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Abstract: Nowadays, the integration between photogrammetry and structure from motion (SFM)
has become much closer, and many attempts have been made to combine the two approaches to
realize the positioning, calibration, and 3D reconstruction of a large number of images. For the
positioning and calibration of high oblique frame sweep (HOFS) aerial cameras, a quadrifocal tensor
SFM photogrammetry technique is proposed to resolve the positioning and calibration task of such
cameras. It adopts the quadrifocal tensor idea into the OpenMVG SFM pipeline to solve the complex-
ity problem caused by the small single-viewing imaging area and the high image overlapping ratio.
It also integrates the photogrammetry iteration idea into the OpenMVG SFM pipeline to enhance the
positioning and calibration accuracy, which includes a coarse to fine three-stage Bundle Adjustment
(BA) processing approach. In this paper, the overall workflow of the proposed technique was first
introduced in detail, from feature extraction and image matching, relative rotation and translation
estimation, global rotation and translation estimation, and the quadrifocal tensor model construction
to the three-stage BA process and calibration. Then, experiments were carried out in the Zhengzhou
area, implementing four types of adjustment methods. The results suggest that the proposed quadri-
focal tensor SFM photogrammetry is suitable for large tilt frame sweep camera positioning and
calibration without prior information on detailed camera intrinsic parameters and structure. The
modifications made to the OpenMVG SFM pipeline enhanced the precision of image positioning and
calibration and provided the precision level of professional photogrammetry software.

Keywords: a quadrifocal tensor; SFM photogrammetry; oblique photogrammetry; frame sweep
aerial sensor; VisionMap A3 edge sensor

1. Introduction

Given its high spatial resolution and great flexibility, digital frame cameras are widely
used in aerial photogrammetry and remote sensing for topographic mapping, archae-
ological discoveries, forestry and agricultural assessment, natural disaster monitoring,
and ecosystem restoration [1–6]. To obtain broader ground coverage, frame digital cam-
eras usually adopt the following technologies: super-wide frame cameras (e.g., Z/I DMC
system [4,7]), multi-splicing frame cameras (e.g., Microsoft Ultracam system [4,8], Le-
ica Citymapper system [9], and SWDC-4 cameras [10]), and frame sweep cameras. The
representative aerial frame sweep cameras include the EOLOROP [11], DB-110 [12], and
VisionMap A3 [13–16].

Most of these cameras are equipped with Position Orientation System (POS) equip-
ment (including Global Navigation Satellite Systems (GNSS) and Inertial Measurement
Units (IMU)) to provide initial camera poses and orientation. Due to significant imaging
principles and camera inner structures, the specific camera imagery is always processed
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through corresponding professional software, such as Ultramap software for Microsoft
Ultracam cameras, HxMap software for Leica Citymapper cameras, and LightSpeed for
VisionMap A3 cameras [16].

For super-wide and multi-splicing frame cameras, the geometric imaging relationship
is relatively simple in nearly vertical photography. Even though the Leica Citymapper cam-
era adopts an oblique photography approach, the angular relationship between different
views is fixed. Thus, an accurate geometric imaging model can be established, and high-
precision open-source positioning and calibration software can be developed, breaking the
limitations of professional software.

In contrast, the frame sweep camera swings along the vertical direction of the flight
swiftly for imaging, such as VisionMap A3. It achieves true high-tilt photogrammetry
with a long focal length and an ultra-wide sweep angle up to 104 degrees. It can obtain
a wide range of clear images at high altitudes, which is particularly useful for surveying,
monitoring, and reconnaissance. The obtained multi-angle images are excellent for 3D
reconstruction compared to high-resolution satellite images. However, the camera tilt angle
varies considerably in dynamic imaging, causing complex geometric imaging relationships
and inconsistent imaging scales within one sweep cycle. Moreover, the VisionMap A3 cam-
era is not equipped with an IMU installment, providing no camera orientation information.
These increase the difficulty in image positioning processing.

To realize the geometric processing for the VisionMap A3 camera in a more general
and simplified way, the research project was implemented, and the performance of the
proposed technique was comprehensively analyzed. The rest of the paper is organized
as follows. The related works are discussed in the next section, and the VisionMap A3
system is introduced in Section 3. Section 4 presents the methods, including the ideas and
workflow. The experimental results and the discussion are provided in Section 5, and a
brief conclusion is presented in the last section.

2. Related Work

Photogrammetric techniques have been used to achieve open-source positioning
and calibration of the VisionMap A3 camera, but the results have largely been unsta-
ble. The main goal of photogrammetry is to generate accurate camera poses (i.e., po-
sitions and orientations), intrinsic camera parameters, and 3D points. The processing
approach includes matching, aero-triangulation (also called bundle adjustment), orthoim-
age generation, and digital elevation model (DEM) generation [1–5,17]. Complex geometric
imaging relationships and inconsistent imaging scales make it difficult to set up accurate
geometric imaging models; thus, many problems occur in processing A3 images by the
photogrammetry scheme.

Aside from photogrammetry, SFM has become a common approach in aerial imagery
processing. Photogrammetry and SFM approaches have many similarities in feature and
bundle adjustment. SFM also computes camera poses, intrinsic parameters, and 3D points
cloud [18–20]. SFM methods can be categorized into five types: global SFM, incremental
SFM, hierarchical SFM, hybrid SFM, and semantic SFM. Global SFM processes all images
simultaneously, first solving global camera rotation using the rotation consistency, then
calculating camera displacement, and finally applying BA optimization. While the global
strategy significantly improves processing efficiency, it is extremely sensitive to external
points. Its performance is unstable in many applications, and its reconstruction accuracy is
largely unsatisfactory [21–28].

