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Abstract: Small ships in remote sensing images have blurred details and are difficult to detect.
Existing algorithms usually detect small ships based on predefined anchors with different sizes.
However, limited by the number of different sizes, it is difficult for anchor-based methods to match
small ships of different sizes and structures during training, as they can easily cause misdetections.
In this paper, we propose a hybrid anchor structure to generate region proposals for small ships,
so as to take full advantage of both anchor-based methods with high localization accuracy and
anchor-free methods with fewer misdetections. To unify the output evaluation and obtain the best
output, a label reassignment strategy is proposed, which reassigns the sample labels according to
the harmonic intersection-over-union (IoU) before and after regression. In addition, an adaptive
feature pyramid structure is proposed to enhance the features of important locations on the feature
map, so that the features of small ship targets are more prominent and easier to identify. Moreover,
feature super-resolution technology is introduced for the region of interest (RoI) features of small
ships to generate super-resolution feature representations with a small computational cost, as well
as generative adversarial training to improve the realism of super-resolution features. Based on the
super-resolution feature, ship proposals are further classified and regressed by using super-resolution
features to obtain more accurate detection results. Detailed ablation and comparison experiments
demonstrate the effectiveness of the proposed method.

Keywords: ship detection; hybrid anchor structure; feature super-resolution; generative adversarial training

1. Introduction

Optical remote sensing image ship target detection technology plays an important
role in sea area monitoring, marine pollution detection, maritime traffic management, and
military reconnaissance. Research on ship target detection technology is of great signifi-
cance. Due to the great success of object detection algorithms based on convolutional neural
networks [1–10], many researchers use similar techniques to achieve ship detection [11–21].
However, it is still a very challenging task to accurately locate small ships from optical
remote sensing images.

Small ship targets in remote sensing images have fewer pixels and blurry details,
making them difficult to successfully detect. Most of the existing ship detection methods
generate multi-scale feature maps via the feature pyramid structure [22], and then set
anchors with different sizes on shallow feature maps that have more detailed information
to detect small ships. During the training process, the anchor is only matched with nearby
ships that have a similar size (that is, the IoU reaches the preset threshold) to generate
positive samples for regression, which reduces the difficulty of parameter prediction and
improves the localization accuracy of the detection.
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However, small ships have fewer pixels and the IoU changes caused by size and
location offset are drastic, which greatly increases the difficulty of matching with the anchor.
When predefined sizes of the anchor are not close to the ground-truth bounding box, it is
difficult for the algorithm to match a sufficient number of positive samples for small ship
targets during the training process. In this way, the training is insufficient, resulting in a
decrease in detection performance and even misdetections. Different from anchor-based
methods, anchor-free methods do not require predefined anchors and can freely match ob-
jects of different sizes without IoU restrictions during training. This enables the anchor-free
method to match more positive samples for small ship targets beyond the predefined size
of the anchor, making the training more adequate and reducing misdetections. However,
due to the lack of prior size information, the localization accuracy of anchor-free methods
is usually lower than that of anchor-based methods.

To resolve this contradiction, we propose a small ship detection method based on
hybrid anchor structure and feature super-resolution. The proposed method combines the
advantages of both anchor-based methods and anchor-free methods. Firstly, an adaptive
feature pyramid is proposed, which combines the rich detail information of shallow features
to predict the spatial location weight of deep features, so as to enhance the information
of important locations in a more targeted manner, making it easier for small ships to be
classified and located. Then, based on the shallow features of the adaptive feature pyramid,
two parallel anchor-based and anchor-free detection branches are set to detect small ships.
The two detection branches give full play to the high localization accuracy of anchor-based
methods and the high recall of anchor-free methods.

During training, the network minimizes the losses of the two detection branches to
extract ship features with complementary advantages, thereby improving the detection
accuracy of both branches. During the test phase, in order to preserve better detection
results of each branch, the output results need to be merged according to the classification
scores of the two branches. However, due to the different definitions of positive samples,
the classification scores of the anchor-based branch and anchor-free branch have different
meanings and cannot be directly used for comparison. Although they have complementary
advantages, the difference in output evaluation makes it difficult for the two branches to
obtain their respective optimal outputs.

To solve this problem, we propose a label reassignment strategy. The proposed
strategy comprehensively considers the localization accuracy before and after regression to
reassign the sample labels in each iteration, so that the two detection branches can obtain
unified output evaluations. The classification score after label reassignment is able to better
reflect the localization accuracy of the bounding box, which further narrows the difference
between the classification and regression tasks, thereby optimizing the training process.
When the training is completed, the algorithm retains ship proposals with higher accuracy
according to the classification scores of the two branches, making use of the complementary
roles of the anchor-based branch and the anchor-free branch.

In addition, although the hybrid anchor structure can effectively reduce misdetections,
small ships in remote sensing images still lack detail information, which limits further
improvement of the detection. To solve this problem, we perform feature super-resolution
on the RoI features of small ships to recover the missing details. Specifically, a feature super-
resolution network is proposed, which is composed of recursive residual modules and
densely connected structures. The feature super-resolution network maps RoI features of
small ships into super-resolution features with more detailed information, while avoiding
a lot of computation caused by super-resolution reconstruction to the whole image. With
help of the more detailed information of super-resolution features, the proposed method is
able to accurately locate small ship targets and obtain better detection results.

