost
the capacity to distinguish petty and vast water bodies, and not be influenced by noise,
such as roads and shadows. No matter what kind of guidance SSA adopts, the sum of
low-level and high-level features is used to generate the self-attention coefficient «, which
considers the global information of the feature maps. Instead of choosing a generalized
global average pooling, the combination of 1 x 1 convolution and BN layer is used to
acquire a grid signal based on position information, which is conducive to interacting and
integrating different channel information. What is more, the SSA is lightweight, since the
output channel number is 1. The sigmoid activation function is used to obtain a convergent
coefficient since the consequent use of softmax results in a sparse output.

Xapt = B(WT(Xi + xfe)) + bt (3)
1

" T ep() ?

X; = («+1)X 5)

where B denotes the batch normalization (BN) layer, and W and b, denote the weight
and bias, respectively. x/° denotes the map which retains its own branch, X; denotes the
map which is processed by the network to get the same size with x7°, and X is the output
of the SSA mechanism. For the case of selecting the primary characteristic branch to be
reserved in Figure 3A, X = U(x™x(m,m2)m) and x"¢ = y™in(m,m)n where U denotes
the upsampling process. In Figure 3B, when the feature processed by SSA is retained in
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the advanced feature branch, depthwise separable convolution (DP_CONYV) is utilized to
lessen the storage of the SSA, namely

X = RB(x™ M W) ©)

X — xmaX(mymz);” (7)

where W, ; denotes the weight of the depthwise convolution with kernel size n x n and
the pointwise convolution with kernel size 1 x 1. i € [1,¢],j € [0,m — 1], m represents
channel expansion and RB represents the ReLU activation function combined with the
BN layer.

To maintain the original characteristics of the branch and let the branch with a larger
m contain more semantic information, we add all feature maps in the same branch after
passing through the SSA mechanism, and then add the sum with the feature x™" of the

branch itself:
K,i#m

xm,n+1 — Z A(xi,n) + L (8)
i=1
where K is the maximum number of branches, and A(-) is used to represent the SSA
mechanism whether the SSA is located in the low-level feature branch or the high-level
feature branch.

2.1.2. Muti-Scale Feature Fusion (MFF) Module

Generally, if the deep network is simply connected at the end, the details of the
feature maps would be lost, and the edges of the water bodies would be blurred. To better
maintain the detailed features, we design a light multi-scale feature fusion (MFF) module
which integrates the location and semantic information while avoiding the network over-
fitting. To the proposed SFnet, a basic purpose is that the primary features of the images
are extracted by shallower branches, and the advanced characteristics of the graph are
perceived by deeper branches. In the downsampling process that expands the category
expression ability of the images, the number of feature channels of the branch is changed to
2m=1C. After the last SSA mechanism and adding process, we obtain four-level features and
the high-ranking feature channels become 8C; simple splicing would inevitably pay much
attention to the rich semantic information of the deep feature map and neglect the basic
characteristics. However, for the water segmentation of high-resolution remote sensing
images, the accurate location of the water body is instrumental in the correct positioning
and area calculation. Hence, we use a standard convolution module NCONV™ including
the 1 x 1 convolution layer, BN layer and ReLU activation function to reduce the number
of feature channels from 2 ~1C to C, which increases the proportion of low-level feature
branches while reducing the model parameters.

What is more, compared with the direct splicing, ‘stepped’ concatenating is adopted.
That is, the advanced feature branch is not directly upsampled to the first branch after
the standard convolution module, but only upsampled to four times that of the advanced
feature map and concatenated with the previous images after the standard convolution
module. The structure of MFF is shown in Figure 4 and the overall process is as follows:

NCONV™ = RB(WTx!"" + b) )

m U(NCONV*) @ NCONV?® m =3
s" = m+1 m : (10)
U(s™+) @ NCONV™ otherwise

where @ is the dimension concatenating, S! is the output of the MFF, and NCONV™ is the
standard convolution module of the m branch, which includes the 1 x 1 convolution layer,
BN layer and RELU activation function. W € RE€'*C, ¢’ = 2"~1Cand b € RC. We use this
structure to lighten the network and improve the accuracy of the water detection.
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Figure 4. The structure of MFF. /i, w and c are respectively the height, width and characteristic
channels numbers of the first stage characteristic graph of the first branch. The four-level features in
the figure are the output after SSA and its adding process.