Incremental SFM starts with two or three view reconstructions, gradually adds new
views, and then applies BA operation after each addition. This processing method is
robust with high reconstruction accuracy, and most popular SFM pipelines employ incre-
mental approaches. However, incremental SFM has drift risk due to the accumulation
of errors [29–37]. Hierarchical SFM is the revision of the traditional incremental SFM. It
divides the large-scale datasets into N interrelated sub-datasets, and then parallel incre-
mental SFM processing is performed on the sub-datasets. Finally, the sub-datasets are
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merged [38–41]. Hybrid SFM combines the advantages of global SFM and incremental SFM.
It solves camera rotation using the global approach and then calculates camera displacement
incrementally [42–44]. Semantic SFM uses the semantic label to detect the corresponding
models and facilitate image matching and camera calibration. Scene segmentation can be
realized in SFM reconstruction [45–47].

The well-known SFM pipelines include Bundler [31,32], VisualSFM [35], COLMAP [34,37],
and OpenMVG [29,36]. The properties of these pipelines are summarized in Table 1.

Table 1. Popular SFM Pipelines Analysis.

Pipeline Properties

Bundler An early incremental SFM pipeline originated from Photo Tourism Project. The time complexity is
O(n4), the output is sparse point clouds, and the operation is complex.

VisualSFM A revision on Bundler and the time complexity reaches O(n1), the output is dense point clouds with
higher accuracy, and the operation is much simpler.

COLMAP
COLMAP improves scene graph verification, next best view selection, sampling-based triangulation,
and bundle adjustment; it performs better in terms of completeness and robustness. Its efficiency
outperforms OpenMVG but does not support POS data input.

OpenMVG

OpenMVG adds an efficient contrario trifocal tensor estimation method and translation registration
technique into the original SFM pipeline. It outperforms many incremental and global pipelines in
terms of accuracy and running times. The reprojection error and the drift are smaller than COLMAP,
and it supports POS data input.

Notes: n is the number of images.

At present, the integration between photogrammetry and SFM has become more
pronounced. SFM photogrammetry combines the two approaches to realize the positioning,
calibration, and 3D reconstruction of a large number of ordered and disordered images [48].

Photogrammetry often relies on initial POS data and intrinsic camera parameters and
can reach higher accuracy through iterative least-squares adjustment, condition adjustment,
or indirect adjustment. SFM takes homogeneous coordinates in expression and does not
require specific initial values of POS data and intrinsic camera parameters. In image
pose recovery and 3D reconstruction, SFM uses the R matrix to model the attitude angle
system, which does not involve selecting a specific angle rotation system; thus, it can
overcome challenges caused by the swift change of the sweep angle in the ultra-wide
imaging range. It also avoids conversion among different coordinate systems, resulting in
much simpler operations and faster convergence. Thus, the SFM pipeline was chosen to
solve the positioning and calibration task of the VisionMap A3 camera.

By analyzing Table 1 it can be determined that the OpenMVG pipeline has smaller
reprojection and drift errors and supports POS data input, which is especially advantageous
for remote sensing imagery. Thus, the OpenMVG pipeline was chosen for the geomet-
ric processing of VisionMap A3 images, addressing the limitations of the professional
LightSpeed software.

Wu et al. [35] introduced a novel BA strategy that provides a good balance between
SFM reconstruction speed and accuracy and maintains high accuracy by regularly re-
triangulating feature matches that fail to triangulate. Wu’s feature detection and descrip-
tion algorithm was adopted into the OpenMVG pipeline. Moulon et al. [36] proposed a
new global calibration approach based on the fusion of relative motions between image
pairs, presenting an efficient contrario trifocal tensor estimation method and translation
registration technique for accurate camera positions recovery in OpenMVG. We followed
the tensor cluster idea and designed the quadrifocal tensor-based BA method.

Two main improvements were introduced to the original OpenMVG pipeline. First,
the VisionMap A3 frame sweep camera has a small single-viewing imaging area. The
high image overlapping ratio and the high number of images enhance the processing
complexity. To reduce the complexity and strengthen the robustness, the quadrifocal tensor
was added to the OpenMVG pipeline, which deals with the images in the quadrifocal tensor
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model cluster. The quadrifocal tensor model performs high oblique frame sweep camera
positioning and calibration processing as an independent unit. Second, the photogrammetry
iteration idea was introduced into the OpenMVG pipeline to enhance the positioning and
calibration accuracy. A coarse to fine three-stage BA processing approach was proposed to
deal with the pose parameters and the intrinsic parameters.

The quadrifocal tensor-based positioning and calibration method first carries out
feature extraction and image matching. Relative rotation and translation estimation and
global rotation and translation are performed before establishing the quadrifocal tensor
model. The three-dimensional coordinates of matching points in each quadrifocal tensor
model are calculated, and the BA cost function is finally set up with the quadrifocal tensor
model as the independent unit. Real VisionMap A3 data is then used to evaluate whether
the proposed approach can solve the high oblique frame sweep camera position and
calibration problem in a more general and simplified way.