The rest of this paper is organized as follows. The related work is introduced in
Section 2. Section 3 describes the proposed method in detail. Experimental analysis and
comparisons are given in Section 4 to verify the superiority of our method. Section 5
concludes this paper.
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2. Related Work
2.1. Anchor-Free Detection Methods

The anchor-based ship detection methods achieve good detection performance, but
also have two main problems: (1) They rely on a large number of dense anchors to cover
objects of different sizes, which leads to an imbalance of positive and negative samples. (2)
The anchor requires manual setting for hyperparameters such as scale and aspect ratio. It
is difficult to manually adjust these hyperparameters. Therefore, in view of the defects of
the anchor, researchers have proposed anchor-free object detection methods.

Anchor-free object detection methods can be roughly divided into the two categories
of corner-based methods and keypoint-based methods. The corner-based method regards
the object bounding box as a pair of key points in the upper left and lower right corners
and achieves object localization through the corners. Law et al. [23] propose the CornerNet
algorithm, which sets two branches on the basis of the backbone network to predict two key
points of the upper left corner and the lower right corner of the bounding box, respectively.
At the same time, each branch also generates a corresponding embedding vector for the key
point, judging whether the two key points belong to the same object through the distance
between the embedding vectors. The keypoint-based method makes predictions based on
the center point. Zhou et al. [24] first input the image into a fully convolutional neural
network to generate the heatmap. Then, the center point of the object is predicted according
to the peak points in the heat map. Finally, the width and height of the bounding box are
regressed based on the center point.

Chen et al. [25] first use a fully convolutional neural network to locate the three key
points of the ship’s bow, stern, and center point. Then, the bounding box of the ship is
generated based on these three key points. Meanwhile, the feature fusion and enhancement
module is designed to deal with environmental disturbances. In order to reduce false
detections, Zhang et al. [26] set two priority branches to the CornerNet. Among them,
one recall priority branch is used to reduce false negative samples, and another accuracy
priority branch is used to reduce false positive samples. Moreover, the combination of
the bidirectional feature pyramid structure and the inference part of YOLOv3 [27] further
improves the detection performance of side-by-side ships. Gao et al. [28] propose a dense
attention feature integration module, which combines multi-scale features through dense
connection and iterative fusion to suppress background interference, thereby improving
the generalization performance of the network.

Since the anchor-free method avoids the large amount of computation brought by the
predefined anchors, this kind of method usually has a faster running speed. However, com-
pared with anchor-based detection methods, anchor-free methods have poor localization
accuracy due to the lack of prior information about the size of the bounding box.

2.2. Feature Super-Resolution

At present, multi-scale ship detection methods in remote sensing images have achieved
good results on large ships and medium-sized ships, but the detection performance for
small ships still needs to be improved. Small ships occupy a small number of pixels in the
image, resulting in a lack of detailed information in the features extracted by the shallow
network, which limits the improvement of detection accuracy.

Therefore, in order to more accurately detect small ships, it is natural to perform the
super-resolution operation on the images to obtain high-resolution images with rich details.
The basic method of image super-resolution is to use bilinear interpolation to upsample
the input image, but the recovered image details are relatively rough. In recent years, with
the development of deep learning technology, convolutional neural networks are widely
used for image super-resolution, and these can obtain a super-resolution image with clearer
details [29–37]. Based on this idea, Wang et al. [38] first generate high-resolution images
through an image super-resolution network, and then perform object detection based on
the high-resolution images. Although this method can improve the detection accuracy for



Remote Sens. 2022, 14, 3530 4 of 20

small objects, high-resolution images significantly increase the computational complexity
of the algorithm.

In addition to image super-resolution, another method is to perform super-resolution
on image features. The purpose of image super-resolution is to increase the resolution
of the image for a better visual perception, while feature super-resolution supplements
information for a given feature (for example, features extracted from low-resolution images
or features of small objects), thereby improving the accuracy of the algorithm on various
computer vision tasks. For example, Tan et al. [39] design an FSR-GAN model based on
generative adversarial networks, which effectively improves the resolution of features and
boosts the image retrieval performance on multiple datasets.

Similarly, for the object detection task, Li et al. [40] use a generative adversarial network
to perform feature super-resolution on the RoI (region of interest) features of small objects,
transferring shallow features to deep features through the residual structure to supplement
detail information for small objects. Compared with image super-resolution, RoI feature
super-resolution is closer to target discrimination and can achieve computational sharing
to the greatest extent, thereby reducing the amount of computation. However, this method
only uses the shallow features of the small object for feature enhancement without real
high-resolution features as supervision. Therefore, the obtained results cannot reflect the
real details well.

3. The Proposed Method

Following the two-stage detection pipeline, the overall framework of our method is
shown in Figure 1 and consists of four parts: backbone network, adaptive feature pyramid,
hybrid anchor detection structure, and RoI feature super-resolution.