2.2. SFnet Based on Domain Adaptation (SFnet-DA)

Generally, the water detection methods based on deep convolution neural network
utilize a large array of labeled samples for training; however, manual labeling is extremely
time consuming and expensive. To skip labeling, we attempt to use the existing labeled
dataset to predict the unlabeled target dataset. However, the model trained on one labeled
dataset cannot directly predict another unlabeled dataset since there are huge differences,
such as shooting area, and image resolution. Additionally, the characters of water bodies
are generally different from each other in different regions, especially in high-resolution
images. To the different datasets, these differences in water bodies are more common
and lead to a domain shift, namely dataset bias. To address this problem, we built up
our semantic segmentation network (SFnet) based on domain adaptation, which reduces
the domain shift in the feature space. If the water body features of one unlabeled remote
sensing imagery set need to be predicted, the domain adaptation can reduce the domain
shift between unlabeled target datasets and existing labeled datasets that are highly likely
to be distributed differently, making it possible to skip labeling work and directly predict
unlabeled samples. The unlabeled samples are denoted as the target domain, and the
labeled samples are denoted as the source domain. The input spaces of the source domain
and target domain are assumed to be X. The annotation space of the source domain is
assumed to be Y = {1, 2, ..., L}, where L refers to the number of categories of image
segmentation. The distributions of source domain and target domain are represented by S
and T, respectively, and S # T. The parameters x; € X is used to denote images of source
and target domain, and ys, € Y denotes the labels of target domain, respectively. The
parameters n; and n; are used to denote the image counts of the source domain I; and
target domain I, respectively, and Is = {xs,,ys,};~; ~S, It = {x1,}}" | ~ T. We mark
all images from the source domain as 0, and all images from the target domain as 1.

To reduce the dataset bias between source domain and target domain, SFnet-DA
defines the feature extractor and the domain classifier with an adversarial relationship.
As the high-resolution features of remote sensing images and the large discrepancies in
the scales of different water bodies, multiple convolution layers and a max pool layer are
combined to define the feature extractor F(x;; w s b f), it makes it possible to prevent a large
loss of resolution while extracting features. F maps the input images of the source domain
and the target domain into the eigenvectors f € R"*©*3, which attempts to enhance the
similar parts between the images of the source domain and the target domain, and reduce
the dissimilar parts so that the distribution of the features in the feature space is the same,
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ie., fs; = fri. The domain classifier D(x;; wy, b;) uses the domain discrimination label to
determine whether the images come from the source domain or the target domain, that is,

we define
S ifd; =0
xlN{T ifd; =1 an

A simple adversarial realized method, named gradient reversion [30], achieved by &
is to reverse the gradient in the backpropagation, and keep the input unchanged during
forward propagation. Furthermore, to guarantee the ability of segmentation, namely
discriminativeness, F is connected with SFnet, whose structure does not require any changes
since f € R"*®*3_ The objective loss is defined as L:

Mg . ns+ny
L= Lp(wysbr,wp,bp) =& ) Lp(wy, by, wa ba) (12)
i=1 i=1
Lp = —Ey; ~x, (y;log P(xs,) + (1 —y;)log(1—P(xs,))) (13)
Lp = _EXS,-NXs logD(xsl.) + ExTiNXT log(l - D(XT,')) (14)

where L, and L5 represent the loss of the semantic segmentation and domain classifier
respectively. { € Rand & > 0. P(xg,) represents that SFnet trains the parameters by the
source domain images and source domain labels to realize discriminability. Benefiting from
gradient reversion, the adversarial relationship can reduce the dataset bias. On the one
hand, ¢ causes the parameters w and by of the feature extractor to be updated to make
the mapped features as consistent as possible so that the domain discriminator D makes
the wrong judgment, that is, all judgments are 0, and maximizes Lp. On the other hand,
the parameters w; and b, of the domain discriminator are modified to identify where the
images come from as much as possible, that is, judge the source domain image as 0 and
the target domain image as 1, and minimize Lp. The specific back-propagation process of
finding saddle points (wy, by, wy, I;}, Wy, by) can be expressed as Equations (15) and (16).
Equation (15) is used to minimize the Lp by updating the parameters (wp, by, wy, by) for
improving the water body segmentation capability of the network. At the same time, due to
the gradient reversion, the Lp would be maximized, and the ability of the feature extractor
to make the feature vectors mapped by different domains become uniformly distributed is
improved. Equation (16) updates the parameters wy and b, to minimize Lp, and improve
the classification ability of the domain classifier:

(@,@,fv},b}) =arg min L(wp,bp,wf,bf,@,b:g) (15)
wpbp Wy by
Wy, bg) = L(@p, by, Wy, b 1
(Wa, ba) argrmax (wp, bp, Wy, by, wg,bg) (16)

Therefore, the features learned by the feature extractor have both discriminability and
domain invariance. When a set of optimal parameters is learned, the feature extractor
almost satisfies F(xs;;wg, bs) = F(xr,;wy,br). When we want to predict the target domain
images without labels, we put the target domain images x7, into the feature extractor to
make the F(xg,;w iz bf) = F(xr;w b f), and use the SFnet parameters trained with the
source domain labels to segment unlabeled images.

2.3. Fully Connected CRFs

The performance of a network depends on enough fine samples. When the labels
themselves are not fine enough, the network will lead to the predictions not being close
to the original images. Additionally, owing to the restricted storage of the GPU, initial
downsampling is necessary. This operation always loses the detailed information and
makes the edge of water blurred and the classification of small water regions error. In
recent years, conditional random fields (CRFs) were widely utilized to smooth rough
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segmented images [29]. However, CRFs only use single potential energy on a pixel or
paired potential energies on adjacent pixels. This property results in a sparse structure that
can only couple adjacent points and implement modeling between short-distance pixels.
In contrast to CRFs, each pixel in fully connected CRFs is coupled with all other pixels to
form connecting edges, which greatly enlarges the quantity of paired connections and is
conducive to establishing long-distance connections, restoring edges, and identifying small
water bodies. Accordingly, we combine our network with fully connected CRFs.

For any conditional random field (I, X), the probability distribution can be described
by the Gibbs distribution:

P(XI 1) = 7o expl X a0l (17)
q€lc

Z(I) = Z H Gq(Xqu) (18)

7€Qc 9€Q¢

where X = {Xj,..., Xy} refers to the random field, and X; is the pixel label, namely water
or background. I = {I3, ..., Iy} indicates the images of input with size N, and Z(I) is the
normalization factor. G(V, ¢€) is the complete graph on X, and Qg is the largest subgraph in
G. 6, denotes the potential function of g.

In fully connected CRFs, the energy of Gibbs is as follows:

E(x) :Zeu(xi)+26p(xi,x]-) (19)

i<j

where the unary potential function is denoted as 6, (x;) = —log P(x;), and P(x;) indicates
the probability value of the output of the SFnet. Even though 6, (+) contains the situation
and color information of the water body, it is only related to the pixel point i, and has
no association with pixels in other locations. Note that pixels with similar colors and
positions are usually of the same type, so the pairwise potential function 6, (x;, x;) is used
to determine the probability of two events occurring at the same time:

K m m
0p(xi, xj) = u(x;, %) Y, w™k"(f, ) (20)
P,—P| |- |P, — P;|?
PN DI L k| DU Bl I NI NORI L ks
i) = epl=st = S rue(- St @

when i = j, u(x;,xj) = 0; otherwise, u(x;,x;) = 1. In this definition, u(x;, x;) would
constrain the conduction condition between pixels and penalize adjacent pixels of different
labels. w(™) denotes a combination of linear weights, P; and Pj indicate position vectors,
while [; and I; signify color vectors. The first appearance kernel adopts parameters 7, and
Tp to control the similarity and proximity while considering location and color information.
The second smoothing kernel that uses the parameter 7, to control the scale of the Gaussian
kernel only considers spatial information and aims to remove small isolated water bodies.

We put the original images and the water segmentation maps predicted by SFnet
into fully connected CRFs post-processing module to obtain the energy of Gibbs through
calculating 6, (x;) and 0, (x;, x;), and finally obtain the optimized water segmentation map.