3. VisionMap A3 System Introduction

The VisionMap A3 system is a fully automated mapping system established in 2004.
The system consists of an airborne digital step-framing double lens metric camera and a
ground processing system. The airborne system consists of dual CCDs with two 300 mm
lenses (Figures 1 and 2), a fast compression and storage unit, and a dual-frequency GPS.
The long focal length yields comparatively high ground resolution when flying at high
altitudes, enabling efficient photography of large areas in high resolution.

Figure 1. VisionMap A3.

Figure 2. Dual Lenses of VisionMap A3.

During the flight, a sequence of frames is exposed in a cross-track direction at a very
high speed to provide a very wide angular coverage of the ground. The two lenses of
the camera simultaneously sweep across the flight direction from one side to the opposite
side, with each CCD capturing about 27 frames (54 frames for two CCDs) and having a
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maximum sweep angle of 104 degrees. After completing the first sweep, the lenses return
to the start position in preparation for the next sweep. The sweep back time is 0.5 s. Each
CCD captures seven frames per second (one frame in 0.142 s); therefore, a single sweep is
completed in approximately 3.6 s. The time between sweeps depends largely on the aircraft
speed, flight altitude, and the required overlap between two consecutive sweeps. For more
details on the technical parameters, refer to Pechatnikov et al. [13].

Two adjacent single frames along the flight form a double frame (Figures 3 and 4).
The overlap between two adjacent single frames is about 2% (~100 pix), while the overlap
between two adjacent double frames across the flight direction is about 15%. The overlap
between two consecutive sweeps along the flight direction is typically 56%, but this value
may vary depending on the defined specifications of the aerial survey. Between two
consecutive flight lines, the overlap is generally 50% to enable stereo photogrammetric
mapping. All overlaps are determined during flight planning and may be altered during the
flight. VisionMap A3 camera provides orthogonal coverage of the nadir area and oblique
coverage of the remainder of the sweep image. As all images participate in all stages of
the analytical computations, after performing matching and block adjustment, accurate
solutions for all images, including the oblique images, can be obtained. The generation of
accurately solved oblique images simultaneously with regular verticals is a unique and
highly important feature of the A3 system.
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Figure 4. Relationship among Consecutive Swap. Number 0 represents images captured by lenses 0,
number 1 represents images captured by lenses 1.

4. The Proposed Quadrifocal Tensor SFM Photogrammetry Positioning and
Calibration Technique

The proposed quadrifocal tensor SFM photogrammetry positioning and calibration
technique include the following steps. First, all aerial images are sorted by flight route
according to imaging time, and the sorting relationship is established. The scale-invariant
feature transform (SIFT) algorithm is then used to extract feature points on each view
and build corresponding feature descriptors according to the image sorting relationship.
The iterative feature matching process is then carried out under the Hamming distance
criterion. The RANSAC algorithm is used to eliminate mismatches in the matching results,
and the feature point correspondences on the pairwise overlapping images are determined.
The pinhole imaging model is then established based on the unknown camera geometric
distortion parameters, and the essential matrices between each pairwise overlapping
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view are calculated using the successful matching point correspondences and redundant
constraints. The relative spatial rotation and the translation relationship, i.e., the rotation
matrix R and the translation vector t, are derived from the essential matrices.

After performing the Bayesian inferences, the initial global rotations are computed for
each view in a global coordinate system, while the initial global translations are generated
using the initial POS data or from the translation registration. The quadrifocal tensor model
can then be established, and the initial three-dimensional coordinates of the matching
point correspondences in each quadrifocal tensor model are calculated. Finally, the BA
cost function based on the quadrifocal tensor model is constructed and used in the BA
processing. The global rotation matrix and the translation vector for each view are updated,
and the intrinsic parameters are calibrated simultaneously. The general workflow is listed
in Figure 5.

Figure 5. Workflow of the proposed quadrifocal tensor SFM photogrammetry positioning and
calibration technique.

4.1. Feature Extraction and Image Matching

The SIFT algorithm is used to extract the feature points on each view and build
corresponding feature descriptors simultaneously according to the image sorting relation-
ship [49]. The Hamming distance is taken as the criterion for iterative image matching,
and the RANSAC algorithm is adopted to eliminate a large number of mismatches in the
matching results.
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4.2. Relative Rotation and Translation Estimation

The pinhole camera model is used to describe the frame sweep aerial camera. The
three-dimensional point P(X, Y, Z) in the ground object space is projected onto the image
plane and forms an image point p(x, y, −f ) through the pinhole projection. The geometric
relationship between the object point and the image point can be described with the
following model:

x = PX = K[R| t]X (1)

where R is the rotation matrix, a 3 × 3 orientation matrix representing the direction of
the camera coordinate system; t is the position vector; R and t are the camera exterior
parameters; K is the camera intrinsic parameter matrix (also called the camera calibration
matrix). The frame sweep camera positioning and calibration determine the R, t, and K
matrices; the camera projection matrix is provided by P = K[R|t].