The ResNet-50 [41] model is used as the backbone network. Firstly, an adaptive feature
pyramid is constructed based on the output feature maps of different depths of the backbone
network. The spatial information is adaptively enhanced via an adaptive enhancement
module to highlight the features of important locations. Then, a hybrid anchor detection
structure is proposed to take full advantages of both anchor-based methods and anchor-free
methods. In hybrid anchor structure, an anchor-based detection branch and an anchor-free
detection branch are set based on the output feature maps of the P2 layer to detect small
ships. Since the definitions of positive and negative samples of the two detection branches
are different, directly merging the output results according to the prediction score will
lead to a performance drop. Therefore, we proposes a label reassignment strategy, which
reassigns the label of training samples according to their localization accuracy before and
after regression. After label reassignment, the two different detection branches can obtain a
unified output evaluation, so as to better merge the output results.

Next, in the RoI feature super-resolution part, the feature super-resolution network
performs super-resolution reconstruction on the RoI features of small ships. The feature
super-resolution process supplements missing details of small ships, which is beneficial for
further classification and regression. During training, the high-resolution feature extraction
network extracts high-resolution RoI features of small ships from high-resolution images
as the ground-truth of the feature super-resolution network. Moreover, to obtain more
realistic super-resolution features, the feature super-resolution network is optimized by
means of generative adversarial training with the help of the feature discriminator. Finally,
the super-resolution RoI features generated by the feature super-resolution network are
classified and regressed to obtain the final detection result.
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Figure 1. The pipeline of the proposed method.

3.1. Adaptive Feature Pyramid

The feature pyramid structure fuses deep features to shallow layers step by step,
supplementing rich semantic information for the shallow features with more detailed infor-
mation. The traditional feature pyramid structure fuses the features of two adjacent layers
by element-wise addition. However, this fusion approach cannot adaptively adjust the
weight according to the changes of input features. In the layer-by-layer process of feature
fusion, the semantic information of different spatial locations cannot be distinguished,
so the important location information transmitted to the bottom layer is weakened, thus
affecting the detection performance for small ship targets.

Aiming at this defect of the traditional feature pyramid, we propose an adaptive
feature pyramid structure. The core of the adaptive feature pyramid is the adaptive feature
enhancement module. This module uses shallow features with rich spatial information
to adaptively enhance the different locations of the deep features, so that the features on
important locations in the fusion result are more salient, which is convenient for detecting
small ship targets.
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The structure of the adaptive feature pyramid is shown in Figure 2. C2, C3, C4, and C5
represent the output feature maps from the second stage to the fifth stage of the ResNet-
50 network model, respectively. The feature map of the C5 layer goes through the 1× 1
convolutional layer to reduce the number of channels, and the top-level feature map of the
pyramid P5 is obtained. Then, P5 is 2x upsampled to match the spatial size of C4, while C4
is channel-reduced by 8 to get the same number of channels as P5. Next, P5 together with
C4 are used as the input of the adaptive enhancement module. Since P5 has low resolution
and less spatial information, while C4 has high resolution and richer spatial information,
the adaptive enhancement module combines the information of C4 to enhance the spatial
information of P5 to obtain the enhanced feature map. The enhanced feature map is added
to the feature map of the C4 layer after dimension reduction, and the fused sub-top layer
feature map P4 is obtained. The method then iterates in the same way to get P3 and the
bottom-level feature map P2.

4P

3P

AFE

AFE

2C

3C

4C

2P

AFE

5P

5C
Upsample

Conv

Upsample

Conv

Conv

Conv

Upsample

Figure 2. Structure of the adaptive feature pyramid. AFE: adaptive feature enhancement.

The structure of the adaptive enhancement module is shown in Figure 3. The input
feature maps Pi+1 and Ci are both W × H × C in size. First, Pi+1 and Ci (i = 2, 3, 4) are
spliced along the channel, and a 3× 3 convolutional layer is set for channel fusion to obtain
the W × H × 2C size output feature map. Then, channel reduction is performed through a
1× 1 convolutional layer to halve the number of channels. Next, a spatial weight map of
size W × H × 1 is obtained via channel average pooling and sigmoid activation function.
Finally, the spatial weight map is used to weight Pi+1 to get the enhanced feature P′i+1.
The adaptive enhancement module predicts the fusion weight for each location of high-
level features according to the feature map to be fused. In this way, features of important
locations are enhanced while features of irrelevant locations are ignored, thereby achieving
better feature fusion.
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Figure 3. Structure of the adaptive enhancement module.

3.2. Hybrid Anchor Detection Structure

Mainstream object detection algorithms widely use anchor boxes to locate objects.
These methods predefine anchors with different scales and aspect ratios as initial candidates
for objects, providing prior information about the object size. The design of anchors can
effectively improve the localization accuracy of the detection, but there are still two main
defects: (1) Since the size of the object is unknown, the algorithm needs to set multiple
anchor boxes of different sizes at each pixel location, which increases the computational
burden of the network. (2) The anchor introduces the two hyperparameters of scale and
aspect ratio. When these hyperparameters are not set properly, the object cannot be matched
to a sufficient number of positive samples, resulting in a decrease in detection performance.

The anchor-free method improves on these defects. This kind of method directly
predicts the distance from the object bounding box to the current pixel location without
predefining the size of the bounding box. Since it is not limited by the size of the object,
anchor-free methods can better match small objects that are difficult to cover by the anchor,
thus effectively reducing misdetections.