3. Experiments
3.1. Data

The DeepGlobe Land Cover Classification Challenge [31] and 2020 Gaofen Challenge
dataset [32] are combined as the source domain of our network. Among them, the Deep-
Globe Land Cover Classification Challenge obtained from the Digital Earth Vivid+ dataset
is the first public dataset of high-resolution sub-meter satellite images. The dataset, includ-
ing 803 labeled RGB images with a size of 2048 x 2048 and a resolution of 50 cm, takes
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rural areas as the main object, and has seven manually labeled datasets of cities, agricul-
ture, pastures, forests, land, water bodies, clouds, and other objects. The 2020 Gaofen
Challenge dataset includes 1000 RGB images, and the image size is 492 x 492. We mix
the DeepGlobe Land Cover Classification Challenge as well as the 2020 Gaofen Challenge
dataset as the source domain and extract 1263 images from the dataset for training, 270 for
verification, and 270 for testing. The images are resized to 512 x 512 before they are input
into the network.

The Wuhan dense labeling dataset (WHDLD) [33,34] is a dataset released by Wuhan
University in 2018, and is used as the target domain in this experiment. WHDLD contains
4920 RGB images that are cropped from the large remote sensing dataset of Wuhan City,
and includes six manual annotations of buildings, roads, sidewalks, vegetation, bare soil,
and water. The dataset with a size of 256 x 256 has a resolution of 2 m. The training part of
the target domain is aligned with the source domain, and 20% and 20% of the WHDLD
are selected as the validation and test set, respectively. Similarly, we resize the images to
512 x 512 before inputting.

3.2. Experiment Settings

For fair comparison, both our method and comparison methods were learned by the
cross-entropy loss function and Adam optimizer. The initial learning rate is set to 0.0001,
and the StepLR is used to adjust the learning rate to 0.92 times of it every 20 epochs. Models
are written by Python and are implemented using the PyTorch framework. In addition, all
experiments are carried out on NVIDIA 2060S. The batch size is set to 2 or 4, the maximum
epoch is selected as 400, and the model parameters are saved in the same epoch. We
compare our SFnet with U-Net, HRnet V2, DeepLab V3+ [35], DFAnet [36], and Bisenet [37].
Moreover, the SFnet-DA is validated by comparing with unsupervised methods, such as
K-means [38], UIS [39], AC [40], ISODATA [41] and ISB [42].

3.3. Comparation
3.3.1. The Comparison of Supervised Networks

The combination of DeepGlobe Land Cover Classification Challenge and 2020 Gaofen
Challenge dataset is utilized to perform supervised learning on the network. We compare it
with other state-of-the-art methods, such as HRnet V2 [20], U-Net [17], DeepLab V3+ [35],
DFAnet [36] and Bisenet [37], as shown in Table 1 and Figure 5, to evaluate the performance
of SFnet. From Table 1, it can be found that our method is 0.82%, 0.38%, and 1.98% higher
than the second-excellent algorithm DeepLab V3+ in PA, F1, and MIOU, respectively. The
SFnet outperforms the backbone network HRnet V2 2.21% in PA, 0.38% in F; and 2.24% in
MIOU. Moreover, the MIOU of our network is much higher than that of Bisenet, U-Net, and
DFAnet by 2.98%, 9.29% and 31.25%, which further proves the effectiveness and robustness
of the SFnet. Table 1 also shows the time required for each network to train an image, and
it can be found that our speed is slightly slower than that of Bisenet, DFAnet and HRnet
V2, and faster than that of Deeplab V3+ and U-Net.

Table 1. Quantitative comparisons of models in the source domain.

Method PA Fq MIOU Time (s)
HRnet V2 [20] 87.7 96.75 84 0.19
U-NET [17] 80.9 95.14 77 0.21
DeepLab V3+ [35] 89.1 96.75 85 0.35
DFAnet [36] 59.7 90.3 55 0.12
Bisenet [37] 88.4 96.33 83 0.14
Ours 90 97.13 87 0.2