The general form of the calibration matrix for a CCD camera is:

K =

αx x0
αy y0

1

. (2)

To increase generality, the skew parameter s can be added,

K =

αx s x0
αy y0

1

. (3)

Based on the successful matching point correspondences obtained in Section 4.1,
the relative spatial rotation and translation between any two overlapping images can
be calculated. The pairwise point correspondence p1, p2 meets the following epipolar
constraint:

pT
2 K−TEK−1 p1 = 0 (4)

In Equation (4), the points O1, P, and O2 are coplanar. E is the essential matrix, which
is the outer product of t and R and is perpendicular to t and R. Both translation and rotation
are included in the epipolar plane constraint, and the essential matrix E is calculated
from the point correspondences. After obtaining the essential matrix E, singular value
decomposition (SVD) is performed on the matrix E matrix to obtain R. Thus, the relative
rotation and translation of the two overlapping images can be determined [18,29,36].

4.3. Global Rotation and Translation Estimation

Assuming that in the global coordinate system, the global rotation matrix of image i
is Ri, that of image j is Rj, and the relative rotation is Rij, which is obtained in Section 4.2.
Three rotation matrices meet the consistency Equation (5), which is the basis for solving the
global rotation.

Rj = RijRi. (5)

Rj is orthonormal, for j = 1, . . . , m.
While the RANSAC algorithm can remove most mismatches, there are remaining

mismatches that cause deviations in the relative rotation estimation. As relative Rij estimates
may contain outliers, the global rotation estimation must be robust in identifying the
global rotations and the inconsistent/outlier edges (false essential geometry). Moulon’s
method [36] is used in determining inconsistent relative rotations in Bayesian inference. The
iterative use of the Bayesian inference, adjusted with the cycle length weighting, can remove
most outliers, check all the triplets of the graph, and reject those with cycle deviations
larger than 2◦.

When the relative rotations are known, they form a tree graph with the views as
vertices connected by an edge. Equation (5) can be solved by least-squares while satisfying
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the orthonormality conditions, R can be expressed in quaternions [50], and Equation (5) is
transformed into

.
rj
=

.
rij .

ri (6)

where
.
rj and

.
ri are the unknown quaternions of the ith and jth view rotation, respectively,

and
.
rij is the known relative rotation between views i and j. Each quaternion can be

considered a four-vector. Using known manipulations with quaternions, each equation in
(6) can be rewritten as 

rj
0

rj
x

rj
y

rj
z

 =


r0 −rx −ry −rz
rx r0 −rz ry
ry rz r0 −rx
rz −ry rx r0




ri
0

ri
x

ri
y

ri
z

 (7)

where
.
ri
= ri

0 + iri
x + jri

y + kri
z, with i, j, and k as imaginary units. There are 4m unknowns

r1
0, r1

x, r1
y, r1

z , · · · , rm
0 , rm

x , rm
y , rm

z with constraints (7) for each view pair ij with a known rotation.
After the solution, the quaternions can be easily made into units by dividing each by its
Euclidean length.

After deciding on the global rotations, the next step is determining the global trans-
lations. Given a set of relative motion pairs (Rij, tij) (rotations and translation directions
solved in Section 4.2), the global location (T1, · · · , Tm) of all views can be obtained. The
different translation directions are reconciled in the global coordinates system.∥∥Tj − RijTi − λijtij

∥∥ = 0, ∀i, j (8)

To solve m global translations and scale factors λij, the solution for Equation (7) is
optimized using the least-squares method or Moulon’s approach [36] under the l∞ norm.
For the VisionMap A3 edge camera, the GPS equipment provides the camera with position
information in the world coordinate system, so the processed GPS information can be taken
as initial values (T1, · · · , Tm).

4.4. Set up the Quadrifocal Tensor Model and Calculate Initial 3D Ground Point

Subsequently, the quadrifocal tensor model would be established, and the global
translations and three-dimensional coordinates of the point correspondences would then
be determined based on the quadrifocal tensor model. For the VisionMap camera, at a
certain sweep angle, the cam0 and cam1 lenses obtain images I and I′, the corresponding
projection planes are II and II′, and the projection centers are C and C′. The sweep angle
changes swiftly. At the next imaging moment, the cam0 and cam1 lenses obtain images I′′

and I′′′, with the corresponding projection planes II′′ and II′′′ and projection centers C′′ and
C′′′. The straight line L in the object space is reflected on four image views (see Figure 6).

Figure 6. The Quadrifocal Tensor Model.
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When the camera projection matrices of the four image views are A, B, C, and D, a
three-dimensional ground point X projects onto the four image views, and there is a set of
corresponding points x↔ x′ ↔ x′′ ↔ x′′′ across the four views. The four image views
constitute a quadrifocal tensor model, and the projection relationship among the four views
is provided by: 

A x
B x′

C x′′

D x′′′




X
−k
−k′

−k′′
−k′′′

 = 0 (9)

where k, k′, k′′ , and k′′′ represent uncertain scale constants, and ai, bi, ci, and di are the row
vectors of matrices A, B, C and D, respectively. The rank-4 tensor Qpqrs is defined by

Qpqrs = det


ai

bq

cr

ds

. (10)

From Equation (9), the quadrilinear relationship can be derived in the following form
for the quadrifocal tensor:

xix′ jx′′ kx′′′ lεipwε jqxεkryε lszQpqrs = 0wxyz (11)

where 0wxyz is a zero tensor with four indices w, x, y and z; εipw,ε jqx,εkry and ε lsz represent
the product between the different vectors. Based on the global rotation and translation
computed in Section 4.3, the camera projection matrices A, B, C, and D are determined, and
the quadrifocal tensor model can then be established.