The anchor-based method can better detect ships of regular size. However, for small
ships, especially those with large aspect ratios, a small offset may lead to a dramatic change
in the IoU between the anchor and ground-truth bounding boxes. In this case, it is difficult
to reach the threshold of positive samples, which can easily cause misdetections. Therefore,
in order to take full advantages of both anchor-based methods and anchor-free methods,
we set two parallel anchor-based and anchor-free detection branches at the bottom of the
adaptive feature pyramid. Among them, the anchor-based detection branch can improve
the localization accuracy of small ships, and the anchor-free detection branch can help to
avoid misdetections. On this basis, a label reassignment strategy is proposed to unify the
output evaluations of the two branches, so as to better combine the detection results of the
two branches and make full use of their complementary advantages.

3.2.1. Anchor-Based Detection Branch

The anchor-based detection algorithms predefine a variety of anchors with different
sizes, which reduces the difficulty of regression and can more accurately locate the object.
Therefore, anchor-based detection branches are set at the P2, P3, P4, and P5 layers of the
adaptive feature pyramid to detect ships of different sizes. In remote sensing images,
rotated bounding boxes can provide accurate localization descriptions for regular sized
ship targets. However, unlike regular sized ships, small ships have small bounding boxes
and weak directionality. Predicting rotated bounding boxes is far less important for small
ships than for regular-sized ships. Therefore, the anchor-based detection branch of the
P3 − P5 layers predicts rotated proposals, while both the anchor-based and anchor-free
detection branches of the P2 layer predict horizontal proposals for small ships.

Specifically, the scales of the anchors at the P2–P5 layers are 16× 16, 32× 32, 64× 64,
128× 128, and 256× 256, respectively. Each scale has three aspect ratios of 1:5, 1:1, and 5:1.
Among them, the anchors for the P2 layer are horizontal anchors. For the P3–P5 layers, we
set rotated anchors with six predefined orientations of 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦, as
described in [42].
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3.2.2. Anchor-Free Detection Branch

In order to better detect small ships, we set an anchor-free detection branch at the P2
layer. Different from the anchor-based branch, the anchor-free branch does not need to
predefine the width and height of the bounding box, and it directly regresses the distance
from the current location to the four sides of the object bounding box. Assuming that the
coordinates of the top left corner and the bottom right corner of the object bounding box are
(xt, yt) and (xb, yb), respectively, and the coordinates corresponding to the current location
are (xi, yi). Then, as shown in Figure 4, the offset predicted by the anchor-free branch is
ttt = (dxt = xi − xt, dyt = yi − yt, dxb = xb − xi, dyb = yb − yi).

xtd xb
dytd

yb
d

Figure 4. The offset of the anchor-free detection branch. The distances from the current location to
the left, right, top, and bottom side of the bounding box are represented by dxt, dxb, dyt, and dyb,
respectively.

In order to normalize the offsets between objects of different sizes, the IoU loss is
usually used for network optimization during training in anchor-free detection algorithms.
The IoU loss is defined as follows:

Liou = −log(Piou), (1)

where Piou represents the IoU between the predicted box and the ground-truth bounding
box. Since small ships in remote sensing images usually have unclear outlines, it is particu-
larly important to accurately locate their center points. Therefore, a center point distance
loss term is introduced to better locate the center point of the ship. The IoU loss Lciou with
center point distance loss term is defined as follows:

Lciou = −[1 + d2(cpd, cgt)/c2] ∗ log(Piou) (2)

where d2(cpd, cgt) represents the square of the distance between the predicted box and the
center point of the ground-truth bounding box, and c represents the diagonal length of the
combined rectangle composed of the predicted box and the ground-truth bounding box, as
shown in the Figure 5.

Figure 5. Illustration of the center point distance.

Another important difference between the anchor-free branch and the anchor-based
branch is the definition of positive and negative samples during training. The anchor-based
branch needs to calculate the IoU between the anchor and ground-truth bounding boxes,
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and then compare it with the IoU threshold. However, IoU not only requires the location of
the anchor to be accurate, but also needs to be similar in size to the ground-truth bounding
boxes, which greatly limits the number of positive samples. In contrast, the anchor-free
branch only needs to consider the geometric relationship between the current location
and ground-truth bounding boxes, which can effectively increase the number of positive
samples of small ship targets.

Specifically, for the anchor-free detection branch, a positive sample falls within the
constraint rectangle. A constraint rectangle is a rectangular region with the same center
point as the ground-truth bounding box, but 0.9 times its width and height. The constraint
rectangle is set here to alleviate the imbalance offset regression when the pixel is too close
to the boundary of the ground-truth bounding box. The samples between the constraint
rectangle and the ground-truth bounding box are ignored, and the samples outside the
ground-truth bounding box are negative samples. When adjacent ground-truth bounding
boxes have overlap, the corresponding constraint rectangles may also overlap. For this
case, the samples in the overlapped region will be matched to the closest ground-truth
bounding box.