Figure 5 shows the visual comparisons between our method and other methods. In
the first row, we show the segmentation results of small rivers. It is found that other
methods have some false detections, while our method can accurately detect rivers. This is
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because SSA and MFF ensure that the shallow branches have detailed information, and
Hrnet V2 and Bisenet, which preserve the characteristics of full resolution, have relatively
less misjudgment for small information than the other three methods. Row 2—4 show
the detection results when the background is complex, and the proposed method can
resist the influence of green algae, green plants, roads, etc., and detect complete water
body information. Specifically, the experimental results in row 2 show that except for
our method, other methods are affected by grassland and green algae. In row 3, except
for our method and Deeplab V3+ which uses dilated convolution, other methods do not
perform well. It can be found that our results in the second and third rows perform well
because the SSA module can effectively combine shallow and deep information, while
other methods cannot have low-level and high-level information simultaneously. However,
almost all of the images in row 4, including the images predicted by SFnet, are affected by
bushes. Although U-Net and Deeeplab V3+ obtain the context information without false
detection, there are some missing detections. From the last column, we can find that the
image processed by the SFnet resists the influence of the bushes after fully connected CRFs
post-processing. The last row shows that when there are sediments in the water, due to the
SSA module and MFF module, our method is more robust, and the edge information is
more accurate.

In summary, our method is superior to other networks both visually and quantitatively.

(© (d) (©) (f) (®) (h) (i)

Figure 5. Qualitative comparisons with the other state-of-the-art methods in the source domain.
(a) Image; (b) Ground-truth; (c) HRnet V2; (d) Bisenet; (e) U-Net; (f) DFAnet; (g) DeepLab V3+;
(h) SFnet; (i) SFnet + CRF.

3.3.2. The Comparison of Unsupervised Methods

To evaluate the performance of SFnet-DA in segmenting water bodies, we use the
combination of DeepGlobe Land Cover Classification Challenge and 2020 Gaofen Challenge
dataset as the source domain of the network, and only use images of the WHDLD as the
target domain of the network. In order to test the effect of the compared unsupervised
methods, we try to classify one category into water and background, respectively, and select
a classification method with high accuracy. The predictions of ISODATA [41] and ISB [42]
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are not the binary tasks and the number of predicted categories are not fixed, which is not
conductive to our qualitative measurement. Therefore, in the quantitative comparisons, we
only compare UIS, K-means and AC algorithms. The comparisons between our method and
the current excellent methods are shown in Table 2. Compared with the other unsupervised
methods, our method shows great advantages. Among them, MIOU is 33.17% higher than
UIS, 34.23% higher than K-means and 30.79% higher than AC. Table 2 also shows the time
required for each network to train an image. Our speed is slower than K-means, which is
normal because we use the DL method.

Table 2. Quantitative comparisons of models in the target domain.

Method PA Fq MIOU Time (s)
K-means [38] 7291 77.7 49.76 0.09
UIS [39] 54.94 79.25 50.82 0.38
AC [40] 78.15 79.03 53.2 0.74
Ours 88.77 92.56 83.99 0.2

The predicted charts of ISODATA and ISB are processed in conjunction with the water
bodies in the labels, with the part of the water body set to white and the others black. As
shown in Figure 6, compared with other unsupervised methods, our method is closest to
the ground truth. K-means is easily disturbed by green plants and bright objects, resulting
in false detections. The detection effect of ISODATA is better than other compared methods,
but it depends on texture features and would produce false detections. In addition, because
the compared methods fail to make full use of image features, the edge of predicted images
is blurred, and there is a lot of noise which results in the discontinuity of water bodies.
By using the training parameters of existing datasets, our method makes full use of the
powerful feature extraction ability of DL, so the detection accuracy is higher, and the water
edge is clearer.

(a)

(b)

(© (d) (©) (f) (8 (h) (i)

Figure 6. Qualitative comparisons with the other in the target domain. (a) Image; (b) Ground-truth;
(c) K-means; (d) AC; (e) UIS; (f) ISODATA; (g) ISB; (h) SFnet-DA; (i) SFnet-DA + CRF.
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Therefore, compared with other methods, our approach can take advantage of ex-
isting labeled datasets and migrate them well to water detection in unlabeled remote
sensing datasets.