The next step is realizing 3D reconstruction for point correspondences in the quadrifo-
cal tensor model. The ground point X projects across four views and forms the correspond-
ing image points x↔ x′ ↔ x′′ ↔ x′′′ . The geometric projection relationship between the
ground point and the corresponding image point is listed as follows:

x = AX
x′ = BX
x′′ = CX
x′′′ = DX

(12)

The plane coordinate of the image point x is (x, y). Taking the first expression in
Equation (12) as an example, when the cross product is applied, and the homogeneous
scalar factor is eliminated, the following equations can be obtained:

x(A 3T X)−
(

A1TX
)
= 0

y(A 3T X)−
(

A2TX
)
= 0

x(A 2T X)−y
(

A1TX
)
= 0

. (13)

Taking the first two equations, which are linearly independent, the four image points
x↔ x′ ↔ x′′ ↔ x′′′ develop into eight equations



Remote Sens. 2022, 14, 3521 10 of 24

NX− L = 0N =



xA3T −A1T

yA3T −A2T

x′B3T − B1T

y′B3T − B2T

x′′C3T −C1T

y′′C3T −C2T

x′′′D3T −D1T

y′′′D3T −D2T


. (14)

Solving Equation (14) by the least-squares approach, the 3D coordinates for ground
point X are generated.

4.5. Bundle Adjustment Based on the Quadrifocal Tensor Model

The BA processing is performed to update the rotation and translation and simultane-
ously calibrate the intrinsic matrix. The BA cost function based on the quadrifocal tensor
model is defined in the form as

f (z) =

∥∥∥∥∥
(

xi −
R1

i X + t1
i

R3
i X + t3

i
, yi −

R2
i X + t2

i

R3
i X + t3

i

)∥∥∥∥∥ (15)

where (xi, yi), i ∈ (1, 2, 3, 4) is the observation value corresponding to the four image points
x↔ x′ ↔ x′′ ↔ x′′′ ; Ri, i ∈ (1, 2, 3, 4) is the corresponding rotation matrix to each view;

ti, i ∈ (1, 2, 3, 4) is the corresponding translation vector;
(

R1
i X+t1

i
R3

i X+t3
i
, R2

i X+t2
i

R3
i X+t3

i

)
is the calculation

value of the image point; z is the unknown parameter vector comprising the camera pose
and calibration parameters (i.e., unknowns in rotation and translation) and the 3D ground
point coordinates X.

The differences between the observed values and the calculation values of the image
points are the reprojection error of the ground point, representing the errors contained in the
rotation, translation, and camera calibration parameters and the ground point coordinates.
When the cost function reaches the minimum value, the optimal solution is obtained for
the pose parameters, calibration parameters, and 3D coordinates of ground points.

The BA process optimizes the following nonlinear least-squares BA cost function

z∗ = argmin
n

∑
k=1
‖ fk(z)‖2. (16)

The BA cost function is optimized by the Levenberg–Marquardt (LM) approach.
The LM algorithm decomposes the original nonlinear cost function (Equation (16)) into
approximations of a series of regularized linear functions and J(z) is the Jacobian matrix
of f (z). In each loop, the LM approach updates the linear least squares problem in the
following form:

δ∗ = argmin
δ
‖J(z)δ + f (z)‖2 + λ‖D(z)δ‖. (17)

If ‖ f (z + δ∗)‖ < ‖ f (z)‖, then the unknown parameter is updated as z→ z + δ∗ . D(z)
is the square root matrix of the matrix J(z)T J(z) and λ is the regularization parameter,
which can be adjusted according to the approximation between J(z) and f (z). Solving
Equation (17) is equivalent to solving the standard equation:(

JT J + λDTD
)

δ = −JT f (18)

where
(

JT J + λDTD
)

is the extended Hessian matrix. In the BA process, the unknown
parameter z includes two parts: the camera pose and calibration parameters (zc) and the
3D ground point coordinates (zp). Similarly, D, δ, J can also be divided into two parts. Let
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U = JT
c Jc, V = JT

p Jp, Uλ = U + λDT
c Dc, Vλ = V + λDT

p Dp, W = JT
c Jp; Equation (18) can

then be rewritten as the block structure linear system:[
Uλ W
WT Vλ

][
δc
δp

]
= −

[
JT
c f

JT
p f

]
. (19)

Applying the Gaussian elimination method to Equation (19), the 3D coordinates of
the ground points can be eliminated, and a linear equation containing just the camera pose
and calibration parameters can be obtained:(

Uλ −WV−1
λ WT

)
δc = −JT

c f + WV−1
λ JT

p f . (20)

Therefore, δc can be determined by solving Equation (20) and δp can then be solved by
reverse substitution.

δp = −V−1
λ

(
JT
p f + WTδc

)
. (21)

The variables δc and δp are obtained using an iterative solution; after two loops, both
can reach high precision. The quadrifocal tensor SFM positioning and calibration process
for the frame sweep aerial camera is therefore completed.