Since the output of anchor-based and anchor-free branches may highly overlap, it is
necessary to eliminate redundancy through the non-maximum suppression (NMS) post-
processing process and merge the prediction results of the two branches. The NMS algo-
rithm ranks all proposals according to the classification scores, gradually eliminating the
redundancy around the region with the highest scores. For the anchor-free branch and
the anchor-based branch, the different definitions of positive and negative samples lead to
different meanings of the classification scores of the two branches: the classification score of
the anchor-free branch represents the probability that the current pixel location falls within
the constraint rectangle, while the classification score of the anchor-based branch reflects
the degree of overlap between the anchor and the ground-truth bounding box. Therefore,
the classification scores of the two branches cannot be used in the NMS process.

In order to solve this problem and obtain the same output evaluation of the two
branches, we proposes a label reassignment strategy that re-selects positive and negative
samples according to the harmonic IoU before and after regression. The specific process of
the label reassignment strategy is as follows:

(1) The anchor-based and anchor-free detection branches first generate positive and
negative samples according to their respective rules. Then, the IoU between these
samples and the ground-truth bounding boxes is calculated, denoted as the a priori
IoU, aiou.

(2) The two branches respectively perform location correction according to the output
offsets to obtain ship proposals.

(3) The IoU between proposals and the ground-truth bounding boxes is calculated, de-
noted as posterior IoU, piou. Then, aiou and piou are weighted and summed to get the
harmonic IoU:

miou = αaiou + (1− α)piou (3)

in which α is the weighting coefficient.
(4) The anchors and initial locations corresponding to the proposals with miou larger than

0.5 in the two detection branches are reselected as positive samples, while the regions
where miou is less than 0.3 are negative samples. The rest are ignored.

In step (1), since the anchor-free branch does not have predefined anchors, each pixel
location is regarded as a virtual anchor with the same width and height as the ground-truth
bounding box to calculate the prior IoU of the anchor-free branch. The harmonic IoU adds
the prior IoU before regression, which enhances the stability of the training. During training,
we set α = 0.4 to strengthen the effect of posterior IoU. After reassigning labels according
to the harmonic IoU, the classification and regression losses are calculated according to the
reselected positive and negative samples. At this time, the classification scores of the two
branches both reflect the localization accuracy of the ship proposals, so that the outputs
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have unified evaluations. The classification scores are used for merging the output in the
NMS post-processing process to obtain better detection results for each branch.

3.3. RoI Feature Super-Resolution

One of the important reasons why small ships are difficult to detect is the lack of
detail information. Although the feature map at the bottom of the feature pyramid has
relatively rich details, it still cannot make up for the missing information in the original
image. A common method to solve this problem is to enlarge the image and supplement
the missing details through image super-resolution technology to obtain high-resolution
images. Since regular-sized ships and irrelevant background regions do not require sharper
details, image super-resolution results in many unnecessary redundant computations.
Taking high-resolution images as input significantly increases the computational burden of
convolutional neural networks.

The idea of feature super-resolution is similar to image super-resolution, which recon-
structs low-resolution features into high-resolution features with more detail information.
Compared with image super-resolution, feature super-resolution is closer to object discrimi-
nation, which can maximize shared computing and reduce the computation cost. Therefore,
we adopt feature super-resolution to obtain the super-resolution RoI features of the small
ship proposals. Then, the second-stage classification and regression are performed on the
basis of the super-resolution RoI features to obtain more accurate detection results.

3.3.1. High-Resolution Feature Extraction Network

Learning the super-resolution representation of low-resolution RoI features for small
ships requires using the corresponding real high-resolution features as supervision. The
high-resolution feature extraction network takes high-resolution images as input to obtain
high-resolution output feature maps, and then the high-resolution RoI feature of small
ships can be obtained through the RoI pooling operation. In order to have consistent
correspondence between RoI features of different resolutions, the high-resolution RoI
features must have the following properties: (1) The channel information is consistent with
the low-resolution RoI features, so that the features have the same meaning. (2) The relative
receptive field is consistent with the low-resolution RoI features, so that the features cover
the same image region.

Directly using the backbone network as the high-resolution feature extraction network
can ensure that the channel information is consistent, but it will lead to a mismatch in the
relative receptive fields [43]. As the size of RoI decreases, the mismatch of the relative
receptive field also increases. That is, low-resolution RoI features contain a wider range
of information in the image, while high-resolution RoI features cover a smaller range,
which causes the generated super-resolution features to lose part of the receptive field
information and affects the subsequent detection results. Therefore, the high-resolution
feature extraction network needs to enlarge the receptive field while maintaining parameter
sharing with the backbone feature extraction network to reduce the mismatch of the
relative receptive fields between RoI features. In our implementation, we replace all 3× 3
convolutional layers in the backbone feature extraction network with the corresponding
convolutional layer in the high-resolution feature extraction network.