4. Discussion

Our research aims at the automatic extraction of water information from remote
sensing images, and the experimental results show that our method is better than other
compared methods. From the experimental results in Section 3.3.1, it can be found that
Bisenet and HRnet V2 have better detections for small rivers because they retain shallow
information, but the detection effects are poor in complex scenes. Deeplab V3+ uses
dilated convolution to obtain context information, which makes it have a good effect in
complex backgrounds, but Deeplab V3+ has missed detection for small rivers. Noting
the phenomenon that shallow information is helpful for detailed information and deep
information is helpful for semantic information, our method adopts the SSA module
to selectively enhance shallow or deep information and uses MFF to refine the edge of
the water body. The quantitative and visual results show that our method has good
performance in the source domain. To further test the advantages of our network, ablation
experiments are conducted here. We sequentially deleted the fully connected CRFs, MFF
module and SSA mechanism in the network, and compared them with the backbone
network HRnet V2 under the same source domain dataset. The experimental results are
shown in Table 3. It can be found that SSA improves MIOU by 1.4%, MFF by 0.42%, and
CRF by 0.42%. To further evaluate the SSA mechanism, we visualize the output images
before and after the SSA mechanism in the form of a heat map, as shown in Figure 7. It
can be found that the network after adding SSA can efficaciously resist the interference
of noises such as the shadow, buildings, green algae, and vegetation, reducing the false
or missed detections. Additionally, the network after joining SSA has better identification
effects and robustness for vast lakes and small water regions. Comparing the images in
Figure 8, it can be seen that the network can better obtain the edge information of the
images after adding MFF. In addition, from the experimental results in Section 3.3.2, it can
be found that the effects of simple unsupervised detections are not ideal, while our method
has been greatly improved compared with them because of the powerful feature extraction
ability of DL. From Tables 1 and 2, it can be found that in the source domain, our method is
faster than some networks but slower than efficient networks, and in the target domain,
it is faster than other methods but slower than K-means, which needs to be improved in
the future.

Table 3. Evaluation of water body extraction results obtained by different models.

Method PA Fy MIOU
HRnet V2 [20] 88 97 84.35
HRnet V2 + SSA 89 97 85.75
HRnet V2 + SSA + MFF 89 97 86.17

HRnet V2 + SSA + MFF + CRF 90 97 86.59
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(a) (b) (c)

Figure 7. Visual comparison results of the SSA mechanism. (a) Image; (b) without the SSA mechanism;
(c) with the SSA mechanism. The boxes circle the changes after adding SSA.

@ (b) © (d)

Figure 8. Results of ablation experiment. (a) Image. (b) Ground truth. (c) HRnet V2 + SSA. (d) HRnet
V2 + SSA + MFE.

5. Conclusions

The automatic extraction of water resource information plays an important role in
water resource management. In addition, remote sensing images that can easily obtain
fine spatial and temporal resolution information are increasingly used for large-scale water
extraction. Many methods have been developed and have shown good results in extracting
various types of water bodies, including rivers, lakes, and coastlines. However, there are
still some areas for improvement. Water index methods, such as AWEI and Wly;5, are
widely used but perform poorly in some areas, and machine learning methods, such as
SVM and J48 decision tree, depend on specific environments and the selection of training
data. Deep learning methods have powerful extraction capabilities and show considerable
potential, but they lead to loss of resolution and rely on large amounts of data. In this paper,
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a novel SFnet-DA network is proposed to accurately extract water bodies from remote
sensing images, which is a combined network of SFnet and domain adaptation (DA).
Benefits from SSA mechanism, SFnet-DA can selectively extract water bodies of different
sizes and alleviate the influence of noise. To ensure the edge information of water body, the
SFnet-DA embeds MFF module and uses full connection CRFs to optimize the prediction
image. Based on the domain adaptation, SFnet-DA makes full use of existing datasets to
predict unlabeled images. To verify our method, the DeepGlobe Land Cover Classification
Challenge and 2020 Gaofen Challenge dataset are combined into the source domain, and
the quantitative and qualitative results are superior to other methods. In the target domain,
the results demonstrate the SFnet-DA is also much greater than other methods in the
Wuhan dense labeling dataset (WHDLD). However, it can be found that the accuracy of the
target domain is lower than that of the source domain and the network efficiency is lower
than some methods. In future work, we will focus on how to further reduce the feature
difference between the source domain and the target domain and improve the efficiency of
the network.
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