To obtain better positioning and calibration precision, the OpenMVG SFM pipeline is
improved according to the photogrammetry processing mode. In photogrammetric process-
ing, position deviation is mostly caused by pose errors, while the intrinsic camera param-
eters generate minor systematic errors for both aerial and satellite-borne cameras [51,52].
So in the photogrammetry BA implementation, BA is always carried out in several stages.
Pose parameters are dealt with first, while the intrinsic parameters are processed last. Here,
three-stage BA processing is put forward. In the first stage, the intrinsic matrix K is set to E
(identity matrix), the rotation R remains unchanged, and only the translation T and the 3D
coordinates of ground points X are involved. In the second stage, the intrinsic matrix K
remains as E, but the translation T, the rotation T, and the 3D coordinates of ground points
X are involved in the BA process. In the last stage, all the unknowns, the intrinsic parameter
K, the translation T, the rotation T, and the 3D coordinates of ground points X are adjusted.

5. Experiments and Analysis
5.1. Test Data

The VisionMap Edge A3 camera was used to photograph the Zhengzhou area in
January 2020, with a total flight area of about 1000 square kilometers. Two flight missions
were carried out at 2300 m flight altitude, generating a ground resolution of about 5 cm.
Six routes (L_44, L_45, L_46, L_1, L_2, and L_3), located in the middle region and covering
about 120 square kilometers, were used for the experiment (see Figure 7).

The upper half is selected for analysis, comprising 7928 images and covering a total
area of 64 square kilometers. The study area (shown in Figure 8) includes plain regions and
urban areas.
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Figure 7. VisionMap Flight Coverage.
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Figure 8. Ground Coverage of Test Field.

Four different calibration approaches were designed to evaluate and compare the
proposed quadrifocal tensor SFM photogrammetry method with the original OpenMVG
SFM pipeline. The proposed method is tested under different conditions: no Ground
Control Point (GCP) support, with GCP support without considering camera intrinsic
parameters, and with GCP support considering camera intrinsic parameters.

I. The proposed method with no GCP support

The whole procedure in Figure 5 was implemented using POS. All unknowns, rota-
tion, translation, intrinsic parameters, and 3D ground point coordinates were involved in
this process.

II. The proposed method with GCP support, but not considering camera intrinsic parameters

The proposed method with GCP support was evaluated. All the unknowns were
employed in the BA procedure except the intrinsic camera parameters. The whole flow
was similar to the first test, but the intrinsic parameter matrix remained an identity matrix.

III. The proposed method with GCP support and considering camera intrinsic parameters

The same group of GCPs takes part in the test. All the unknowns, including the
intrinsic parameters, are involved in the BA procedure. The intrinsic parameter model
adopted Model (4), and the variables αx and αy each absorbed two distortion parameters.
In the adjustment process, the weight value of the ground control points was 20 times that
of the point correspondences.

IV. The original OpenMVG SFM pipeline with GCP support

The same group of GCPs and checkpoints (CHK) was used to evaluate the performance
of the original OpenMVG pipeline.

5.2. The Proposed Method with No GCP Support

A total of 7916 images were used in the experiment, and 6,856,633 pairwise point
correspondences were extracted from matching. Thirteen ground CHKs were used to
measure the discrepancies (i.e., ground point residuals) between the 3D observation values
and the calculated estimates. The statistical results of residuals are shown in Table 2, and
the root mean squares error (RMSE) is presented in the last row.
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Table 2. Statistical Values for CHKs after the First Experiment (Unit: meter).

ID of CHK X-Axis Y-Axis Z-Axis

CHK 1 0.7285 −0.7146 −17.6891
CHK 2 1.3723 −0.5638 −19.4138
CHK 3 0.2392 −0.5449 −16.8526
CHK 4 0.5169 −0.1780 −17.2758
CHK 5 0.2371 −0.5560 −16.6415
CHK 6 −0.0221 −0.3999 −16.5177
CHK 7 1.0317 0.5181 −16.6787
CHK 8 0.6388 0.8845 −16.2159
CHK 9 −1.8655 0.4107 −17.0058
CHK 10 −0.2723 0.1838 −16.7048
CHK 11 0.0234 0.8457 −16.6783
CHK 12 −0.2252 1.3395 −17.2606
CHK 13 −0.6135 0.9441 −17.7322
RMSE 0.7966 0.6950 17.14631

After BA processing, the sparse point cloud of the corresponding area is constructed.
The ground point cloud and the corresponding camera projection center are shown in
Figure 9. The yellow dashed lines illustrates the position of camera projection centers, and
the white form is the ground point cloud.

Figure 9. Sparse Point Cloud After the First Experiment.

As presented in Table 1, significant systematic errors were generated when without
GCP support, particularly in the Z-axis. From Figure 9, the proposed method can produce
a robust sparse, dense cloud.

5.3. The Proposed Method with GCP Support, but Not Considering Camera Intrinsic Parameters

The second experiment was carried out with the same set of images. Four ground
control points contributed to the BA process, and the same checkpoints were used to
evaluate the adjustment accuracy. A total of 3,091,007 pairwise point correspondences were
extracted from matching. The statistical differences and RMSE are shown in Table 3.
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Table 3. Statistical Values for CHKS after the Second Experiment (Unit: meter).

ID of CHK X-Axis Y-Axis Z-Axis

CHK 1 — — —
CHK 2 — — —
CHK 3 — — —
CHK 4 — — —
CHK 5 0.4117 1.0145 −1.6682
CHK 6 0.0062 0.0014 0.0068
CHK 7 — — —
CHK 8 — — —
CHK 9 −0.0573 0.0133 0.1149

CHK 10 −1.0118 −0.4301 0.0030
CHK 11 −0.0322 −0.0154 −0.0750
CHK 12 — — —
CHK 13 −0.0009 0.0054 −0.0014
RMSE 0.3035 0.3057 0.4642

After BA adjustment with GCPs, the pairwise point correspondences were used to
construct the sparse ground point cloud, as presented in Figure 10.