The high-resolution feature extraction network is only used during training and will
be removed in the test phase. During training, the high-resolution and low-resolution
images are fed into the high-resolution feature extraction network and the backbone feature
extraction network, respectively, for parallel computation, and the multi-scale feature maps
of the two images are obtained at the same time. According to the prediction result of
the hybrid anchor detection structure, high-resolution RoI features are extracted from
the high-resolution feature extraction network through the RoI pooling operation. The
high-resolution RoI features are then serve as the supervision information for the feature
super-resolution network.
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3.3.2. Feature Super-Resolution Network

The feature super-resolution network maps low-resolution RoI features to super-
resolution RoI features with more detail information. Since RoI features have a fixed
spatial size, the output of the feature super-resolution network is the same size as the input
feature. The high-resolution features contain low-resolution features and the missing high-
frequency detail information. This correspondence can be described well by the residual
structure. Therefore, we build the feature super-resolution network based on the residual
module.

In general, deep networks have better image super-resolution performance. However,
as the number of network layers increases, the number of parameters increases linearly,
increasing the risk of overfitting, especially for the RoI feature, whose spatial size is usually
only 7× 7× 256. Therefore, in order to better balance the network depth and the number
of parameters, a recursive residual [44] module with parameter sharing is used to build the
feature super-resolution network.

The structure of the recursive residual module is shown in Figure 6, in which the two
consecutive 3× 3 size convolutional layers in the green dashed boxes are the basic convolu-
tional units. To limit the growth of parameters, the parameters are fully shared between
basic convolutional units. The recursive residual module consists of a basic convolution
unit and a recursive residual structure, which recursively calls the basic convolution unit to
calculate the residual output. Compared with an ordinary residual module, the recursive
residual module increases the depth of the network without increasing the number of
learnable parameters, so it has less risk of overfitting.

Conv

Conv

Conv

Conv

Conv

Conv

Input

Output

Conv

Conv

Figure 6. Structure of the recursive residual module.

The feature super-resolution network composed of recursive residual modules is
shown in Figure 7. The network consists of three recursive residual modules, and a dense
connection structure is added between different residual modules to achieve feature reuse.
The densely connected structure enables the input of each layer to fully absorb the outputs
of all previous layers, so that the features extracted by different convolutional layers can be
fully utilized to reconstruct high-resolution features.
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Recursive 
residual 
module

Recursive 
residual 
module

Recursive 
residual 
module

Figure 7. Structure of the high-resolution feature generation network.

During training, the feature super-resolution network takes high-resolution RoI fea-
tures output by the high-resolution feature extraction network as learning targets, and
updates the network parameters through the feature super-resolution loss. In addition, in
order to obtain more realistic super-resolutin features, the idea of a generative adversarial
network is used to further optimize the output of the feature super-resolution network.
Using the feature super-resolution network as the generator, the discriminator consists
of two fully connected layers and a softmax layer to identify whether input features are
real high-resolution features. After training, the discriminator is removed in the test phase.
The super-resolution RoI features output by the feature super-resolution network are fur-
ther subjected to second-stage classification and regression prediction to obtain the final
detection results for small ships.

3.4. Training
3.4.1. Training Process

Most of the existing object detection methods only use single-resolution images in
the training dataset to learn the feature representation of the object. Limited by the image
resolution, for small objects, the features obtained by these methods are lacking in detail
information, which is not conducive to accurate detection. In order to enrich the details of
small ships, we design the feature super-resolution network to generate super-resolution
features for the proposal of small ships. Training the feature super-resolution network
requires real high-resolution features as supervision. Therefore, as shown in Figure 8, a
parallel structure is used to train the network, generating low-resolution RoI features and
the required high-resolution RoI feature at the same time.

High-resolution feature extraction network

4C3C
2C

5P

5CHigh-resolution 

image

3P
4P

2P

Backbone Feature extraction network

4C
3C

2C 3P4P

2P

Feature 
discriminator

Fully connected 
classification & 

regression

High-resolution 
RoI feature

5P

5C
5P

Low-resolution 
RoI feature

Feature 
super-resolution 

network

Super-resolution 
RoI feature

Low-resolution 

image

Figure 8. The training pipeline of the proposed method.

During training, the backbone network takes low-resolution images as input. At
different layers of the adaptive feature pyramid, the corresponding detection branches
generate low-resolution ship RoI features of different sizes. Among them, the feature super-
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resolution network performs feature super-resolution on the RoI features of small ships
generated by the detection branch located at the P2 layer. Based on the super-resolution
RoI features, the classification score and regression offset are predicted through the fully
connected classification and regression layers. Besides small ships, ships of other sizes
contain larger number of pixels, and sufficient detail information can be obtained from
the original input image. Therefore, in order to reduce unnecessary computation, the RoI
features generated by the detection branch located at the P3–P5 layers are directly fed into
the fully connected classification and regression layers for prediction.

Meanwhile, the high-resolution feature extraction network takes high-resolution im-
ages as input, and generates the corresponding high-resolution RoI features of small ships
according to the output of the backbone network. The feature super-resolution network
takes the generated high-resolution RoI features as the ground-truth, learning the map-
ping relationship between low-resolution features and real high-resolution features by
optimizing the super-resolution loss. In addition, the feature discriminator discriminates
super-resolution features from real high-resolution features during training, making the
output of the feature super-resolution network more realistic.