Figure 10. Sparse Point Cloud After the Second Experiment.

Since the intrinsic camera parameters were not adopted in the BA process, not all
distortion sources were fully considered, and some images did not meet the consistency
constraint. Therefore, image leaks occurred in the BA processing during the adjustment
process; only 4567 images passed through the BA process. Since image leaks transpired in
the BA process, some CHKs had no statistical residuals (see Table 3), and the sparse point
cloud in Figure 10 lacks completeness and robustness.

5.4. The Proposed Method with GCP Support and Considering Camera Intrinsic Parameters

In the third experiment, a total of 6,884,305 pairwise point correspondences were
extracted from matching. The residuals between the 3D observation and calculation values
are summarized in Table 4. The sparse point cloud is shown in Figure 11. The intrinsic
parameters before and after calibration are presented in Table 5.
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Table 4. Statistical Values for CHKS after the Third Experiment.

ID of CHK X-Axis Y-Axis Z-Axis

CHK 1 −0.0081 −0.0001 0.0037
CHK 2 0.0035 0.0034 0.0028
CHK 3 −0.0089 −0.0529 −0.0722
CHK 4 0.0401 −0.0213 −0.0754
CHK 5 0.0571 −0.0411 0.0472
CHK 6 −0.0011 −0.0040 0.0107
CHK 7 −0.0364 −0.0023 −0.0755
CHK 8 −0.0157 −0.0030 −0.0250
CHK 9 −0.1061 0.0232 0.2133
CHK 10 −0.0450 0.0122 0.0258
CHK 11 −0.0034 0.0162 0.0015
CHK 12 0.0076 −0.0027 −0.0047
CHK 13 0.0005 −0.0035 −0.0001
RMSE 0.0392 0.0214 0.0711

Figure 11. Sparse Point Cloud After the Third Experiment.

Table 5. The intrinsic parameters before and after calibration.

Parameter Before Calibration After Calibration

Principal Point x0 (pixel) 2432.0 2423.1399460647876
Principal Point y0 (pixel) 1616.0 1603.9860816155979
Calibration parameter 1 0 −0.14123671990384698
Calibration parameter 2 0 −27.234841758167391
Calibration parameter 3 0 3807.0519745535798
Calibration parameter 4 0 −0.00018113363239831057
Calibration parameter 5 0 −0.00069940821735464372

Table 3 show that the RMSE values for the 13 CHKs were below one pixel in the X and
Y directions and below two pixels in the Z direction, equivalent to the precision obtained by
the professional LightSpeed software [12–15]. The sparse point cloud shown in Figure 11 is
much more complete and robust.

5.5. The Original OpenMVG SFM Pipeline with GCP Support

The fourth experiment was carried out using the original OpenMVG pipeline. All
unknowns were considered, and the same group of GCPs and CHKs were used in the
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adjustment. A total of 6,797,129 pairwise point correspondences were extracted from
matching. The statistical results are shown in Table 6. The sparse point cloud is displayed
in Figure 12.

Table 6. Statistical Values for CHKS after the Fourth Experiment (Unit: meter).

ID of CHK X-Axis Y-Axis Z-Axis

CHK 1 0.2285 −0.2146 0.3560
CHK 2 0.2223 −0.2655 −0.2265
CHK 3 0.2393 −0.2149 −0.2078
CHK 4 0.2362 −0.1163 0.2652
CHK 5 −0.1373 −0.2316 −0.1682
CHK 6 −0.0895 −0.1930 0.3068
CHK 7 0.2187 0.2328 0.1032
CHK 8 0.2167 0.2855 −0.1176
CHK 9 −0.2655 0.2211 0.2149

CHK 10 −0.2353 0.1838 0.2030
CHK 11 0.0215 0.2046 −0.1750
CHK 12 −0.2624 0.2395 0.1582
CHK 13 −0.2297 0.2441 −0.1014
RMSE 0.2998 0.3148 0.3017

Figure 12. Sparse Point Cloud After the Fourth Experiment.

Table 6 show that the accuracy of the original OpenMVG SFM pipeline is far better
than that of the first experiment and that no systematic errors remained in the result.
However, the results were still not as good as those of the third experiment.

To better compare and analyze the different test results, the residuals from
Tables 2–4 and 6 were plotted. Figure 13 present the residuals at each CHK in the X-
direction, Figure 14 show the residuals in the Y-direction, and Figure 15 provide the
residuals in the Z-direction. Figure 16 present a more detailed comparison of residuals in
the Z-direction.
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Figure 13. Residuals Plot of CHKs in X-direction.

Figure 14. Residuals Plot of CHKs in Y-direction.

Figure 15. Residuals Plot of CHKs in Z-direction.



Remote Sens. 2022, 14, 3521 19 of 24

Figure 16. Residuals Plot of CHKs in Z-direction in Detail.

The results show that the largest errors were found in the first experiment. While the
first experiment deals with all the unknowns (e.g., rotation, translation, intrinsic parameters,
and 3D ground point coordinates) in the overall flow and constructs a robust sparse point
cloud, it does not eliminate the systematic errors in the pose data, especially in the Z
direction. Due to the lack of ground truth guidance, even with GPS support, significant
deviations could be found between the resulting 3D model and the ground truth.