In our implementation, the corresponding low-resolution image is obtained by down-
sampling the high-resolution image. During training, the training image is directly used
as the high-resolution image, and the image downsampled to half the size of the original
image is used as the low-resolution image. The two images are input in pairs to the high-
resolution feature extraction network and the backbone feature extraction network. The
complete training process of the network is as follows:

(1) The parameters of the high-resolution feature extraction network and the feature dis-
criminator are fixed, while the backbone network and the fully connected classification
and regression layers are trained.

(2) The parameters of the backbone network are fixed, while the high-resolution feature
generation network and the feature discriminator are alternately trained until they
converge.

(3) The parameters of all the remaining parts are fixed to exclude the influence of the gen-
erative adversarial loss, while the parameters of the fully connected classification and
regression layers are fine-tuned to further improve the performance of the detection.

3.4.2. Loss Functions

The loss of the proposed method during training consists of three parts: the detection
loss for training the detection model, the super-resolution loss for training the feature
super-resolution network, and the discrimination loss for training the feature discriminator.

(1) Detection loss

The detection loss Ldet consists of each detection branch of the adaptive feature pyra-
mid and the classification and regression loss of the second stage. In order to facilitate
convergence, the regression loss of all anchor-based detection branches in the P3–P5 layers
adopt the IoU loss Liou shown in Equation (1). Both the anchor-based detection branch
and anchor-free detection branch at the P2 layer adopt the IoU loss Lciou with center point
distance loss, as shown in Equation (2). The classification loss Lcls of each detection branch
is consistent with [3]. The classification and regression losses of the second stage are exactly
the same as the detection branches of the first stage.

(2) Super-resolution loss

The super-resolution loss computes the deviation between the output of the high-
resolution feature generation network and the real high-resolution feature pixel by pixel. It
is defined as follows:

LSup =
1
N

N

∑
i=1
‖G(FLR

i )− FHR
i ‖2

2. (4)
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In Equation (4), subscript 2 means 2-norm, i is the serial number of the RoI feature, FLR
i

represents the low-resolution RoI feature, FHR
i represents high-resolution RoI features, G

represents the high-resolution feature generation network, and N is the number of samples.

(3) Discrimination loss

The loss of the high-resolution feature discriminator is the categorical cross-entropy
loss, which is defined as follows:

Ldis = −
N

∑
i=1

(yi log Di + (1− yi) log(1− Di)). (5)

In Equation (5), Di represents the output probability for the feature discriminator, and
yi is the category label for the i-th input feature (yi = 1 for the real high-resolution feature,
and yi = 0 for the generated super-resolution feature).

To sum up, the network loss L is equal to the sum of the above losses, as follows:

L = Ldet + LSup + Ldis. (6)

4. Experiments
4.1. Datasets and Implementation Details

The proposed method is verified on a remote sensing image dataset collected from
Google Earth. The dataset contains a total of 3000 images, covering the port and sea
environment. The dataset is randomly divided into a training set, validation set, and test
set according to the ratio of 6:1:3. In order to more clearly show the detection performance
on ships of different sizes, ships in the dataset are divided into three categories of small
ships, medium ships, and large ships for evaluation. Among them, the size of the bounding
box for small ships is less than 32× 32 pixels, while the medium ships are between 32× 32
pixels and 128× 128 pixels, and the large ships are larger than 128× 128 pixels.

The GPU model in our experiment is NVIDIA 1080Ti, the CPU model is Intel i7-7820X,
and the memory is 32 GB. The experiment is carried out on the Ubuntu 16.04 operating
system, based on the TensorFlow deep learning framework. The network is optimized
by the Adam optimizer, with a total of 80,000 iterations. The learning rate is 0.001 for the
first 40,000 iterations and 0.0001 for the second 40,000 iterations. Two images of different
resolutions are input for the training in each iteration. The shorter side of the original
image is scaled to 600 pixels to obtain the high-resolution input image. During training,
the backbone network shares all learnable parameters with the high-resolution feature
extraction network. During the test phase, the high-resolution feature extraction network
and feature discriminator will be removed.

4.2. Experimental Analysis
4.2.1. Evaluation of the Adaptive Feature Pyramid

The adaptive feature pyramid improves the feature fusion of the original feature
pyramid, and enhances the spatial information of deep features through information
interaction. To verify the effectiveness of adaptive feature pyramid, Table 1 shows the
evaluation results of different feature pyramid structures. In Table 1, SAP, MAP, and
LAP represent the mean precision (AP) for small ships, medium ships, and large ships,
respectively. The original feature pyramid adopts element-wise addition to fuse the adjacent
two levels of features. In contrast, the convolution feature pyramid replaces the element-
wise addition with a convolution operation after feature concatenation.
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Table 1. Evaluation results of different feature pyramid structures.

SAP MAP LAP

Original feature pyramid 82.2% 87.4% 93.0%
Convolutional feature pyramid 82.4% 87.4% 93.1%

Adaptive feature pyramid 83.7% 88.5% 93.8%

From the experimental results, we can see that although the convolution operation
can learn the fusion weight, this weight does not bring obvious performance improvement.
The adaptive feature pyramid predicts the fusion weight between different layers via the
attention mechanism, so the AP of each kind of ship is effectively improved.