For the second experiment, significant image leaks occurred due to the lack of intrinsic
parameters in the adjustment. This means that for high oblique frame sweep images,
intrinsic parameters are indispensable in adjustment. For normal vertical photogrammetric
images, although the BA process is unable to attain the highest precision when intrinsic
parameters are ignored, the robust bundle block can still be obtained.

In the third experiment, the highest precision is reached with a robust sparse point
cloud. In the fourth experiment, with GPS and GCP data, the original OpenMVG pipeline
can achieve high positioning accuracy in three directions with a robust sparse point cloud.
However, its accuracy is not as high as that of the proposed quadrifocal tensor SFM
photogrammetry method.

In the third and fourth experiments, while all the unknowns (e.g., rotation, translation,
intrinsic parameters, and 3D ground point coordinates) are considered in the BA process,
the proposed method achieves much higher accuracy. The proposed approach introduces
the iterative photogrammetry idea into the original OpenMVG SFM pipeline following an
aerial and satellite photogrammetry processing approach, focusing more on the imaging
geometric principle and camera characteristics. Using iterative BA adjustment, the distor-
tion sources are dealt with from a coarse to fine approach, enhancing the BA accuracy step
by step.

Figures 17 and 18 show the digital orthophoto map (DOM) and digital elevation model
(DEM) products after the BA positioning and calibration process in the third experiment.
The ground resolution of the DOM and the DEM was set to 7 cm. Fifteen points were
randomly selected from the DOM and DEM products. Measurements were then taken from
the two products, and observation values were made in the field test. After comparing the
values, the accuracy of the DOM was found to be from 1 to 3 pixels. The largest difference
was 2.72 pixels, the smallest difference was 1.01 pixels, and the RMSE was 1.32 pixels. The
DEM accuracy ranged from 2 to 5 pixels. The largest difference was 4.23 pixels, the smallest
difference was 2.05 pixels, and the RMSE was 2.91 pixels.
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Figure 17. DOM Product After Positioning and Calibration.

LightSpeed software was then used for the given dataset, implementing the entire
photogrammetry procedure and generating the DOM and DEM products. The photogram-
metry results and the DOM and DEM products obtained using the two methods were
compared and evaluated. The BA results and the DOM and DEM products obtained by the
two approaches were at the same accuracy level, which suggests that our proposed method
reaches the precision level of professional photogrammetry software.
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Figure 18. DEM Product After Positioning and Calibration.

6. Conclusions

Sweeping along the flight’s vertical direction for imaging, the frame sweep camera is
characterized by a large field of view, a wide observation range, and a multi-angle imaging
mode. While these characteristics can be useful for 3D reconstruction, they also increase
the difficulty of image positioning. For large tilt oblique photogrammetry, the image
positioning and calibration process becomes much more complex. Additionally, with the
increasing integration between photogrammetry and SFM, more attempts have been made
to combine these approaches to realize the positioning, calibration, and 3D reconstruction
of large amounts of ordered or disordered images. After an extensive literature review
and research, the OpenMVG pipeline was found to be most suitable for VisionMap A3
positioning and calibration.

Using the OpenMVG pipeline, a quadrifocal tensor-based positioning and calibration
method was developed for high oblique frame sweep aerial cameras according to the
imaging characteristics of VisionMap A3. We comprehensively analyzed the entire pro-
cessing flow, from feature extraction and image matching, relative rotation and translation
estimation, global rotation and translation estimation, and the quadrifocal tensor model
construction to the BA process and calibration. Focusing on the imaging character of the Vi-
sionMap A3 camera, the quadrifocal tensor was put forward as the basis for BA adjustment.
For the BA process and calibration, a coarse to fine three-stage BA processing modification
was introduced in the OpenMVG pipeline following photogrammetric processing. Based
on the experimental results, our main conclusions are as follows:

First, the SFM photogrammetric approach is suitable for large tilt oblique photogram-
metry. When considering the rotation, translation, 3D ground coordinates, and the cam-
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era’s intrinsic parameters, the SFM pipeline, as OpenMVG, can generate a robust sparse
point cloud.

Second, GPS data can only provide an initial value for the BA process. We found
significant deviations between the processed bundle block and the ground control points.
The results suggest that ground truth is still indispensable in positioning and calibration.

Third, the intrinsic parameters cannot be ignored in the BA process. The lack of
intrinsic parameters resulted in image leaks in the bundle block and the sparse point cloud.
The results indicate that the intrinsic parameters play an important role in dealing with
inner and outer positioning errors.

Fourth, the coarse to fine processing approach in classical photogrammetry is still ad-
visable in SFM photogrammetry. Processing the rotation (R) and translation (T) parameters
eliminates most gross positioning errors while processing the intrinsic parameters propels
the positioning precision to a higher level.

The experimental results on multiple overlapping routes of VisionMap A3 edge images
suggest that our proposed method could achieve a robust bundle block and sparse point
cloud and generate accurate DOM and DEM products. However, for the single route, the
proposed method generated a bundle block with only contours, and the inner images were
mostly considered outliers and excluded from the calculations. Subsequent studies are
required to explore how to retain more images and effectively exclude outliers.
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