4.2.2. Evaluation of the Hybrid Anchor Structure

In this paper, an anchor-free detection branch is set in the hybrid anchor structure
to detect small ships, and the training is further optimized with the help of a label reas-
signment strategy and center point distance IoU loss. For a more adequate comparison, a
baseline model that does not contain the hybrid anchor structure is set as the benchmark
for comparison. In the baseline model, the anchor-free detection branch is replaced by the
anchor-based detection branch. Table 2 gives the evaluation results of the hybrid anchor
box structure. Experimental results show that the anchor-free detection branch, the label
reassignment strategy, and the center point distance IoU loss jointly improve the detection
accuracy of small ships.

Table 2. Evaluation results of the hybrid anchor structure.

Anchor-Free Branch Label Reassignment Center Point IoU Loss SAP

baseline 79.5%

ours
X 81.2%

X X 83.1%

X X X 83.7%

4.2.3. Evaluation of RoI Feature Super-Resolution

In order to verify the effectiveness of the RoI feature super-resolution structure and
its components, detailed comparative experiments are conducted on the receptive field
matching of the high-resolution feature extraction network, as well as the recursive residual
and densely connected structure of the feature super-resolution network. Experiment
results are shown in Table 3. The receptive field matching can significantly improve
the detection performance, which demonstrates the importance of maintaining similar
receptive fields. In addition, recursive residuals and dense connections further boost the
AP.

Table 3. Evaluation results of the feature super-resolution network.

Receptive Field
Matching Recursive Residuals Dense Connection SAP

baseline 80.7%

ours

X 82.2%

X X 82.9%

X X 81.6%

X X X 83.7%
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4.3. Comparison Results and Discussion

In order to further verify the effectiveness of the proposed method, the proposed
method is compared with other three representative small object detection algorithms,
which are the method from [40], the method from [45], and Libra R-CNN [46].

The method from [40] first performs the super-resolution operation on the features
of the input image, and adds the super-resolution features to original features to obtain
the features with enhanced details. Then, the enhanced features are used for detection.
Method [45] first cuts out a suspected target region smaller than a certain size from the input
image according to the detection results. Then, the captured image region is super-resolved
to obtain the super-resolution image. Finally, the super-resolution images are classified as
objects and non-objects to obtain the final result.

Libra R-CNN improves the small object detection performance based on two aspects of
the training strategy and network structure. In the training strategy, the negative samples
are uniformly extracted according to different IoU intervals to balance the number of
positive and negative samples. For the network structure, the multi-scale features are first
unified at intermediate size by interpolation and pooling for fusion, and then the original
features are enhanced with the fused features.

The detection results of the different methods for small ships are shown in Figure 9. It
can be seen that all three of the other methods have misdetections to some extent. For blurry
pictures and unclear ships, the situation is even worse. In contrast, the proposed method
combines a number of improved technologies, which effectively avoids misdetection and
achieves the best detection performance for small ships.

Besides small ships, Figure 10 shows multi-scale ship detection results. Under the
interference of complex port background, both the method from [40] and the method from
[45] lost many warships and small ships. Libra R-CNN achieves better detection results
than the above two methods by means of the improvements to the training strategy and
network structure. However, some heavily disturbed ships failed to be accurately detected.
In contrast, the proposed method can not only accurately locate small ships, but also has
high detection accuracy for multi-scale ships.

Figure 9. Cont.
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(a) (b) (c) (d)

Figure 9. Detection results of small ships with different algorithms: (a) method from [40]; (b)
method from [45]; (c) Libra R-CNN; (d) our method.

(a) (b) (c) (d)

Figure 10. Multi-scale ship detection results of different algorithms: (a) method from [40]; (b)
method from [45]; (c) Libra R-CNN; (d) our method.

Table 4 provides the quantitative evaluation results of different methods. It can be seen
from the evaluation results that the proposed method has better detection performance
than other methods on ships of various sizes, especially small-sized ships.
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Table 4. Evaluation results of different methods.

Method [40] Method [45] Libra R-CNN Ours

SAP 80.5% 80.8% 81.6% 83.7%
MAP 86.9% 87.2% 87.7% 88.5%
LAP 90.7% 91.3% 92.5% 93.8%

5. Conclusions

In this paper, we propose a small ship detection method based on hybrid anchor
structure and feature super-resolution. Firstly, an adaptive feature pyramid is designed to
enhance the information of important locations, and then the hybrid anchor structure is
used to detect small ships based on the adaptive feature pyramid. The proposed structure
combines the advantages of both anchor-based methods and anchor-free methods: an
anchor-based detection branch is set to improve the localization accuracy, and an anchor-
free detection branch is set to reduce misdetections. Then, a label reassignment strategy
is proposed. During training, the sample labels are reset according to the harmonic IoU
before and after regression. After label reassignment, the output evaluation of the two
branches is unified to make better use of their complementary advantages. Finally, the
feature super-resolution network is used to perform super-resolution reconstruction on the
RoI features of small ships, and obtain more detailed super-resolution features for more
accurate classification and regression. Detailed ablation and comparison experiments verify
the effectiveness of the proposed method. Since the structure of the feature super-resolution
part is slightly bloated, we consider using a more concise and efficient structure to achieve
feature super-resolution to further improve the performance of the proposed method in
our future work.
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